A Bayesian approach to the tomographic problem with constraints from geodynamic modeling: Application to a synthetic subduction zone

Authors

  • John Keith Magali Université de Lille, CNRS. INRA, ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations, 59000 Lille, France
  • Thomas Bodin Univ Lyon, Univ Lyon 1, ENSL, UJM-Saint-Etienne, CNRS, LGL-TPE, F-69622, Villeurbanne, France

DOI:

https://doi.org/10.26443/seismica.v1i1.201

Keywords:

seismic tomography, bayesian inversion, surface waves, seismic anisotropy, crystallographic preferred orientation, mantle flow

Abstract

Geodynamic tomography, an imaging technique that incorporates constraints from geodynamics and mineral physics to restrict the potential number of candidate seismic models down to a subset consistent with geodynamic predictions, is applied to a thermal subduction model. The goal is to test the ability of geodynamic tomography to recover structures harbouring complex deformation patterns. The subduction zone is parameterised in terms of four unknown parameters namely the slab length L, thickness R, temperature Tc, and dip angle θ that define its thermal structure. A temperature-dependent viscosity is then prescribed with an activation coefficient E controlling the sensitivity. Using the full forward approach to geodynamic tomography, we generate anisotropic surface wave dispersion measurements as synthetic data. We then attempt to retrieve the five unknown parameters by inverting the synthetics corrupted with random uncorrelated noise. The final output is an ensemble of models of L, R, θ, Tc and E cast in terms of a posterior probability distribution and their uncertainty limits. Results show that the parameters are tightly constrained with the apparent existence of a single misfit minima in each of them, which implies the implicit retrieval of the complete patterns of upper mantle deformation, and correspondingly, the 21-independent coefficients defining elastic anisotropy. Each model realisation however fails to swarm around its true value. Such results are attributed to the inability of the surrogate model to accurately replicate the correct forward model for computing anisotropy due to the inherent complexity of the deformation patterns considered. Nevertheless, this proof of concept shows a self-consistent method that incorporates mantle flow modeling in a seismic inversion scheme.

References

Magali, J., Bodin, T., Hedjazian, N., Samuel, H., & Atkins, S. (2021). Geodynamic tomography: constraining upper-mantle deformation patterns from Bayesian inversion of surface waves. Geophysical Journal International, 224(3), 2077–2099.

Samuel, H. (2012). Time domain parallelization for computational geodynamics. Geochemistry, Geophysics, Geosystems, 13(1).

Samuel, H. (2018). A Deformable Particle-In-Cell Method for Advective Transport in Geodynamic Modelling. gji, 214, 1744–1773.

Kaminski, E., Ribe, N., & Browaeys, J. (2004). D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophysical Journal International, 158(2), 744–752.

Connolly, J. (2005). Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2), 524–541.

Connolly, J. (2009). The geodynamic equation of state: what and how. Geochemistry, Geophysics, Geosystems, 10(10).

Stixrude, L., & Lithgow-Bertelloni, C. (2011). Thermodynamics of mantle minerals-II. Phase equilibria. Geophysical Journal International, 184(3), 1180–1213.

Smith, M., & Dahlen, F. (1973). The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321–3333.

Saito, M. (1988). DISPER80: A subroutine package for the calculation of seismic normal-mode solutions. Seismological algorithms, 293–319.

Montagner, J.P., & Nataf, H.C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth, 91(B1), 511–520.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

Hansen, T., & Cordua, K. (2017). Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion. Geophysical Journal International, 211(3), 1524–1533.

Conway, D., Alexander, B., King, M., Heinson, G., & Kee, Y. (2019). Inverting magnetotelluric responses in a three-dimensional earth using fast forward approximations based on artificial neural networks. Computers & Geosciences, 127, 44–52.

Moghadas, D., Behroozmand, A., & Christiansen, A. (2020). Soil electrical conductivity imaging using a neural network-based forward solver: Applied to large-scale Bayesian electromagnetic inversion. Journal of Applied Geophysics, 104012.

Bishop, C., & others (1995). Neural networks for pattern recognition. Oxford university press.

Kopke, C., Irving, J., & Elsheikh, A. (2018). Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach. Advances in water resources, 116, 195–207.

Magali, J. (2021). Geodynamic Tomography. (Doctoral dissertation, Universite de Lyon).

Maupin, V., & Park, J. (2015). 1.09—Theory and observations—Seismic anisotropy. Treatise on Geophysics, 277–305.

Gable, C., O'connell, R., & Travis, B. (1991). Convection in three dimensions with surface plates: Generation of toroidal flow. Journal of Geophysical Research: Solid Earth, 96(B5), 8391–8405.

Bercovici, D. (1995). On the purpose of toroidal motion in a convecting mantle. Geophysical Research Letters, 22(23), 3107-3110.

Karato, S., & Wu, P. (1993). Rheology of the upper mantle: A synthesis. Science, 260(5109), 771–778.

Afonso, J., Fullea, J., Griffin, W., Yang, Y., Jones, A., D. Connolly, J., & O'Reilly, S. (2013). 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables. Journal of Geophysical Research: Solid Earth, 118(5), 2586-2617.

Afonso, J., Fullea, J., Yang, Y., Connolly, J., & Jones, A. (2013). 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis. Journal of Geophysical Research: Solid Earth, 118(4), 1650-1676.

