Advancing Seismic Slope Instability Monitoring: Integrating Fibre-Optic and Nodal Array Sensing
DOI:
https://doi.org/10.26443/seismica.v5i1.1997Keywords:
Slope instability, Seismic nodal array, Distributed Acoustic Sensing, Distributed Strain Sensing, Multi-sensor network, Natural hazardsAbstract
Slope instabilities pose serious risks to infrastructure and communities in mountainous regions. Understanding their internal structure and time-dependent dynamics is vital for effective hazard assessment and mitigation. The Cuolm da Vi instability in central Switzerland, one of the largest slow-moving instabilities in the Alps, offers an ideal setting for field-based slope instability research. We present the motivation, design, and implementation of a novel large-scale multi-sensor seismic network to study the subsurface structure and deformation dynamics of Cuolm da Vi across an unprecedented range of spatial and temporal scales: from decimetres to kilometres and milliseconds to years. The sensor network includes a hexagonal grid of more than 1,000 seismic nodes primarily deployed for high-resolution 3D characterization. This temporary nodal array was complemented with a trenched 6.5km fibre-optic configuration, which covers the most unstable parts of Cuolm da Vi using a multi-directional cable layout, suited for Distributed Acoustic and Strain Sensing measurements (DAS & DSS). Data acquisition spanned two years so far, including controlled-source experiments and continuous seismic and strain sensing campaigns. Initial data screening demonstrates the network's potential to facilitate imaging of the internal structure and monitoring of seasonal subsurface instability processes. Our study shows the feasibility of dense long-term seismic monitoring in challenging Alpine terrain using nodal and distributed fibre-optic sensing techniques, opening new opportunities for slope instability research and hazard assessment.
References
Abrecht, J. (1994). Geologic Units of the Aar Massif and Their Pre-Alpine Rock Associations: A Critical Review. Schweizerische Mineralogische Und Petrographische Mitteilungen, 74, 5–27.
Acharya, A., & Kogure, T. (2022). Application of novel distributed fibre-optic sensing for slope deformation monitoring: a comprehensive review. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04697-5
Acharya, A., & Kogure, T. (2024). Advances in fibre-optic-based slope reinforcement monitoring: A review. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2024.03.022
Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., & Li, X. (2019). Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Scientific Reports, 9(1), 1328. https://doi.org/10.1038/s41598-018-36675-8
Aki, K., & Richards, P. (2002). Quantitative Seismology, 2nd Ed. University Science Books.
Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. CATENA, 104, 219–232. https://doi.org/10.1016/j.catena.2012.11.013
Amann, F. (2006). Großhangbewegung Cuolm Da Vi (Graubünden, Schweiz) Geologisch-geotechnische Befunde und numerische Untersuchungen zur Klärung des Phänomens [Phdthesis]. Universität Erlangen-Nürnberg.
Baggeroer, A. B., Kuperman, W. A., & Mikhalevsky, P. N. (1993). An overview of matched field methods in ocean acoustics. IEEE Journal of Oceanic Engineering, 18(4), 401–424. https://doi.org/10.1109/48.262292
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
Berrocal, C. G., Fernandez, I., & Rempling, R. (2021). Crack monitoring in reinforced concrete beams by distributed optical fiber sensors. Structure and Infrastructure Engineering, 17(1), 124–139. https://doi.org/10.1080/15732479.2020.1731558
Bertello, L., Berti, M., Castellaro, S., & Squarzoni, G. (2018). Dynamics of an Active Earthflow Inferred From Surface Wave Monitoring. Journal of Geophysical Research: Earth Surface, 123(8), 1811–1834. https://doi.org/10.1029/2017JF004233
Bickel, V., Manconi, A., & Amann, F. (2018). Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor Surface Displacements of Large Slope Instabilities. Remote Sensing, 10(6), 865. https://doi.org/10.3390/rs10060865
Bonnard, C. (Ed.). (2004). Identification and mitigation of large landslide risks in Europe: advances in risk assessment; IMIRILAND Project. Balkema Publ.
Bonnard, C., Dewarrat, X., & Noverraz, F. (2004). The Sedrun Landslide. In Identification and Mitigation of Large Landslide Risks in Europe (pp. 227–252). Taylor.
