Activating a Natural Fault Zone in the Swiss Alps
DOI:
https://doi.org/10.26443/seismica.v5i1.2065Abstract
One major hurdle for understanding earthquake mechanics are observational limitations. Important phenomena like strain localisation, fault dilation, and fault healing are readily studied in rock mechanical laboratory experiments and with numerical models. At the scale of natural earthquakes, however, these phenomena are often unresolvable, even by state-of-the-art observatories. To overcome this limitation, we are currently building the Earthquake Physics Testbed at the Bedretto Underground Laboratory for Geosciences and Geoenergies (BedrettoLab), an experimental testbed where we can activate an extensively instrumented natural fault zone via hydraulic stimulation. The goal of the Fault Activation and Earthquake Rupture (FEAR) project is to induce earthquakes of up to Mw~1.0 on this exceptionally well characterised and instrumented fault zone. Here we summarize the main scientific goals and current FEAR project status, and present first results from conducted experiments. We discuss how this large-scale experimental approach may allow us to tackle both fundamental science as well as practical questions on earthquake physics, induced seismicity and seismic hazard.
References
Aben, F. M., & Brantut, N. (2021). Dilatancy stabilises shear failure in rock. Earth and Planetary Science Letters, 574, 117174. https://doi.org/10.1016/j.epsl.2021.117174 DOI: https://doi.org/10.1016/j.epsl.2021.117174
Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131 DOI: https://doi.org/10.1098/rsta.2020.0131
Abercrombie, R. E., Baltay, A., Chu, S., Taira, T., Bindi, D., Boyd, O. S., Chen, X., Cochran, E. S., Devin, E., Dreger, D., Ellsworth, W., Fan, W., Harrington, R. M., Huang, Y., Kemna, K. B., Liu, M., Oth, A., Parker, G. A., Pennington, C., … Zhang, J. (2025). Overview of the SCEC/USGS Community Stress Drop Validation Study Using the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 115(3), 734–759. https://doi.org/10.1785/0120240158 DOI: https://doi.org/10.1785/0120240158
Abercrombie, R. E., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162(2), 406–424. https://doi.org/10.1111/j.1365-246x.2005.02579.x DOI: https://doi.org/10.1111/j.1365-246X.2005.02579.x
Achtziger-Zupančič, P., Ceccato, A., Zappone, A. S., Pozzi, G., Shakas, A., Amann, F., Behr, W. M., Escallon Botero, D., Giardini, D., Hertrich, M., Jalali, M., Ma, X., Meier, M.-A., Osten, J., Wiemer, S., & Cocco, M. (2024). Selection and Characterisation of the Target Fault for Fluid-Induced Activation and Earthquake Rupture Experiments. https://doi.org/10.5194/egusphere-2024-586 DOI: https://doi.org/10.5194/egusphere-2024-586
Aki, K. (1979). Characterization of barriers on an earthquake fault. Journal of Geophysical Research: Solid Earth, 84(B11), 6140–6148. https://doi.org/10.1029/jb084ib11p06140 DOI: https://doi.org/10.1029/JB084iB11p06140
Aki, K. (1984). Asperities, barriers, characteristic earthquakes and strong motion prediction. Journal of Geophysical Research: Solid Earth, 89(B7), 5867–5872. https://doi.org/10.1029/jb089ib07p05867 DOI: https://doi.org/10.1029/JB089iB07p05867
Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner, T., Maurer, H., & Giardini, D. (2018). The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth, 9(1), 115–137. https://doi.org/10.5194/se-9-115-2018 DOI: https://doi.org/10.5194/se-9-115-2018
