Seismic interferometry in the presence of an isolated noise source


  • Sven Schippkus Institute of Geophysics, Centre for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
  • Roel Snieder Center for Wave Phenomena, Colorado School of Mines, Golden, CO, USA
  • Céline Hadziioannou Institute of Geophysics, Centre for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany



Seismic interferometry gives rise to a correlation wavefield that is closely related to the Green’s function under the condition of uniformly distributed noise sources. In the presence of an additional isolated noise source, a second contribution to this wavefield is introduced that emerges from the isolated source location at negative lapse time. These two contributions interfere, which may bias surface wave dispersion measurements significantly. To avoid bias, the causal and acausal parts of correlation functions need to be treated separately. We illustrate this by applying seismic interferometry to field data from a large-N array where a wind farm is present within the array


Aki, K., & Richards, P. G. (2009). Quantitative Seismology (2. ed., corr. print). Univ. Science Books.

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3), 1239–1260.

Boué, P., Roux, P., Campillo, M., & Briand, X. (2014). Phase Velocity Tomography of Surface Waves Using Ambient Noise Cross Correlation and Array Processing. Journal of Geophysical Research: Solid Earth, 119(1), 519–529.

Brenguier, F., Boué, P., Ben-Zion, Y., Vernon, F. L., Johnson, C. W., Mordret, A., Coutant, O., Share, P. E., Beaucé, E., Hollis, D., & Lecocq, T. (2019). Train Traffic as a Powerful Noise Source for Monitoring Active Faults with Seismic Interferometry. Geophysical Research Letters, 46(16), 9529–9536.

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. (2008). Postseismic Relaxation along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science (New York, N.Y.), 321(5895), 1478–1481.

Colombi, A., Boschi, L., Roux, P., & Campillo, M. (2014). Green’s Function Retrieval through Cross-Correlations in a Two-Dimensional Complex Reverberating Medium. The Journal of the Acoustical Society of America, 135(3), 1034–1043.

Crameri, F. (2021). Scientific Colour Maps.

Dales, P., Audet, P., & Olivier, G. (2017). Seismic Interferometry Using Persistent Noise Sources for Temporal Subsurface Monitoring. Geophysical Research Letters, 44(21), 10,863-10,870.

de Ridder, S. A. L., & Biondi, B. L. (2015). Ambient Seismic Noise Tomography at Ekofisk. GEOPHYSICS, 80(6), B167–B176.

Droznin, D. V., Shapiro, N. M., Droznina, S. Ya., Senyukov, S. L., Chebrov, V. N., & Gordeev, E. I. (2015). Detecting and Locating Volcanic Tremors on the Klyuchevskoy Group of Volcanoes (Kamchatka) Based on Correlations of Continuous Seismic Records. Geophysical Journal International, 203(2), 1001–1010.

Hadziioannou, C., Larose, E., Coutant, O., Roux, P., & Campillo, M. (2009). Stability of Monitoring Weak Changes in Multiply Scattering Media with Ambient Noise Correlation: Laboratory Experiments. The Journal of the Acoustical Society of America, 125(6), 3688–3695.

Li, L., Boué, P., & Campillo, M. (2020). Observation and Explanation of Spurious Seismic Signals Emerging in Teleseismic Noise Correlations. Solid Earth, 11(1), 173–184.

Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh and Love Wave Phase Velocity Maps. Geophysical Journal International, 173(1), 281–298.

Lobkis, O. I., & Weaver, R. L. (2001). On the Emergence of the Green’s Function in the Correlations of a Diffuse Field. J. Acoust. Soc. Am., 110(3011), 7.

Margerin, L., Planès, T., Mayor, J., & Calvet, M. (2016). Sensitivity Kernels for Coda-Wave Interferometry and Scattering Tomography: Theory and Numerical Evaluation in Two-Dimensional Anisotropically Scattering Media. Geophysical Journal International, 204(1), 650–666.

Nakata, N., Gualtieri, L., & Fichtner, A. (Eds.). (2019). Seismic Ambient Noise. Cambridge University Press.

Neuffer, T., Kremers, S., Meckbach, P., & Mistler, M. (2021). Characterization of the Seismic Wave Field Radiated by a Wind Turbine. Journal of Seismology, 25(3), 825–844.

Retailleau, L., Boué, P., Stehly, L., & Campillo, M. (2017). Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations. Journal of Geophysical Research: Solid Earth, 122(10), 8107–8120.

Schippkus, S., Garden, M., & Bokelmann, G. (2020). Characteristics of the Ambient Seismic Field on a Large-N Seismic Array in the Vienna Basin. Seismological Research Letters, 91(5), 2803–2816.

Schippkus, S., Zigone, D., Bokelmann, G. H. R., & the AlpArray Working Group. (2018). Ambient-Noise Tomography of the Wider Vienna Basin Region. Geophysical Journal International, 215(1), 102–117.

Snieder, R. (2004). Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E, 69(4 Pt 2), 046610.

Snieder, R., van Wijk, K., Haney, M., & Calvert, R. (2008). Cancellation of Spurious Arrivals in Green’s Function Extraction and the Generalized Optical Theorem. Physical Review E, 78(3), 036606.

Snieder, R., Wapenaar, K., & Larner, K. (2006). Spurious Multiples in Seismic Interferometry of Primaries. GEOPHYSICS, 71(4), SI111–SI124.

Stehly, L., Fry, B., Campillo, M., Shapiro, N. M., Guilbert, J., Boschi, L., & Giardini, D. (2009). Tomography of the Alpine Region from Observations of Seismic Ambient Noise. Geophysical Journal International, 178(1), 338–350.

Steinmann, R., Hadziioannou, C., & Larose, E. (2021). Effect of Centimetric Freezing of the near Subsurface on Rayleigh and Love Wave Velocity in Ambient Seismic Noise Correlations. Geophysical Journal International, 224(1), 626–636.

Verbeke, J., Boschi, L., Stehly, L., Kissling, E., & Michelini, A. (2012). High-Resolution Rayleigh-wave Velocity Maps of Central Europe from a Dense Ambient-Noise Data Set. Geophysical Journal International, 188(3), 1173–1187.

Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A. (2010). Tutorial on Seismic Interferometry: Part 1 — Basic Principles and Applications. GEOPHYSICS, 75(5), 75A195-75A209.

Wapenaar, K., Fokkema, J., & Snieder, R. (2005). Retrieving the Green’s Function in an Open System by Cross Correlation: A Comparison of Approaches (L). The Journal of the Acoustical Society of America, 118(5), 2783–2786.

Wapenaar, K., Slob, E., Snieder, R., & Curtis, A. (2010). Tutorial on Seismic Interferometry: Part 2 — Underlying Theory and New Advances. GEOPHYSICS, 75(5), 75A211-75A227.

Weaver, R. L. (2010). Equipartition and Retrieval of Green’s Function. Earthquake Science, 23(5), 397–402.

Wegler, U., & Sens-Schönfelder, C. (2007). Fault Zone Monitoring with Passive Image Interferometry. Geophysical Journal International, 168(3), 1029–1033.

Zeng, X., & Ni, S. (2010). A Persistent Localized Microseismic Source near the Kyushu Island, Japan. Geophysical Research Letters, 37(24).

Zigone, D., Ben-Zion, Y., Campillo, M., & Roux, P. (2015). Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves. Pure and Applied Geophysics, 172(5), 1007–1032.




How to Cite

Schippkus, S., Snieder, R., & Hadziioannou, C. (2022). Seismic interferometry in the presence of an isolated noise source. Seismica, 1(1).