Bontemps, N., Lacroix, P., Larose, E., Jara, J., & Taipe, E. (2020). Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nature Communications, 11(1), 780. https://doi.org/10.1038/s41467-020-14445-3
Booth, A. M., Roering, J. J., & Rempel, A. W. (2013). Topographic signatures and a general transport law for deep-seated landslides in a landscape evolution model. Journal of Geophysical Research: Earth Surface, 118(2), 603–624. https://doi.org/10.1002/jgrf.20051
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126–130. https://doi.org/10.1038/ngeo104
Capdeville, Y., & Sladen, A. (2024). DAS sensitivity to heterogeneity scales much smaller than the minimum wavelength. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1007
Chae, B.-G., Park, H.-J., Catani, F., Simoni, A., & Berti, M. (2017). Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosciences Journal, 21(6), 1033–1070. https://doi.org/10.1007/s12303-017-0034-4
Chang, H.-C. (2024). Feasibility study of shear wave velocity imaging of the active deep-seated slope instability at Cuolm da Vi using ambient noise interferometry [Phdthesis]. ETH Zurich.
Clague, J. J., Roberts, N. J., & Stead, D. (2012). Landslide hazard and risk. Landslides: Types, Mechanisms and Modeling – Cambridge, University Press, United Kingdom, 1–9.
Comon, P. (1994). Independent component analysis, A new concept? Signal Processing, 36(3), 287–314. https://doi.org/10.1016/0165-1684(94)90029-9
Corciulo, M., Roux, P., Campillo, M., Dubucq, D., & Kuperman, W. A. (2012). Multiscale matched-field processing for noise-source localization in exploration geophysics. GEOPHYSICS, 77(5), KS33–KS41. https://doi.org/10.1190/geo2011-0438.1
Corominas, J., Moya, J., Lloret, A., Gili, J. A., Angeli, M. G., Pasuto, A., & Silvano, S. (2000). Measurement of landslide displacements using a wire extensometer. Engineering Geology, 55(3), 149–166. https://doi.org/10.1016/S0013-7952(99)00086-1
Crist, J. (2016). Dask & Numba: Simple libraries for optimizing scientific python code. 2016 IEEE International Conference on Big Data (Big Data), 2342–2343. https://doi.org/10.1109/BigData.2016.7840867
Crosta, G. B., & Frattini, P. (2008). Rainfall-induced landslides and debris flows. Hydrological Processes, 22(4), 473–477. https://doi.org/10.1002/hyp.6885
Crozier, M. J. (2010). Deciphering the effect of climate change on landslide activity: A review. Geomorphology, 124(3), 260–267. https://doi.org/10.1016/j.geomorph.2010.04.009
Cruden, D. (1996). Cruden,D.M.,Varnes, D.J.,1996, Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247: 36-75. Special Report - National Research Council, Transportation Research Board, 247, 36–57.
den Ouden, C. M. (2024). Monitoring Temporal Changes in the Cuolm da Vi Slope Instability Using Distributed Acoustic Sensing [Phdthesis]. ETH Zurich.
Eberhardt, E., Willenberg, H., Loew, S., & Maurer, H. (2001). Active Rockslides in Switzerland - Understanding Mechanisms and Processes. In International Conference on Landslides—Causes,Impacts and Countermeasures (pp. 25–34). https://www.semanticscholar.org/paper/ACTIVE-ROCKSLIDES-IN-SWITZERLAND-%E2%80%93-UNDERSTANDING-Eberhardt-Willenberg/a2ed300f1deb069bfb3f7faf7cec79914b7e0f6c
Eckardt, P., Funk, H., & Labhart, T. (1983). Postglaziale Krustenbewegungen an der Rhein-Rhone-Linie. Vermessung, Photogrammetrie, Kulturtechnik, 2, 43–56.
Eckhardt, P. (1957). Zur Talgeschichte des Tavetsch - seine Bruchsysteme und jungquartären Verwerfungen. [Phdthesis]. Universität Zürich.
Edme, P., Kiers, T., Paitz, P., & Robertsson, J. (2024). Divergence-Based Local Near-Surface Characterization with Distributed-Acoustic-Sensing. 85th EAGE Annual Conference & Exhibition, 2024, 1–5. https://doi.org/10.3997/2214-4609.2024101569
Erismann, T. H., & Abele, G. (2001). Dynamics of Rockslides and Rockfalls. Springer Science & Business Media.