Ampuero, J., & Rubin, A. M. (2008). Earthquake nucleation on rate and state faults – Aging and slip laws. Journal of Geophysical Research: Solid Earth, 113(B1). https://doi.org/10.1029/2007jb005082 DOI: https://doi.org/10.1029/2007JB005082
Aretusini, S., Nuñez Cascajero, A., Cornelio, C., Barrero Echevarria, X., Spagnuolo, E., Tapetado, A., Vazquez, C., Di Toro, G., & Cocco, M. (2024). Mechanical Energy Dissipation During Seismic Dynamic Weakening in Calcite‐Bearing Faults. Journal of Geophysical Research: Solid Earth, 129(9). https://doi.org/10.1029/2024jb028927 DOI: https://doi.org/10.1029/2024JB028927
Baltay, A., Abercrombie, R., Chu, S., & Taira, T. (2024). The SCEC/USGS Community Stress Drop Validation Study Using the 2019 Ridgecrest Earthquake Sequence. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1009 DOI: https://doi.org/10.26443/seismica.v3i1.1009
Barbot, S., Lapusta, N., & Avouac, J.-P. (2012). Under the Hood of the Earthquake Machine: Toward Predictive Modeling of the Seismic Cycle. Science, 336(6082), 707–710. https://doi.org/10.1126/science.1218796 DOI: https://doi.org/10.1126/science.1218796
Behr, W. M., & Bürgmann, R. (2021). What’s down there? The structures, materials and environment of deep-seated slow slip and tremor. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20200218. https://doi.org/10.1098/rsta.2020.0218 DOI: https://doi.org/10.1098/rsta.2020.0218
Bentz, S., Kwiatek, G., Martínez‐Garzón, P., Bohnhoff, M., & Dresen, G. (2020). Seismic Moment Evolution During Hydraulic Stimulations. Geophysical Research Letters, 47(5). https://doi.org/10.1029/2019gl086185 DOI: https://doi.org/10.1029/2019GL086185
Ben‐Zion, Y. (2008). Collective behavior of earthquakes and faults: Continuum‐discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2008rg000260 DOI: https://doi.org/10.1029/2008RG000260
Ben-Zion, Y., & Sammis, C. G. (2003). Characterization of Fault Zones. Pure and Applied Geophysics, 160(3), 677–715. https://doi.org/10.1007/pl00012554 DOI: https://doi.org/10.1007/PL00012554
Ben-Zion, Y., & Zaliapin, I. (2020). Localization and coalescence of seismicity before large earthquakes. Geophysical Journal International, 223(1), 561–583. https://doi.org/10.1093/gji/ggaa315 DOI: https://doi.org/10.1093/gji/ggaa315
Beroza, G. C., & Ide, S. (2011). Slow Earthquakes and Nonvolcanic Tremor. Annual Review of Earth and Planetary Sciences, 39(1), 271–296. https://doi.org/10.1146/annurev-earth-040809-152531 DOI: https://doi.org/10.1146/annurev-earth-040809-152531
Blanke, A., Boese, C. M., Dresen, G., Bohnhoff, M., & Kwiatek, G. (2023). Metre-scale damage zone characterization usingS-coda waves from active ultrasonic transmission measurements in the STIMTEC project, URL Reiche Zeche, Germany. Geophysical Journal International, 233(2), 1339–1355. https://doi.org/10.1093/gji/ggad003 DOI: https://doi.org/10.1093/gji/ggad003
Bletery, Q., & Nocquet, J.-M. (2023). The precursory phase of large earthquakes. Science, 381(6655), 297–301. https://doi.org/10.1126/science.adg2565 DOI: https://doi.org/10.1126/science.adg2565
Boese, C. M., Kwiatek, G., Fischer, T., Plenkers, K., Starke, J., Blümle, F., Janssen, C., & Dresen, G. (2022). Seismic monitoring of the STIMTEC hydraulic stimulation experiment in anisotropic metamorphic gneiss. Solid Earth, 13(2), 323–346. https://doi.org/10.5194/se-13-323-2022 DOI: https://doi.org/10.5194/se-13-323-2022
