Seismic interferometry in the presence of an isolated noise source
DOI:
https://doi.org/10.26443/seismica.v1i1.195Abstract
Seismic interferometry gives rise to a correlation wavefield that is closely related to the Green’s function under the condition of uniformly distributed noise sources. In the presence of an additional isolated noise source, a second contribution to this wavefield is introduced that emerges from the isolated source location at negative lapse time. These two contributions interfere, which may bias surface wave dispersion measurements significantly. To avoid bias, the causal and acausal parts of correlation functions need to be treated separately. We illustrate this by applying seismic interferometry to field data from a large-N array where a wind farm is present within the array
References
Aki, K., & Richards, P. G. (2009). Quantitative Seismology (2. ed., corr. print). Univ. Science Books.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
Boué, P., Roux, P., Campillo, M., & Briand, X. (2014). Phase Velocity Tomography of Surface Waves Using Ambient Noise Cross Correlation and Array Processing. Journal of Geophysical Research: Solid Earth, 119(1), 519–529. https://doi.org/10.1002/2013JB010446
Brenguier, F., Boué, P., Ben-Zion, Y., Vernon, F. L., Johnson, C. W., Mordret, A., Coutant, O., Share, P. E., Beaucé, E., Hollis, D., & Lecocq, T. (2019). Train Traffic as a Powerful Noise Source for Monitoring Active Faults with Seismic Interferometry. Geophysical Research Letters, 46(16), 9529–9536. https://doi.org/10.1029/2019GL083438
Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. (2008). Postseismic Relaxation along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science (New York, N.Y.), 321(5895), 1478–1481. https://doi.org/10.1126/science.1160943
Colombi, A., Boschi, L., Roux, P., & Campillo, M. (2014). Green’s Function Retrieval through Cross-Correlations in a Two-Dimensional Complex Reverberating Medium. The Journal of the Acoustical Society of America, 135(3), 1034–1043. https://doi.org/10.1121/1.4864485
Crameri, F. (2021). Scientific Colour Maps. https://doi.org/10.5281/ZENODO.5501399
Dales, P., Audet, P., & Olivier, G. (2017). Seismic Interferometry Using Persistent Noise Sources for Temporal Subsurface Monitoring. Geophysical Research Letters, 44(21), 10,863-10,870. https://doi.org/10.1002/2017GL075342
de Ridder, S. A. L., & Biondi, B. L. (2015). Ambient Seismic Noise Tomography at Ekofisk. GEOPHYSICS, 80(6), B167–B176. https://doi.org/10.1190/geo2014-0558.1
Droznin, D. V., Shapiro, N. M., Droznina, S. Ya., Senyukov, S. L., Chebrov, V. N., & Gordeev, E. I. (2015). Detecting and Locating Volcanic Tremors on the Klyuchevskoy Group of Volcanoes (Kamchatka) Based on Correlations of Continuous Seismic Records. Geophysical Journal International, 203(2), 1001–1010. https://doi.org/10.1093/gji/ggv342
Hadziioannou, C., Larose, E., Coutant, O., Roux, P., & Campillo, M. (2009). Stability of Monitoring Weak Changes in Multiply Scattering Media with Ambient Noise Correlation: Laboratory Experiments. The Journal of the Acoustical Society of America, 125(6), 3688–3695. https://doi.org/10.1121/1.3125345
Li, L., Boué, P., & Campillo, M. (2020). Observation and Explanation of Spurious Seismic Signals Emerging in Teleseismic Noise Correlations. Solid Earth, 11(1), 173–184. https://doi.org/10.5194/se-11-173-2020
Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh and Love Wave Phase Velocity Maps. Geophysical Journal International, 173(1), 281–298. https://doi.org/10.1111/j.1365-246X.2008.03720.x
Lobkis, O. I., & Weaver, R. L. (2001). On the Emergence of the Green’s Function in the Correlations of a Diffuse Field. J. Acoust. Soc. Am., 110(3011), 7. https://doi.org/10.1121/1.1417528
Margerin, L., Planès, T., Mayor, J., & Calvet, M. (2016). Sensitivity Kernels for Coda-Wave Interferometry and Scattering Tomography: Theory and Numerical Evaluation in Two-Dimensional Anisotropically Scattering Media. Geophysical Journal International, 204(1), 650–666. https://doi.org/10.1093/gji/ggv470