Finnegan, N. J., Brodsky, E. E., Savage, H. M., Nereson, A. L., & Murphy, C. R. (2022). Seasonal Slow Landslide Displacement Is Accommodated by Mm-Scale Stick-Slip Events. Geophysical Research Letters, 49(20), e2022GL099548. https://doi.org/10.1029/2022GL099548
Frei, B., & Löw, S. (2001). Störzonen im südlichen Aar-Massiv. Eclogae Geologicae Helvetiae, 94(1), 13–28.
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227–252. https://doi.org/10.1016/j.earscirev.2016.08.011
Gili, J. A., Corominas, J., & Rius, J. (2000). Using Global Positioning System techniques in landslide monitoring. Engineering Geology, 55(3), 167–192. https://doi.org/10.1016/S0013-7952(99)00127-1
Glade, T. (2003). Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA, 51(3), 297–314. https://doi.org/10.1016/S0341-8162(02)00170-4
Glueer, F., Mreyen, A.-S., Cauchie, L., Havenith, H.-B., Bergamo, P., Halló, M., & Fäh, D. (2024). Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland). Geosciences, 14(2), 28. https://doi.org/10.3390/geosciences14020028
Goldswain, G. (2020). Advances in seismic monitoring technologies. Proceedings of the Second International Conference on Underground Mining Technology, 173–188.
Greenhalgh, S. A., & King, D. W. (1981). CURVED RAYPATH INTERPRETATION OF SEISMIC REFRACTION DATA*. Geophysical Prospecting, 29(6), 853–882. https://doi.org/10.1111/j.1365-2478.1981.tb01031.x
Handwerger, A., Fielding, E., Sangha, S., & Bekaert, D. (2022). Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates. Geophysical Research Letters, 49(2), e2022GL099499. https://doi.org/10.1029/2022GL099499
Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M., & Bürgmann, R. (2019). A Shift from Drought to Extreme Rainfall Drives a Stable Landslide to Catastrophic Failure. Scientific Reports, 9(1), 1569. https://doi.org/10.1038/s41598-018-38300-0
Hansen, S. M., & Schmandt, B. (2015). Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array. Geophysical Research Letters, 42(18), 7390–7397. https://doi.org/10.1002/2015GL064848
Heincke, B., Green, A. G., van der Kruk, J., & Willenberg, H. (2006). Semblance-Based Topographic Migration (SBTM): A Method for Identifying Fracture Zones in 3D Georadar Data. Near Surface Geophysics, 4, 79–88. https://doi.org/10.3997/1873-0604.2005034
Heincke, B., Maurer, H., Green, A. G., Willenberg, H., Spillmann, T., & Burlini, L. (2006). Characterizing an unstable mountain slope using shallow 2D and 3D seismic tomography. GEOPHYSICS, 71(6), B241–B256. https://doi.org/10.1190/1.2338823
Helmstetter, A., & Garambois, S. (2010). Seismic monitoring of Schilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls. Journal of Geophysical Research: Earth Surface, 115(3). https://doi.org/10.1029/2009JF001532
Hopp, C., Guglielmi, Y., Rinaldi, A. P., Soom, F., Wenning, Q., Cook, P., Robertson, M., Kakurina, M., & Zappone, A. (2022). The Effect of Fault Architecture on Slip Behavior in Shale Revealed by Distributed Fiber Optic Strain Sensing. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB022432. https://doi.org/10.1029/2021JB022432
Huber, W. (1948). Petrographisch-mineralogische Untersuchungen im südöstlichen Aarmassiv [PhD Thesis]. ETH Zurich.
Hudson, T. S., Kettlety, T., Kendall, J.-M., O’Toole, T., Jupe, A., Shail, R. K., & Grand, A. (2024). Seismic Node Arrays for Enhanced Understanding and Monitoring of Geothermal Systems. The Seismic Record, 4(3), 161–171. https://doi.org/10.1785/0320240019
Huggel, C., Clague, J. J., & Korup, O. (2012). Is climate change responsible for changing landslide activity in high mountains? Earth Surface Processes and Landforms, 37(1), 77–91. https://doi.org/10.1002/esp.2223
Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. https://doi.org/10.1007/s10346-013-0436-y
Intrieri, E., Carlà, T., & Gigli, G. (2019). Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Science Reviews, 193, 333–349. https://doi.org/10.1016/j.earscirev.2019.03.019
Iten, M., Ravet, F., Niklès, M., Facchini, M., Hertig, T., Hauswirth, D., & Puzrin, A. (2009). Soil-embedded fiber optic strain sensors for detection of differential soil displacements. Proc. of 4th International Conference on Structural Health Monitoring on Intelligent Infrastructure (SHMII-4), 22–24.