Bohnhoff, M., Dresen, G., Ellsworth, W. L., & Ito, H. (2009). Passive Seismic Monitoring of Natural and Induced Earthquakes: Case Studies, Future Directions and Socio-Economic Relevance. In New Frontiers in Integrated Solid Earth Sciences (pp. 261–285). Springer Netherlands. https://doi.org/10.1007/978-90-481-2737-5_7 DOI: https://doi.org/10.1007/978-90-481-2737-5_7
Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M.-P. (2011). Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake. Science, 331(6019), 877–880. https://doi.org/10.1126/science.1197341 DOI: https://doi.org/10.1126/science.1197341
Brantut, N. (2020). Dilatancy-induced fluid pressure drop during dynamic rupture: Direct experimental evidence and consequences for earthquake dynamics. Earth and Planetary Science Letters, 538, 116179. https://doi.org/10.1016/j.epsl.2020.116179 DOI: https://doi.org/10.1016/j.epsl.2020.116179
Brennwald, M. S., Schmidt, M., Oser, J., & Kipfer, R. (2016). A Portable and Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis. Environmental Science & Technology, 50(24), 13455–13463. https://doi.org/10.1021/acs.est.6b03669 DOI: https://doi.org/10.1021/acs.est.6b03669
Broccardo, M., Mignan, A., Grigoli, F., Karvounis, D., Rinaldi, A. P., Danciu, L., Hofmann, H., Milkereit, C., Dahm, T., Zimmermann, G., Hjörleifsdóttir, V., & Wiemer, S. (2020). Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland. Natural Hazards and Earth System Sciences, 20(6), 1573–1593. https://doi.org/10.5194/nhess-20-1573-2020 DOI: https://doi.org/10.5194/nhess-20-1573-2020
Brodsky, E. E., Kirkpatrick, J. D., & Candela, T. (2015). Constraints from fault roughness on the scale-dependent strength of rocks. Geology, 44(1), 19–22. https://doi.org/10.1130/g37206.1 DOI: https://doi.org/10.1130/G37206.1
Brodsky, E. E., & Lay, T. (2014). Recognizing Foreshocks from the 1 April 2014 Chile Earthquake. Science, 344(6185), 700–702. https://doi.org/10.1126/science.1255202 DOI: https://doi.org/10.1126/science.1255202
Bröker, K., Guglielmi, Y., Soom, F., Cook, P., Hertrich, M., & Valley, B. (2025). In situ quantification of fracture slip induced by hydraulic injections in a deep borehole: A comparison of two different borehole techniques. In Geothermics. https://doi.org/10.2139/ssrn.5967430 DOI: https://doi.org/10.2139/ssrn.5967430
Bröker, K., & Ma, X. (2022). Estimating the Least Principal Stress in a Granitic Rock Mass: Systematic Mini-Frac Tests and Elaborated Pressure Transient Analysis. Rock Mechanics and Rock Engineering, 55(4), 1931–1954. https://doi.org/10.1007/s00603-021-02743-1 DOI: https://doi.org/10.1007/s00603-021-02743-1
Bröker, K., Ma, X., Gholizadeh Doonechaly, N., Rosskopf, M., Obermann, A., Rinaldi, A. P., Hertrich, M., Serbeto, F., Maurer, H., Wiemer, S., & Giardini, D. (2024). Hydromechanical characterization of a fractured crystalline rock volume during multi-stage hydraulic stimulations at the BedrettoLab. Geothermics, 124, 103126. https://doi.org/10.1016/j.geothermics.2024.103126 DOI: https://doi.org/10.1016/j.geothermics.2024.103126