Bissig, F., Khan, A., Tauzin, B., Sossi, P., Munch, F., & Giardini, D. (2021). Multifrequency Inversion of Ps and Sp Receiver Functions: Methodology and Application to USArray Data. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB020350.

McKenzie, D. (1979). Finite deformation during fluid flow. Geophysical Journal International, 58(3), 689–715.

Long, M., & Becker, T. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3-4), 341–354.

Montagner, J.P., & Tanimoto, T. (1991). Global upper mantle tomography of seismic velocities and anisotropies. Journal of Geophysical Research: Solid Earth, 96(B12), 20337–20351.

Debayle, E., & Kennett, B. (2000). Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion. Earth and Planetary Science Letters, 184(1), 339–351.

Panning, M., & Romanowicz, B. (2006). A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167(1), 361–379.

Montagner, J.P., & Jobert, N. (1988). Vectorial tomography—ii. Application to the Indian Ocean. Geophysical Journal International, 94(2), 309–344.

Nakanishi, I., & Anderson, D. (1983). Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: 1. Analysis of great circle phase velocities. Journal of Geophysical Research: Solid Earth, 88(B12), 10267–10283.

Romanowicz, B. (2002). Inversion of surface waves: a review. International Geophysics Series, 81(A), 149–174.

Kaminski, E., & Ribe, N. (2002). Timescales for the evolution of seismic anisotropy in mantle flow. Geochemistry, Geophysics, Geosystems, 3(8), 1–17.

Love, A. (1927). A Treaties on the Mathematical Theory of Elasticity. A treaties on the Mathematical Theory of Elasticity, 643.

Montagner, J.P., & Nataf, H.C. (1988). Vectorial tomography—I. Theory. Geophysical Journal International, 94(2), 295–307.

Xie, J., Ritzwoller, M., Brownlee, S., & Hacker, B. (2015). Inferring the oriented elastic tensor from surface wave observations: preliminary application across the western United States. Geophysical Journal International, 201(2), 996–1021.

Xie, J., Ritzwoller, M., Shen, W., & Wang, W. (2017). Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium. Geophysical Journal International, 209(1), 466–491.

Obrebski, M., Kiselev, S., Vinnik, L., & Montagner, J.P. (2010). Anisotropic stratification beneath Africa from joint inversion of SKS and P receiver functions. Journal of Geophysical Research: Solid Earth, 115(B9).

Obrebski, M., Allen, R., Pollitz, F., & Hung, S.H. (2011). Lithosphere–asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities. Geophysical Journal International, 185(2), 1003–1021.

Babuska, V., & Cara, M. (1991). Seismic anisotropy in the Earth. (Vol. 10) Springer Science & Business Media.

Baumann, T., & Kaus, B. (2015). Geodynamic inversion to constrain the non-linear rheology of the lithosphere. Geophysical Journal International, 202(2), 1289-1316.

Fukao, Y., Obayashi, M., & Nakakuki, T. (2009). Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 37(1), 19-46.

Hirth, G., & Kohlstedf, D. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Geophysical monograph-american geophysical union, 138, 83–106.

Christensen, U. (1983). Convection in a variable-viscosity fluid: Newtonian versus power-law rheology. Earth and Planetary Science Letters, 64(1), 153–162.

Billen, M., & Hirth, G. (2005). Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation. Geophysical Research Letters, 32(19).

Piromallo, C., Becker, T., Funiciello, F., & Faccenna, C. (2006). Three-dimensional instantaneous mantle flow induced by subduction. Geophysical Research Letters, 33(8).

Becker, T., Kellogg, J., Ekström, G., & O’Connell, R. (2003). Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models. Geophysical Journal International, 155(2), 696-714.

Magali, J., Bodin, T., Hedjazian, N., Ricard, Y., Capdeville, Y., & Debayle, E. (2021). Quantifying intrinsic and extrinsic contributions to radial anisotropy in tomographic models. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022322.

Faccenda, M., & Capitanio, F. (2013). Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochemistry, Geophysics, Geosystems, 14(1), 243–262.

Faccenda, M., & Capitanio, F. (2012). Development of mantle seismic anisotropy during subduction-induced 3-D flow. Geophysical Research Letters, 39(11).

Faccenda, M. (2014). Mid mantle seismic anisotropy around subduction zones. Physics of the Earth and Planetary Interiors, 227, 1–19.

Chang, S.J., Ferreira, A., & Faccenda, M. (2016). Upper-and mid-mantle interaction between the Samoan plume and the Tonga–Kermadec slabs. Nature communications, 7(1), 1–9.

MacDougall, J., Jadamec, M., & Fischer, K. (2017). The zone of influence of the subducting slab in the asthenospheric mantle. Journal of Geophysical Research: Solid Earth, 122(8), 6599–6624.

OpenMP Architecture Review Board. (2008). OpenMP Application Program Interface Version 3.0.

Downloads

Additional Files

Published

2022-12-12

How to Cite

Magali, J. K., & Bodin, T. (2022). A Bayesian approach to the tomographic problem with constraints from geodynamic modeling: Application to a synthetic subduction zone. Seismica, 1(1). https://doi.org/10.26443/seismica.v1i1.201

Issue

Section

Articles

Funding data