Jemec Auflič, M., Bezak, N., Šegina, E., Frantar, P., Gariano, S. L., Medved, A., & Peternel, T. (2023). Climate change increases the number of landslides at the juncture of the Alpine, Pannonian and Mediterranean regions. Scientific Reports, 13(1), 23085. https://doi.org/10.1038/s41598-023-50314-x
Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides : a review. Bulletin de La Société Géologique de France, 178(2), 101–112. https://doi.org/10.2113/gssgfbull.178.2.101
Jongmans, D., Hemroulle, P., Demanet, D., Renardy, F., & Vanbrabant, Y. (2000). Application of 2D electrical and seismic tomography techniques for investigating landslides. European Journal of Environmental and Engineering Geophysics, 5, 75–89. https://doi.org/10.3997/2214-4609.201406464
Kang, J., Walter, F., Paitz, P., Aichele, J., Edme, P., Meier, L., & Fichtner, A. (2024). Automatic monitoring of rock-slope failures using distributed acoustic sensing and semi-supervised learning. Geophysical Research Letters, 51(19), e2024GL110672. https://doi.org/10.22541/essoar.171820821.18866285/v1
Kannaujiya, S., Chattoraj, S. L., Jayalath, D., Champati ray, P. K., Bajaj, K., Podali, S., & Bisht, M. P. S. (2019). Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Natural Hazards, 97(3), 1191–1208. https://doi.org/10.1007/s11069-019-03695-0
Kasperski, J., Delacourt, C., Allemand, P., & Pothérat, P. (2010). Evolution of the Sedrun Landslide (Graubünden, Switzerland) with Ortho-Rectified Air Images. Bulletin of Engineering Geology and the Environment, 69(3), 421–430. https://doi.org/10.1007/s10064-010-0293-z
Kechavarzi, C., Soga, K., de Battista, N., Pelecanos, L., Elshafie, M. Z. E. B., & Mair, R. J. (2016). Distributed fibre optic strain sensing for monitoring civil infrastructure: a practical guide. ICE Publishing.
Keefer, D. K. (1984). Landslides caused by earthquakes. GSA Bulletin, 95(4), 406–421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
Kiers, T., Schmelzbach, C., Maurer, H., Amann, F., & Robertsson, J. (2026). Imaging one of the largest Alpine slope instabilities with 3D seismic first-arrival traveltime tomography. Journal of Applied Geophysics, 247, 106081. https://doi.org/10.1016/j.jappgeo.2025.106081
Kleinbrod, U., Burjánek, J., Hugentobler, M., Amann, F., & Fäh, D. (2017). A comparative study on seismic response of two unstable rock slopes within same tectonic setting but different activity level. Geophysical Journal International, 211(3), 1428–1448. https://doi.org/10.1093/gji/ggx376
Korup, O. (2012). Landslides in the Earth System. In D. Stead & J. J. Clague (Eds.), Landslides: Types, Mechanisms and Modeling (pp. 10–23). Cambridge University Press. https://doi.org/10.1017/CBO9780511740367.003
Kurashima, T., Horiguchi, T., Izumita, H., Furukawa, S., & Koyamada, Y. (1993). Brillouin Optical-Fiber Time Domain Reflectometry. IEICE Transactions on Communications, E76-B(4), 382–390. https://globals.ieice.org/en_transactions/communications/10.1587/e76-b_4_382/#
Labhart, T. (1977). Aarmassiv und Gotthardmassiv. Sammlung geologischer Fuehrer. Gebr. Bornträager, Berlin.