Bröker, K., Ma, X., Zhang, S., Gholizadeh Doonechaly, N., Hertrich, M., Klee, G., Greenwood, A., Caspari, E., & Giardini, D. (2024). Constraining the stress field and its variability at the BedrettoLab: Elaborated hydraulic fracture trace analysis. International Journal of Rock Mechanics and Mining Sciences, 178, 105739. https://doi.org/10.1016/j.ijrmms.2024.105739 DOI: https://doi.org/10.1016/j.ijrmms.2024.105739
Bröker, K., Valley, B., Soom, F., Cook, P., Guigliemi, Y., & Hertrich, M. (2025). Stress field characterisation from fracture slip inversion at the BedrettoLab. https://europeangeothermalcongress.eu/wp-content/uploads/2025/11/Kai-et-al.pdf
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/jb075i026p04997 DOI: https://doi.org/10.1029/JB075i026p04997
Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112–134. https://doi.org/10.1016/j.epsl.2018.04.062 DOI: https://doi.org/10.1016/j.epsl.2018.04.062
Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025. https://doi.org/10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Candela, T., Renard, F., Bouchon, M., Brouste, A., Marsan, D., Schmittbuhl, J., & Voisin, C. (2009). Characterization of Fault Roughness at Various Scales: Implications of Three-Dimensional High Resolution Topography Measurements. Pure and Applied Geophysics, 166(10–11), 1817–1851. https://doi.org/10.1007/s00024-009-0521-2 DOI: https://doi.org/10.1007/s00024-009-0521-2
Candela, T., Renard, F., Bouchon, M., Schmittbuhl, J., & Brodsky, E. E. (2011). Stress Drop during Earthquakes: Effect of Fault Roughness Scaling. Bulletin of the Seismological Society of America, 101(5), 2369–2387. https://doi.org/10.1785/0120100298 DOI: https://doi.org/10.1785/0120100298
Cappa, F., Scuderi, M. M., Collettini, C., Guglielmi, Y., & Avouac, J.-P. (2019). Stabilization of fault slip by fluid injection in the laboratory and in situ. Science Advances, 5(3). https://doi.org/10.1126/sciadv.aau4065 DOI: https://doi.org/10.1126/sciadv.aau4065
Cattania, C., & Segall, P. (2021). Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020jb020430 DOI: https://doi.org/10.1029/2020JB020430
Ceccato, A., Behr, W. M., Zappone, A. S., Tavazzani, L., & Giuliani, A. (2024). Structural Evolution, Exhumation Rates, and Rheology of the European Crust During Alpine Collision: Constraints From the Rotondo Granite—Gotthard Nappe. Tectonics, 43(6). https://doi.org/10.1029/2023tc008219 DOI: https://doi.org/10.1029/2023TC008219
Ceccato, A., Behr, W. M., Zappone, A., Tavazzani, L., & Giuliani, A. (2023). Structural evolution, exhumation rates, and rheology of the European crust during Alpine collision: constraints from the Rotondo granite - Gotthard nappe. https://doi.org/10.22541/au.170293691.11620931/v1 DOI: https://doi.org/10.22541/au.170293691.11620931/v1
Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 98(B1), 771–786. https://doi.org/10.1029/92jb01866 DOI: https://doi.org/10.1029/92JB01866
Cicerone, R. D., Ebel, J. E., & Britton, J. (2009). A systematic compilation of earthquake precursors. Tectonophysics, 476(3–4), 371–396. https://doi.org/10.1016/j.tecto.2009.06.008 DOI: https://doi.org/10.1016/j.tecto.2009.06.008
Cocco, M., Aretusini, S., Cornelio, C., Nielsen, S. B., Spagnuolo, E., Tinti, E., & Di Toro, G. (2023). Fracture Energy and Breakdown Work During Earthquakes. Annual Review of Earth and Planetary Sciences, 51(1), 217–252. https://doi.org/10.1146/annurev-earth-071822-100304 DOI: https://doi.org/10.1146/annurev-earth-071822-100304
