The root to the Galápagos mantle plume on the core-mantle boundary


  • Sanne Cottaar University of Cambridge
  • Carl Martin University of Cambridge
  • Zhi Li University of Cambridge
  • Rita Parai Washington University in St Louis



Seismology, Deep Earth, ULVZ, Galapagos


Ultra-low velocity zones (ULVZs) are thin anomalous patches on the boundary between the Earth's core and mantle, revealed by their effects on the seismic waves that propagate through them. Here we map a broad ULVZ near the Galápagos hotspot using shear-diffracted waves. Forward modelling assuming a cylindrical shape shows the patch is ~600 km wide, ~20 km high, and its shear velocities are ~25% reduced. The ULVZ is comparable to other broad ULVZs mapped on the core-mantle boundary near Hawaii, Iceland, and Samoa.  Strikingly, all four hotspots where the mantle plume appears rooted by these ‘mega-ULVZs’, show similar anomalous isotopic signatures in He, Ne, and W in their ocean island basalts. This correlation suggests mega-ULVZs might be primordial or caused by interaction with the core, and some material from ULVZs is entrained within the plume. For the Galápagos, the connection implies the plume is offset to the west towards the base of the mantle.


Allègre, C., Staudacher, T., Sarda, P., & Kurz, M. (1983). Constraints on evolution of Earth’s mantle from rare gas systematics. Nature, 303(5920), 762–766.

Bouhifd, M., Jephcoat, A., Porcelli, D., Kelley, S., & Marty, B. (2020). Potential of Earth’s core as a reservoir for noble gases: Case for helium and neon. Geochemical Perspectives Letters, 15, 15–18.

Buffett, B., Garnero, E., & Jeanloz, R. (2000). Sediments at the Top of Earth’s Core. Science, 290(5495), 1338–1342.

Capdeville, Y., Larmat, C., Vilotte, J.P., & Montagner, J.P. (2002). A new coupled spectral element and modal solution method for global seismology: A first application to the scattering induced by a plume-like anomaly. Geophysical Research Letters, 29(9), 32–1–32–4.

Capdeville, Y., To, A., & Romanowicz, B. (2003). Coupling spectral elements and modes in a spherical Earth: an extension to the “sandwich” case. Geophysical Journal International, 154(1), 44–57.

Cottaar, S., & Lekić, V. (2016). Morphology of seismically slow lower-mantle structures. Geophys. J. Int, 207(2), 1122–1136.

Cottaar, S., & Romanowicz, B. (2012). An unsually large ULVZ at the base of the mantle near Hawaii. Earth and Planetary Science Letters, 355–356, 213–222.

Dannberg, J., Myhill, R., Gassmöller, R., & Cottaar, S. (2021). The morphology, evolution and seismic visibility of partial melt at the core-mantle boundary: Implications for ULVZs. Geophysical Journal International, 227(2), 1028–1059.

Day, J., Jones, T., & Nicklas, R. (2022). Mantle sources of ocean islands basalts revealed from noble gas isotope systematics. Chemical Geology, 587, 120626.

Dobrosavljevic, V., Sturhahn, W., & Jackson, J. (2019). Evaluating the role of iron-rich (Mg,Fe)O in ultralow velocity zones. Minerals, 9(12), 762.

Domeier, M., Doubrovine, P., Torsvik, T., Spakman, W., & Bull, A. (2016). Global correlation of lower mantle structure and past subduction. Geophysical Research Letters, 43(10), 4945–4953.

Dziewonski, A., & Anderson, D. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 Earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9.

French, S., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots.. Nature, 525(7567), 95–9.

French, S., & Romanowicz, B. (2014). Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophysical Journal International, 199(3), 1303–1327.

Garnero, E., McNamara, A., & Shim, S.H. (2016). Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nature Geosci, 9(7), 481–489.

Geist, D., White, W., & McBirney, A. (1988). Plume-asthenosphere mixing beneath the Galapagos archipelago. Nature, 333(6174), 657–660.