Lacroix, P., Handwerger, A. L., & Bièvre, G. (2020). Life and death of slow-moving landslides. Nature Reviews Earth & Environment, 1(8), 404–419. https://doi.org/10.1038/s43017-020-0072-8
Łakomski, M., Guzowski, B., Plona, M., & Pęczek, K. (2025). Determination of Brillouin Backscattering Strain and Temperature Coefficients in Telecommunication Optical Fibers. International Journal of Electronics and Telecommunication, 71(1), 203–208. https://ijet.ise.pw.edu.pl/index.php/ijet/article/view/10.24425-ijet.2025.153563
Lanz, E., Maurer, H., & Green, A. G. (1998). Refraction tomography over a buried waste disposal site. GEOPHYSICS, 63(4), 1414–1433. https://doi.org/10.1190/1.1444443
Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., & Massey, C. (2015). Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, 116, 62–74. https://doi.org/10.1016/j.jappgeo.2015.02.001
Le Breton, M., Bontemps, N., Guillemot, A., Baillet, L., & Larose, E. (2021). Landslide monitoring using seismic ambient noise correlation: challenges and applications. Earth-Science Reviews, 216, 103518. https://doi.org/10.1016/j.earscirev.2021.103518
Lee, C.-C., Yang, C.-H., Liu, H.-C., Wen, K.-L., Wang, Z.-B., & Chen, Y.-J. (2008). A Study of the hydrogeological environment of the lishan landslide area using resistivity image profiling and borehole data. Engineering Geology, 98(3), 115–125. https://doi.org/10.1016/j.enggeo.2008.01.012
Li, B., Ding, L., Rajai, M., Hu, D., & Zheng, S. (2018). Backtracking Algorithm-based Disassembly Sequence Planning. Procedia CIRP, 69, 932–937. https://doi.org/10.1016/j.procir.2017.12.007
Li, Z. (2021). Recent advances in earthquake monitoring I: Ongoing revolution of seismic instrumentation. Earthquake Science, 34(2), 177–188. https://doi.org/10.29382/eqs-2021-0011
Lindsey, N. J., & Martin, E. R. (2021). Fiber-Optic Seismology. Annual Review of Earth and Planetary Sciences, 49(1), 309–336. https://doi.org/10.1146/annurev-earth-072420-065213
Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B. T., Buric, M. P., & Ohodnicki, P. R. (2019). Distributed optical fiber sensing: Review and perspective. Applied Physics Reviews, 6(4), 041302. https://doi.org/10.1063/1.5113955
Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., & Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. Journal of Geophysical Research: Earth Surface, 117(F1). https://doi.org/10.1029/2011JF002159
Malehmir, A., Bastani, M., Krawczyk, C. M., Gurk, M., Ismail, N., Polom, U., & Perss, L. (2013). Geophysical assessment and geotechnical investigation of quick-clay landslides – a Swedish case study. Near Surface Geophysics, 11(3), 341–352. https://doi.org/10.3997/1873-0604.2013010
Malehmir, A., Socco, L. V., Bastani, M., Krawczyk, C., Pfaffhuber, A., Miller, R. D., Maurer, H., Frauenfelder, R., Suto, K., Bazin, S., Merz, K., & Dahlin, T. (2016). Near-Surface Geophysical Characterization of Areas Prone to Natural Hazards: A Review of the Current and Perspective on the Future. In Advances in Geophysics (Vol. 57, pp. 51–146). https://doi.org/10.1016/bs.agph.2016.08.001
Malet, J.-P., Bertrand, C., Hibert, C., Radiguet, M., Lebourg, T., Gautier, S., Bièvre, G., Vidal, M., Wanner, X., Lissak, C., & others. (2023). The OMIV service: acquiring and sharing long-period instrumental time series for documenting landslide activity. EGU General Assembly Conference Abstracts, EGU-14542. https://doi.org/10.5194/egusphere-egu23-14542
Manning, T., Brooks, C., Ourabah, A., Popham, M., Ablyazina, D., Zhuzhel, V., Holst, E., & Goujon, N. (2018). The case for a nimble node, towards a new land seismic receiver system with unlimited channels. SEG Technical Program Expanded Abstracts 2018, 21–25. https://doi.org/10.1190/segam2018-2996250.1
Masoudi, A., & Newson, T. P. (2016). Contributed Review: Distributed optical fibre dynamic strain sensing. Review of Scientific Instruments, 87(1), 011501. https://doi.org/10.1063/1.4939482
Minardo, A., Damiano, E., Olivares, L., Picarelli, L., Zeni, L., Avolio, B., & Coscetta, A. (2015). Soil slope monitoring by use of a Brillouin distributed sensor. 2015 Fotonica AEIT Italian Conference on Photonics Technologies, 1–4. https://doi.org/10.1049/cp.2015.0156
O’toole, T. B., Tranter, N., Hudson, T., Davidson, K., Dunham, C. K., Kiers, T., & Schmelzbach, C. (2024). A Review of Some Recent Large-N Nodal Seismic Experiments in Europe. AGU Fall Meeting Abstracts, 2024, S52B-04.