Cocco, M., Tinti, E., & Cirella, A. (2016). On the scale dependence of earthquake stress drop. Journal of Seismology, 20(4), 1151–1170. https://doi.org/10.1007/s10950-016-9594-4 DOI: https://doi.org/10.1007/s10950-016-9594-4
Collettini, C., Carpenter, B. M., Viti, C., Cruciani, F., Mollo, S., Tesei, T., Trippetta, F., Valoroso, L., & Chiaraluce, L. (2014). Fault structure and slip localization in carbonate-bearing normal faults: An example from the Northern Apennines of Italy. Journal of Structural Geology, 67, 154–166. https://doi.org/10.1016/j.jsg.2014.07.017 DOI: https://doi.org/10.1016/j.jsg.2014.07.017
Colombelli, S., Zollo, A., Festa, G., & Picozzi, M. (2014). Evidence for a difference in rupture initiation between small and large earthquakes. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4958 DOI: https://doi.org/10.1038/ncomms4958
Conti, L., Picozza, P., & Sotgiu, A. (2021). A Critical Review of Ground Based Observations of Earthquake Precursors. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.676766 DOI: https://doi.org/10.3389/feart.2021.676766
Cornelio, C., Aretusini, S., Spagnuolo, E., Di Toro, G., & Cocco, M. (2024). Multiple Seismic Slip‐Rate Pulses and Mechanical and Textural Evolution of Calcite‐Bearing Fault Gouges. Journal of Geophysical Research: Solid Earth, 129(7). https://doi.org/10.1029/2024jb029099 DOI: https://doi.org/10.1029/2024JB029099
De Barros, L., Guglielmi, Y., Cappa, F., Nussbaum, C., & Birkholzer, J. (2023). Induced microseismicity and tremor signatures illuminate different slip behaviours in a natural shale fault reactivated by a fluid pressure stimulation (Mont Terri). Geophysical Journal International, 235(1), 531–541. https://doi.org/10.1093/gji/ggad231 DOI: https://doi.org/10.1093/gji/ggad231
Derode, B., Guglielmi, Y., De Barros, L., & Cappa, F. (2015). Seismic responses to fluid pressure perturbations in a slipping fault. Geophysical Research Letters, 42(9), 3197–3203. https://doi.org/10.1002/2015gl063671 DOI: https://doi.org/10.1002/2015GL063671
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838 DOI: https://doi.org/10.1038/nature09838
Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., Spada, G., Alessandroni, R., Romeo, G., Di Stefano, G., Smith, S., Spagnuolo, E., & Mariano, S. (2010). From field geology to earthquake simulation: a new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA). RENDICONTI LINCEI, 21(S1), 95–114. https://doi.org/10.1007/s12210-010-0097-x DOI: https://doi.org/10.1007/s12210-010-0097-x
Diehl, T., Cauzzi, C., Clinton, J., Kraft, T., Kästli, P., Massin, F., Lanza, F., Simon, V., Grigoli, F., Hobiger, M., Roth, P., Haslinger, F., Fäh, D., & Wiemer, S. (2025). Earthquakes in Switzerland and surrounding regions during 2019 and 2020. Swiss Journal of Geosciences, 118(1). https://doi.org/10.1186/s00015-025-00489-4 DOI: https://doi.org/10.1186/s00015-025-00489-4
Diehl, T., Clinton, J., Cauzzi, C., Kraft, T., Kästli, P., Deichmann, N., Massin, F., Grigoli, F., Molinari, I., Bӧse, M., Hobiger, M., Haslinger, F., Fäh, D., & Wiemer, S. (2021). Earthquakes in Switzerland and surrounding regions during 2017 and 2018. Swiss Journal of Geosciences, 114(1). https://doi.org/10.1186/s00015-020-00382-2 DOI: https://doi.org/10.1186/s00015-020-00382-2
Dieterich, J. H. (1978). Preseismic fault slip and earthquake prediction. Journal of Geophysical Research: Solid Earth, 83(B8), 3940–3948. https://doi.org/10.1029/jb083ib08p03940 DOI: https://doi.org/10.1029/JB083iB08p03940