Nakata, N., Gualtieri, L., & Fichtner, A. (Eds.). (2019). Seismic Ambient Noise. Cambridge University Press. https://doi.org/doi:10.1017/9781108264808
Neuffer, T., Kremers, S., Meckbach, P., & Mistler, M. (2021). Characterization of the Seismic Wave Field Radiated by a Wind Turbine. Journal of Seismology, 25(3), 825–844. https://doi.org/10.1007/s10950-021-10003-6
Retailleau, L., Boué, P., Stehly, L., & Campillo, M. (2017). Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations. Journal of Geophysical Research: Solid Earth, 122(10), 8107–8120. https://doi.org/10.1002/2017JB014593
Schippkus, S., Garden, M., & Bokelmann, G. (2020). Characteristics of the Ambient Seismic Field on a Large-N Seismic Array in the Vienna Basin. Seismological Research Letters, 91(5), 2803–2816. https://doi.org/10.1785/0220200153
Schippkus, S., Zigone, D., Bokelmann, G. H. R., & the AlpArray Working Group. (2018). Ambient-Noise Tomography of the Wider Vienna Basin Region. Geophysical Journal International, 215(1), 102–117. https://doi.org/10.1093/gji/ggy259
Snieder, R. (2004). Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E, 69(4 Pt 2), 046610. https://doi.org/10.1103/PhysRevE.69.046610
Snieder, R., van Wijk, K., Haney, M., & Calvert, R. (2008). Cancellation of Spurious Arrivals in Green’s Function Extraction and the Generalized Optical Theorem. Physical Review E, 78(3), 036606. https://doi.org/10.1103/PhysRevE.78.036606
Snieder, R., Wapenaar, K., & Larner, K. (2006). Spurious Multiples in Seismic Interferometry of Primaries. GEOPHYSICS, 71(4), SI111–SI124. https://doi.org/10.1190/1.2211507
Stehly, L., Fry, B., Campillo, M., Shapiro, N. M., Guilbert, J., Boschi, L., & Giardini, D. (2009). Tomography of the Alpine Region from Observations of Seismic Ambient Noise. Geophysical Journal International, 178(1), 338–350. https://doi.org/10.1111/j.1365-246X.2009.04132.x
Steinmann, R., Hadziioannou, C., & Larose, E. (2021). Effect of Centimetric Freezing of the near Subsurface on Rayleigh and Love Wave Velocity in Ambient Seismic Noise Correlations. Geophysical Journal International, 224(1), 626–636. https://doi.org/10.1093/gji/ggaa406
Verbeke, J., Boschi, L., Stehly, L., Kissling, E., & Michelini, A. (2012). High-Resolution Rayleigh-wave Velocity Maps of Central Europe from a Dense Ambient-Noise Data Set. Geophysical Journal International, 188(3), 1173–1187. https://doi.org/10.1111/j.1365-246X.2011.05308.x
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A. (2010). Tutorial on Seismic Interferometry: Part 1 — Basic Principles and Applications. GEOPHYSICS, 75(5), 75A195-75A209. https://doi.org/10.1190/1.3457445
Wapenaar, K., Fokkema, J., & Snieder, R. (2005). Retrieving the Green’s Function in an Open System by Cross Correlation: A Comparison of Approaches (L). The Journal of the Acoustical Society of America, 118(5), 2783–2786. https://doi.org/10.1121/1.2046847
Wapenaar, K., Slob, E., Snieder, R., & Curtis, A. (2010). Tutorial on Seismic Interferometry: Part 2 — Underlying Theory and New Advances. GEOPHYSICS, 75(5), 75A211-75A227. https://doi.org/10.1190/1.3463440
Weaver, R. L. (2010). Equipartition and Retrieval of Green’s Function. Earthquake Science, 23(5), 397–402. https://doi.org/10.1007/s11589-010-0738-2
Wegler, U., & Sens-Schönfelder, C. (2007). Fault Zone Monitoring with Passive Image Interferometry. Geophysical Journal International, 168(3), 1029–1033. https://doi.org/10.1111/j.1365-246X.2006.03284.x
Zeng, X., & Ni, S. (2010). A Persistent Localized Microseismic Source near the Kyushu Island, Japan. Geophysical Research Letters, 37(24). https://doi.org/10.1029/2010GL045774
Zigone, D., Ben-Zion, Y., Campillo, M., & Roux, P. (2015). Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves. Pure and Applied Geophysics, 172(5), 1007–1032. https://doi.org/10.1007/s00024-014-0872-1
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Sven Schippkus, Roel Snieder, Céline Hadziioannou
This work is licensed under a Creative Commons Attribution 4.0 International License.