Ouellet, S. M., Dettmer, J., Lato, M. J., Cole, S., Hutchinson, D. J., Karrenbach, M., Dashwood, B., Chambers, J. E., & Crickmore, R. (2024). Previously hidden landslide processes revealed using distributed acoustic sensing with nanostrain-rate sensitivity. Nature Communications, 15(1), 6239. https://doi.org/10.1038/s41467-024-50604-6
Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43–71. https://doi.org/10.1145/355984.355989
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., & Fichtner, A. (2021). Empirical Investigations of the Instrument Response for Distributed Acoustic Sensing (DAS) across 17 Octaves. Bulletin of the Seismological Society of America, 111(1), 1–10. https://doi.org/10.1785/0120200185
Palmer, J. (2017). Creeping Earth Could Hold Secret to Deadly Landslides. Nature, 548(7668), 384–386. https://doi.org/10.1038/548384a
Patton, A. I., Rathburn, S. L., & Capps, D. M. (2019). Landslide response to climate change in permafrost regions. Geomorphology, 340, 116–128. https://doi.org/10.1016/j.geomorph.2019.04.029
Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65–82. https://doi.org/10.1016/j.earscirev.2014.04.002
Pertuz, T., & Malehmir, A. (2023). Ultrahigh-resolution 9C seismic survey in a landslide prone area in southwest of Sweden. Geophysical Journal International, 235(3), 2094–2106. https://doi.org/10.1093/gji/ggad346
Podvin, P., & Lecomte, I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International, 105(1), 271–284. https://doi.org/10.1111/j.1365-246X.1991.tb03461.x
Poli, P. (2017). Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland): Seismic Precursors to a Landslide. Geophysical Research Letters, 44(17), 8832–8836. https://doi.org/10.1002/2017GL075039
Provost, F., Malet, J.-P., Hibert, C., Helmstetter, A., Radiguet, M., Amitrano, D., Langet, N., Larose, E., Abancó, C., Hürlimann, M., Lebourg, T., Levy, C., Le Roy, G., Ulrich, P., Vidal, M., & Vial, B. (2018). Towards a standard typology of endogenous landslide seismic sources. Earth Surface Dynamics, 6(4), 1059–1088. https://doi.org/10.5194/esurf-6-1059-2018
Rawlinson, N., Hauser, J., & Sambridge, M. (2008). Seismic ray tracing and wavefront tracking in laterally heterogeneous media. In R. Dmowska (Ed.), Advances in Geophysics (Vol. 49, pp. 203–273). Elsevier. https://doi.org/10.1016/S0065-2687(07)49003-3
Rodríguez Tribaldos, V., & Ajo‐Franklin, J. B. (2021). Aquifer Monitoring Using Ambient Seismic Noise Recorded With Distributed Acoustic Sensing (DAS) Deployed on Dark Fiber. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020JB021004
Rossi, G., Nocentini, M., Lombardi, L., Vannocci, P., Tanteri, L., Dotta, G., Bicocchi, G., Scaduto, G., Salvatici, T., Tofani, V., Moretti, S., & Casagli, N. (2016). Integration of multicopter drone measurements and ground-based data for landslide monitoring. In Landslides and Engineered Slopes. Experience, Theory and Practice (pp. 1745–1750). CRC Press.