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161 DOI: https://doi.org/10.1029/JB084iB05p02161
Dieterich, J. H., & Kilgore, B. D. (1994). Direct observation of frictional contacts: New insights for state-dependent properties. Pure and Applied Geophysics, 143(1–3), 283–302. https://doi.org/10.1007/bf00874332 DOI: https://doi.org/10.1007/BF00874332
Dragert, H., Wang, K., & James, T. S. (2001). A Silent Slip Event on the Deeper Cascadia Subduction Interface. Science, 292(5521), 1525–1528. https://doi.org/10.1126/science.1060152 DOI: https://doi.org/10.1126/science.1060152
Dutler, N. O., Valley, B., Amann, F., Jalali, M., Villiger, L., Krietsch, H., Gischig, V., Doetsch, J., & Giardini, D. (2021). Poroelasticity Contributes to Hydraulic‐Stimulation Induced Pressure Changes. Geophysical Research Letters, 48(6). https://doi.org/10.1029/2020gl091468 DOI: https://doi.org/10.1029/2020GL091468
Ellsworth, W. L., & Beroza, G. C. (1995). Seismic Evidence for an Earthquake Nucleation Phase. Science, 268(5212), 851–855. https://doi.org/10.1126/science.268.5212.851 DOI: https://doi.org/10.1126/science.268.5212.851
Ellsworth, W. L., Hickman, S. H., Zoback, M. D., Imanishi, K., Thurber, C. H., & Roecker, S. W. (2007). Micro-nano-and picoearthquakes at SAFOD: Implications for earthquake rupture and fault mechanics. AGU Fall Meeting Abstracts, 12–05.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., & Withjack, M. O. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009 DOI: https://doi.org/10.1016/j.jsg.2010.06.009
Faulkner, D. R., Mitchell, T. M., Healy, D., & Heap, M. J. (2006). Slip on “weak” faults by the rotation of regional stress in the fracture damage zone. Nature, 444(7121), 922–925. https://doi.org/10.1038/nature05353 DOI: https://doi.org/10.1038/nature05353
Frank, F. C. (1965). On dilatancy in relation to seismic sources. Reviews of Geophysics, 3(4), 485–503. https://doi.org/10.1029/rg003i004p00485 DOI: https://doi.org/10.1029/RG003i004p00485
Fukuyama, E., Tsuchida, K., Kawakata, H., Yamashita, F., Mizoguchi, K., & Xu, S. (2018). Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments. Tectonophysics, 733, 182–192. https://doi.org/10.1016/j.tecto.2017.12.023 DOI: https://doi.org/10.1016/j.tecto.2017.12.023
Galis, M., Ampuero, J. P., Mai, P. M., & Cappa, F. (2017). Induced seismicity provides insight into why earthquake ruptures stop. Science Advances, 3(12). https://doi.org/10.1126/sciadv.aap7528 DOI: https://doi.org/10.1126/sciadv.aap7528
Garagash, D. I., & Germanovich, L. N. (2012). Nucleation and arrest of dynamic slip on a pressurized fault. Journal of Geophysical Research: Solid Earth, 117(B10). https://doi.org/10.1029/2012jb009209 DOI: https://doi.org/10.1029/2012JB009209
Gay, N. C., & Ortlepp, W. D. (1979). Anatomy of a mining-induced fault zone. Geological Society of America Bulletin, 90(1), 47. https://doi.org/10.1130/0016-7606(1979)90<47:aoamfz>2.0.co;2 DOI: https://doi.org/10.1130/0016-7606(1979)90<47:AOAMFZ>2.0.CO;2
Giardini, D., Wiemer, S., Maurer, H., Hertrich, M., Meier, P., Alcolea, A., Castilla, R., & Hochreutener, R. (2022). Validation of Technologies for reservoir engineering (VALTER) [Techreport]. ETH Zurich. https://doi.org/10.3929/ETHZ-B-000644092
Gibowicz, S. J., & Kijko, A. (1994). An introduction to mining seismology. Academic press.