Gleeson, M., Soderman, C., Matthews, S., Cottaar, S., & Gibson, S. (2021). Geochemical Constraints on the Structure of the Earth’s Deep Mantle and the Origin of the LLSVPs. Geochemistry, Geophysics, Geosystems, 22(9).

Graham, D., Christie, D., Harpp, K., & Lupton, J. (1993). Mantle plume helium in submarine basalts from the Galápagos platform. Science, 262(5142), 2023–2026.

Harper, C., & Jacobsen, S. (1996). Noble gases and Earth’s accretion. Science, 273(5283), 1814–1818.

Harpp, K., & Weis, D. (2020). Insights Into the Origins and Compositions of Mantle Plumes: A Comparison of Galápagos and Hawai’i. Geochemistry, Geophysics, Geosystems, 21(9).

Harpp, K., & White, W. (2001). Tracing a mantle plume: Isotopic and trace element variations of Galápagos seamounts. Geochemistry, Geophysics, Geosystems, 2(6).

Hauser, J., Sambridge, M., & Rawlinson, N. (2008). Multiarrival wavefront tracking and its applications. Geochemistry, Geophysics, Geosystems, 9(11).

Hayden, L., & Watson, E. (2007). A diffusion mechanism for core–mantle interaction. Nature, 450(7170), 709–711.

Hernlund, J., & Jellinek, A. (2010). Dynamics and structure of a stirred partially molten ultralow-velocity zone. Earth and Planetary Science Letters, 296(1–2), 1–8.

Hilst, R., Widiyantoro, S., & Engdahl, E. (1997). Evidence for deep mantle circulation from global tomography. Nature, 386(6625), 578–584.

Hilton, D., Grönvold, K., Macpherson, C., & Castillo, P. (1999). Extreme 3He/4He ratios in northwest Iceland: Constraining the common component in mantle plumes. Earth and Planetary Science Letters, 173(1–2), 53–60.

Hosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen-Meyer, T., & Igel, H. (2020). Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophysical Journal International, 220(1), 96–141.

Jackson, M., Blichert-Toft, J., Halldórsson, S., Mundl-Petermeier, A., Bizimis, M., Kurz, M., Price, A., Haroardóttir, S., Willhite, L., Breddam, K., Becker, T., & Fischer, R. (2020). Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proceedings of the National Academy of Sciences of the United States of America, 117(49), 30993–31001.

Jackson, M., Konter, J., & Becker, T. (2017). Primordial helium entrained by the hottest mantle plumes. Nature, 542(7641), 340–343.

Jackson, M., Kurz, M., Hart, S., & Workman, R. (2007). New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high 3He/4He mantle. Earth and Planetary Science Letters, 264(3–4), 360–374.

Jellinek, A., & Manga, M. (2004). Links between long‐lived hot spots, mantle plumes, D’’ , and plate tectonics. Reviews of Geophysics, 42(3), 3002.

Jenkins, J., Mousavi, S., Li, Z., & Cottaar, S. (2021). A high-resolution map of Hawaiian ULVZ morphology from ScS phases. Earth and Planetary Science Letters, 563, 116885.

Jones, T., Davies, D., & Sossi, P. (2019). Tungsten isotopes in mantle plumes: Heads it’s positive, tails it’s negative. Earth and Planetary Science Letters, 506, 255–267.

Kanda, R., & Stevenson, D. (2006). Suction mechanism for iron entrainment into the lower mantle. Geophys. Res. Lett, 33(2), 02310.

Kim, D., Lekić, V., Ménard, B., Baron, D., & Taghizadeh-Popp, M. (2020). Sequencing seismograms: A panoptic view of scattering in the core-mantle boundary region. Science, 368(6496), 1223–1228.

Kleine, T., Münker, C., Mezger, K., & Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature, 418(6901), 952–955.

Krier, J., Thorne, M., Leng, K., & Nissen‐Meyer, T. (2021). A Compositional Component to the Samoa Ultralow‐Velocity Zone Revealed Through 2‐ and 3‐D Waveform Modeling of SKS and SKKS Differential Travel‐Times and Amplitudes. Journal of Geophysical Research: Solid Earth, 126(7), 2021 021897.