Rost, S., & Thomas, C. (2002). Array Seismology: Methods and Applications. Reviews of Geophysics, 40(3), 2-1-2–27. https://doi.org/10.1029/2000RG000100
Samyn, K., Travelletti, J., Bitri, A., Grandjean, G., & Malet, J.-P. (2012). Characterization of a landslide geometry using 3D seismic refraction traveltime tomography: The La Valette landslide case history. Journal of Applied Geophysics, 86, 120–132. https://doi.org/10.1016/j.jappgeo.2012.07.014
Schenato, L., Palmieri, L., Camporese, M., Bersan, S., Cola, S., Pasuto, A., Galtarossa, A., Salandin, P., & Simonini, P. (2017). Distributed optical fibre sensing for early detection of shallow landslides triggering. Scientific Reports, 7(1), 14686. https://doi.org/10.1038/s41598-017-12610-1
Schippkus, S., & Hadziioannou, C. (2022). Matched field processing accounting for complex Earth structure: method and review. Geophysical Journal International, 231(2), 1268–1282. https://doi.org/10.1093/gji/ggac240
Schmelzbach, C., Zelt, C. A., Juhlin, C., & Carbonell, R. (2008). P- and SV-velocity structure of the South Portuguese Zone fold-and-thrust belt, SW Iberia, from traveltime tomography. Geophysical Journal International, 175(2), 689–712. https://doi.org/10.1111/j.1365-246X.2008.03937.x
Schmid, S. (1997). Integrated cross section and tectonic evolution of the Alps along the Eastern Traverse. Results of NRP20; Deep Structure of the Swiss Alps.
Schöpa, A., Chao, W.-A., Lipovsky, B. P., Hovius, N., White, R. S., Green, R. G., & Turowski, J. M. (2018). Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath. Earth Surface Dynamics, 6(2), 467–485. https://doi.org/10.5194/esurf-6-467-2018
Senfaute, G., Duperret, A., & Lawrence, J. A. (2009). Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: a case study at Mesnil-Val, Normandie, NW France. Natural Hazards and Earth System Sciences, 9(5), 1625–1641. https://doi.org/10.5194/nhess-9-1625-2009
Sens-Schönfelder, C., & Wegler, U. (2006). Passive Image Interferometry and Seasonal Variations of Seismic Velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21). https://doi.org/10.1029/2006GL027797
Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7). https://doi.org/10.1029/2004GL019491
Shen, N., Chen, L., Wang, L., Hu, H., Lu, X., Qian, C., Liu, J., Jin, S., & Chen, R. (2021). Short-Term Landslide Displacement Detection Based on GNSS Real-Time Kinematic Positioning. IEEE Transactions on Instrumentation and Measurement, PP, 1–1. https://doi.org/10.1109/TIM.2021.3055278
Sim, K. B., Lee, M. L., & Wong, S. Y. (2022). A review of landslide acceptable risk and tolerable risk. Geoenvironmental Disasters, 9(1), 3. https://doi.org/10.1186/s40677-022-00205-6
Spillmann, T., Maurer, H., Green, A. G., Heincke, B., Willenberg, H., & Husen, S. (2007). Microseismic investigation of an unstable mountain slope in the Swiss Alps. Journal of Geophysical Research: Solid Earth, 112(7). https://doi.org/10.1029/2006JB004723
Steinmann, R., Seydoux, L., & Campillo, M. (2022). AI-Based Unmixing of Medium and Source Signatures From Seismograms: Ground Freezing Patterns. Geophysical Research Letters, 49(15), e2022GL098854. https://doi.org/10.1029/2022GL098854
Tonnellier, A., Helmstetter, A., Malet, J.-P., Schmittbuhl, J., Corsini, A., & Joswig, M. (2013). Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies. Geophysical Journal International, 193(3), 1515–1536. https://doi.org/10.1093/gji/ggt039
Trabattoni, A., Baillet, M., Van Den Ende, M., Rivet, D., Stutzman, E., Strumia, C., & Biagioli, F. (2024). Xdas: a Python Framework for Distributed Acoustic Sensing. https://doi.org/10.31223/X5141G
Trabattoni, A., Biagioli, F., Strumia, C., van den Ende, M., Scotto di Uccio, F., Festa, G., Rivet, D., Sladen, A., Ampuero, J. P., Metaxian, J.-P., & Stutzmann, E. (2023). From strain to displacement: using deformation to enhance distributed acoustic sensing applications. Geophysical Journal International, 235(3), 2372–2384. https://doi.org/10.1093/gji/ggad365