Gischig, V. S., Rinaldi, A. P., Alcolea, A., Bethman, F., Broccardo, M., Bröker, K. E. N., Castilla, R., Ciardo, F., Clasen Repollés, V., Durand, V., Gholizadeh Doonechaly, N., Hertrich, M., Hochreutener, R., Kästli, P., Karvounis, D., Ma, X., Meier, M.-A., Meier, P., Mesimeri, M., … Giardini, D. (2025). Updating induced seismic hazard assessments during hydraulic stimulation experiments in underground laboratories: workflow and limitations. https://doi.org/10.5194/egusphere-2024-3882 DOI: https://doi.org/10.5194/se-16-1153-2025
Goebel, T. H. W., Becker, T. W., Sammis, C. G., Dresen, G., & Schorlemmer, D. (2014). Off-fault damage and acoustic emission distributions during the evolution of structurally complex faults over series of stick-slip events. Geophysical Journal International, 197(3), 1705–1718. https://doi.org/10.1093/gji/ggu074 DOI: https://doi.org/10.1093/gji/ggu074
Goebel, T. H. W., Becker, T. W., Schorlemmer, D., Stanchits, S., Sammis, C., Rybacki, E., & Dresen, G. (2012). Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011jb008763 DOI: https://doi.org/10.1029/2011JB008763
Goebel, T. H. W., & Brodsky, E. E. (2018). The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405), 899–904. https://doi.org/10.1126/science.aat5449 DOI: https://doi.org/10.1126/science.aat5449
Goebel, T. H. W., Schuster, V., Kwiatek, G., Pandey, K., & Dresen, G. (2024). A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49959-7 DOI: https://doi.org/10.1038/s41467-024-49959-7
Goldsby, D. L., & Tullis, T. E. (2011). Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip Rates. Science, 334(6053), 216–218. https://doi.org/10.1126/science.1207902 DOI: https://doi.org/10.1126/science.1207902
Grigoli, F., Cesca, S., Rinaldi, A. P., Manconi, A., López-Comino, J. A., Clinton, J. F., Westaway, R., Cauzzi, C., Dahm, T., & Wiemer, S. (2018). The November 2017 M w 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 360(6392), 1003–1006. https://doi.org/10.1126/science.aat2010 DOI: https://doi.org/10.1126/science.aat2010
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., & Elsworth, D. (2015). Seismicity triggered by fluid injection–induced aseismic slip. Science, 348(6240), 1224–1226. https://doi.org/10.1126/science.aab0476 DOI: https://doi.org/10.1126/science.aab0476
Guglielmi, Y., Cappa, F., Rutqvist, J., Tsang, C. F., Wang, J., Lançon, H., Durand, J., & Janowczyk, J. B. (2014). Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Monitoring Fractures Stimulation Efficiency. ARMA-2014-7505.