Kurz, M., Curtice, J., Fornari, D., Geist, D., & Moreira, M. (2009). Primitive neon from the center of the Galápagos hotspot. Earth and Planetary Science Letters, 286(1–2), 23–34.

Kurz, M., & Geist, D. (1999). Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochimica et Cosmochimica Acta, 63(23–24), 4139–4156.

Kurz, M., Jenkins, W., Hart, S., & Clague, D. (1983). Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. Earth and Planetary Science Letters, 66(C), 388–406.

Labrosse, S., Hernlund, J., & Coltice, N. (2007). A crystallizing dense magma ocean at the base of the Earth’s mantle.. Nature, 450(7171), 866–9.

Lai, V., Helmberger, D., Dobrosavljevic, V., Wu, W., Sun, D., Jackson, J., & Gurnis, M. (2022). Strong ULVZ and Slab Interaction at the Northeastern Edge of the Pacific LLSVP Favors Plume Generation. Geochemistry, Geophysics, Geosystems, 23(2).

Lei, W., Ruan, Y., Bozdaǧ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2020). Global adjoint tomography - Model GLAD-M25. Geophysical Journal International, 223(1), 1–21.

Lesher, C., Dannberg, J., Barfod, G., Bennett, N., Glessner, J., Lacks, D., & Brenan, J. (2020). Iron isotope fractionation at the core–mantle boundary by thermodiffusion. Nature Geoscience, 13(5), 382–386.

Li, J., Sun, D., & Bower, D. (2022). Slab control on the mega-sized North Pacific ultra-low velocity zone. Nature Communications, 13(1), 1042.

Li, M., McNamara, A., Garnero, E., & Yu, S. (2017). Compositionally-distinct ultra-low velocity zones on Earth’s core-mantle boundary.. Nature comm, 8(1), 177.

Li, M., & Zhong, S. (2017). The source location of mantle plumes from 3D spherical models of mantle convection. Earth and Planetary Science Letters, 478, 47–57.

Li, Z., Leng, K., Jenkins, J., & Cottaar, S. (2022). Kilometer-scale structure on the core–mantle boundary near Hawaii. Nature Communications, 13(1), 2787.

Lim, K., Bonati, I., & Hernlund, J. (2021). A Hybrid Mechanism for Enhanced Core-Mantle Boundary Chemical Interaction. Geophysical Research Letters, 48(23).

Ma, X., Sun, X., & Thomas, C. (2019). Localized ultra-low velocity zones at the eastern boundary of Pacific LLSVP. Earth and Planetary Science Letters, 507, 40–49.

Mukhopadhyay, S. (2012). Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486(7401), 101–104.

Mukhopadhyay, S., & Parai, R. (2019). Noble gases: A record of Earth’s evolution and mantle dynamics. Annual Review of Earth and Planetary Sciences. Annual Reviews, 389–419.

Mundl-Petermeier, A., Walker, R., Fischer, R., Lekic, V., Jackson, M., & Kurz, M. (2020). Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth’s core?. Geochimica et Cosmochimica Acta, 271, 194–211.

Mundl, A., Touboul, M., Jackson, M., Day, J., Kurz, M., Lekic, V., Helz, R., & Walker, R. (2017). Tungsten-182 heterogeneity in modern ocean island basalts.. Science, 356(6333), 66–69.

Nolet, G., Hello, Y., Lee, S., Bonnieux, S., Ruiz, M., Pazmino, N., Deschamps, A., Regnier, M., Font, Y., Chen, Y., & Simons, F. (2019). Imaging the Galápagos mantle plume with an unconventional application of floating seismometers. Scientific Reports, 9(1), 1326.

Otsuka, K., & Karato, S. (2012). Deep penetration of molten iron into the mantle caused by a morphological instability. Nature, 492(7428), 243–246.

Parai, R., Mukhopadhyay, S., Tucker, J., & Pető, M. (2019). The emerging portrait of an ancient, heterogeneous and continuously evolving mantle plume source. Lithos. Elsevier, 105153.