Tryggvason, A., & Bergman, B. (2006). A traveltime reciprocity discrepancy in the Podvin & Lecomte time3d finite difference algorithm. Geophysical Journal International, 165(2), 432–435. https://doi.org/10.1111/j.1365-246X.2006.02925.x
Uhlemann, S., Hagedorn, S., Dashwood, B., Maurer, H., Gunn, D., Dijkstra, T., & Chambers, J. (2016). Landslide characterization using P- and S-wave seismic refraction tomography — The importance of elastic moduli. Journal of Applied Geophysics, 134, 64–76. https://doi.org/10.1016/j.jappgeo.2016.08.014
Uhlemann, S., Smith, A., Chambers, J., Dixon, N., Dijkstra, T., Haslam, E., Meldrum, P., Merritt, A., Gunn, D., & Mackay, J. (2016). Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology, 253, 438–451. https://doi.org/10.1016/j.geomorph.2015.10.027
Umlauft, J., Lindner, F., Roux, P., Mikesell, T. D., Haney, M. M., Korn, M., & Walter, F. T. (2021). Stick-Slip Tremor Beneath an Alpine Glacier. Geophysical Research Letters, 48(2), e2020GL090528. https://doi.org/10.1029/2020GL090528
Van Den Ende, M. P. A., & Ampuero, J.-P. (2021). Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 12(4), 915–934. https://doi.org/10.5194/se-12-915-2021
Vanoli, R. (2024). Temperature Correction for Distributed Strain Sensing Measurements at the Cuolm da Vi Slope Instability [Phdthesis]. ETH Zurich.
Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. GEOPHYSICS, 74(6), WCC1–WCC26. https://doi.org/10.1190/1.3238367
Voisin, C., Garambois, S., Massey, C., & Brossier, R. (2016). Seismic noise monitoring of the water table in a deep-seated, slow-moving landslide. Interpretation, 4(3), SJ67–SJ76. https://doi.org/10.1190/INT-2016-0010.1
Wegler, U., & Sens‐Schönfelder, C. (2007). Fault zone monitoring with passive image interferometry. Geophysical Journal International, 168(3), 1029–1033. https://doi.org/10.1111/j.1365-246X.2006.03284.x
White, M. C. A., Fang, H., Nakata, N., & Ben‐Zion, Y. (2020). PyKonal: A Python Package for Solving the Eikonal Equation in Spherical and Cartesian Coordinates Using the Fast Marching Method. Seismological Research Letters, 91(4), 2378–2389. https://doi.org/10.1785/0220190318
Whiteley, J., Inauen, C., Wilkinson, P., Meldrum, P., Swift, R., Kuras, O., & Chambers, J. (2023). Assessing the risk of slope failure to highway infrastructure using automated time-lapse electrical resistivity tomography monitoring. Transportation Geotechnics, 101129. https://doi.org/10.1016/j.trgeo.2023.101129
Whiteley, J. S., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., & Kendall, J. M. (2019). Geophysical Monitoring of Moisture-Induced Landslides: A Review. Reviews of Geophysics, 57(1), 106–145. https://doi.org/10.1029/2018RG000603
Xie, Y., Ampuero, J.-P., Ende1, M. V. D., Trabattoni, A., Baillet, M., & Rivet, D. (2025). Towards back-projection earthquake rupture imaging with ocean bottom distributed acoustic sensing. https://doi.org/10.22541/au.174283901.11961751/v1
Zaki, A., Chai, H. K., Razak, H. A., & Shiotani, T. (2014). Monitoring and evaluating the stability of soil slopes: A review on various available methods and feasibility of acoustic emission technique. Comptes Rendus Geoscience, 346(9–10), 223–232. https://doi.org/10.1016/j.crte.2014.01.003
Zelt, C. A., Azaria, A., & Levander, A. (2006). 3D seismic refraction traveltime tomography at a groundwater contamination site. GEOPHYSICS, 71(5), H67–H78. https://doi.org/10.1190/1.2258094
Zhao, C., & Lu, Z. (2018). Remote Sensing of Landslides—A Review. Remote Sensing, 10(2), 279. https://doi.org/10.3390/rs10020279
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Tjeerd Kiers, Cédric Schmelzbach, Florian Amann, Hansruedi Maurer, Pascal Edme, Antonio Pio Rinaldi, Yves Bonanomi, Johan Robertsson

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Horizon 2020
Grant numbers Marie Skłodowska-Curie grant agreement No. 955515