Péron, S., Mukhopadhyay, S., Kurz, M., & Graham, D. (2021). Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature, 600(7889), 462–467.

Peters, B., Mundl‐Petermeier, A., Carlson, R., Walker, R., & Day, J. (2021). Combined Lithophile‐Siderophile Isotopic Constraints on Hadean Processes Preserved in Ocean Island Basalt Sources. Geochemistry, Geophysics, Geosystems, 22(3).

Peto, M., Mukhopadhyay, S., & Kelley, K. (2013). Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth and Planetary Science Letters, 369–370, 13–23.

Rizo, H., Andrault, D., Bennett, N., Humayun, M., Brandon, A., Vlastelic, I., Moine, B., Poirier, A., Bouhifd, M., & Murphy, D. (2019). 182W evidence for core-mantle interaction in the source of mantle plumes. Geochemical Perspectives Letters, 11, 6–11.

Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Reviews of Geophysics, 40(3), 1008.

Schimmel, M., & Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophysical Journal International, 130(2), 497–505.

Steinberger, B., & Torsvik, T. (2012). A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces. Geochemistry, Geophysics, Geosystems, 13(1), –.

Thorne, M., Garnero, E., Jahnke, G., Igel, H., & McNamara, A. (2013). Mega ultra low velocity zone and mantle flow. Earth and Planetary Science Letters, 364, 59–67.

Thorne, M., Leng, K., Pachhai, S., Rost, S., Wicks, J., & Nissen‐Meyer, T. (2021). The Most Parsimonious Ultralow‐Velocity Zone Distribution From Highly Anomalous SPdKS Waveforms. Geochemistry, Geophysics, Geosystems, 22(1), 2020 009467.

Thorne, M., Pachhai, S., Leng, K., Wicks, J., & Nissen-Meyer, T. (2020). New Candidate Ultralow-Velocity Zone Locations from Highly Anomalous SPdKS Waveforms. Minerals, 10(3), 211.

Trieloff, M., Kunz, J., Clague, D., Harrison, D., & Allègre, C. (2000). The nature of pristine noble gases in mantle plumes. Science, 288(5468), 1036–1038.

Valbracht, P., Staudacher, T., Malahoff, A., & Allègre, C. (1997). Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii. Earth and Planetary Science Letters, 150(3–4), 399–411.

Wang, K., Lu, X., Liu, X., Zhou, M., & Yin, K. (2022). Partitioning of noble gases (He, Ne, Ar, Kr, Xe) during Earth’s core segregation: A possible core reservoir for primordial noble gases. Geochimica et Cosmochimica Acta, 321, 329–342.

White, W., McBirney, A., & Duncan, R. (1993). Petrology and geochemistry of the Galapagos Islands: portrait of a pathological mantle plume. Journal of Geophysical Research, 98(B11), 19533–19563.

Wicks, J., Jackson, J., Sturhahn, W., & Zhang, D. (2017). Sound velocity and density of magnesiowüstites: Implications for ultralow-velocity zone topography. Geophysical Research Letters, 44(5), 2148–2158.

Williams, C., Mukhopadhyay, S., Rudolph, M., & Romanowicz, B. (2019). Primitive Helium Is Sourced From Seismically Slow Regions in the Lowermost Mantle. Geochemistry, Geophysics, Geosystems, 20(8), 4130–4145.

Yin, Q., Jacobsen, S., Yamashita, K., Blichert-Toft, J., Télouk, P., & Albarède, F. (2002). A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418(6901), 949–952.

Yu, S., & Garnero, E. (2018). Ultralow Velocity Zone Locations: A Global Assessment. Geochemistry, Geophysics, Geosystems, 19(2), 396–414.

Yuan, K., & Romanowicz, B. (2017). Seismic evidence for partial melting at the root of major hot spot plumes. Science, 357, 393–397.




How to Cite

Cottaar, S., Martin, C., Li, Z., & Parai, R. (2022). The root to the Galápagos mantle plume on the core-mantle boundary . Seismica, 1(1).