Guglielmi, Y., Cook, P., Soom, F., Schoenball, M., Dobson, P., & Kneafsey, T. (2021). In Situ Continuous Monitoring of Borehole Displacements Induced by Stimulated Hydrofracture Growth. Geophysical Research Letters, 48(4). https://doi.org/10.1029/2020gl090782 DOI: https://doi.org/10.1029/2020GL090782
Guglielmi, Y., Elsworth, D., Cappa, F., Henry, P., Gout, C., Dick, P., & Durand, J. (2015). In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales. Journal of Geophysical Research: Solid Earth, 120(11), 7729–7748. https://doi.org/10.1002/2015jb012158 DOI: https://doi.org/10.1002/2015JB012158
Guglielmi, Y., Nussbaum, C., Cappa, F., De Barros, L., Rutqvist, J., & Birkholzer, J. (2021). Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control, 111, 103471. https://doi.org/10.1016/j.ijggc.2021.103471 DOI: https://doi.org/10.1016/j.ijggc.2021.103471
Gulia, L., Tormann, T., Wiemer, S., Herrmann, M., & Seif, S. (2016). Short-term probabilistic earthquake risk assessment considering time-dependent b values. Geophysical Research Letters, 43(3), 1100–1108. https://doi.org/10.1002/2015gl066686 DOI: https://doi.org/10.1002/2015GL066686
Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193–199. https://doi.org/10.1038/s41586-019-1606-4 DOI: https://doi.org/10.1038/s41586-019-1606-4
Hamdi, P., Achtziger, P., Dickmann, J., Kruszewski, M., Rinaldi, A. P., Villiger, L., Shakas, A., Perras, M., Bahrani, N., Jiang, D., Amann, F., & Wiemer, S. (2024, June). Progressive Excavation Disturbance Zone Evolution During and Post Mine-By Tunneling (PRECODE) – Insight into a New Underground Research Laboratory for Crystalline Rocks in the BedrettoLab. 58th U.S. Rock Mechanics/Geomechanics Symposium. https://doi.org/10.56952/arma-2024-0543 DOI: https://doi.org/10.56952/ARMA-2024-0543
Hamdi, P., Ufrecht, S., Achtziger-Zupančič, P., Bröker, K., Ma, X., & Amann, F. (2025). Understanding the Regional Stress in Active Tectonic Regime Using 3D Numerical Modeling, Case Study of BedrettoLab, Switzerland. Rock Mechanics and Rock Engineering, 58(11), 12187–12206. https://doi.org/10.1007/s00603-025-04740-0 DOI: https://doi.org/10.1007/s00603-025-04740-0
Heesakkers, V., Murphy, S., Lockner, D. A., & Reches, Z. (2011). Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona Mine, South Africa. Pure and Applied Geophysics, 168(12), 2427–2449. https://doi.org/10.1007/s00024-011-0355-6 DOI: https://doi.org/10.1007/s00024-011-0355-6
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55
Ide, S., Beroza, G. C., Shelly, D. R., & Uchide, T. (2007). A scaling law for slow earthquakes. Nature, 447(7140), 76–79. https://doi.org/10.1038/nature05780 DOI: https://doi.org/10.1038/nature05780
Ishida, T., Fujito, W., Yamashita, H., Naoi, M., Fuji, H., Suzuki, K., & Matsui, H. (2019). Crack Expansion and Fracturing Mode of Hydraulic Refracturing from Acoustic Emission Monitoring in a Small-Scale Field Experiment. Rock Mechanics and Rock Engineering, 52(2), 543–553. https://doi.org/10.1007/s00603-018-1697-5 DOI: https://doi.org/10.1007/s00603-018-1697-5
Ito, Y., Obara, K., Shiomi, K., Sekine, S., & Hirose, H. (2007). Slow Earthquakes Coincident with Episodic Tremors and Slow Slip Events. Science, 315(5811), 503–506. https://doi.org/10.1126/science.1134454 DOI: https://doi.org/10.1126/science.1134454
Kammer, D. S., McLaskey, G. C., Abercrombie, R. E., Ampuero, J.-P., Cattania, C., Cocco, M., Dal Zilio, L., Dresen, G., Gabriel, A.-A., Ke, C.-Y., Marone, C., Selvadurai, P. A., & Tinti, E. (2024). Earthquake energy dissipation in a fracture mechanics framework. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-47970-6 DOI: https://doi.org/10.1038/s41467-024-47970-6
Kaneko, Y., & Ampuero, J.-P. (2011). A mechanism for preseismic steady rupture fronts observed in laboratory experiments: MODELING PRESEISMIC STEADY RUPTURE. Geophysical Research Letters, 38(21). https://doi.org/10.1029/2011gl049953 DOI: https://doi.org/10.1029/2011GL049953
Kaneko, Y., Avouac, J.-P., & Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience, 3(5), 363–369. https://doi.org/10.1038/ngeo843 DOI: https://doi.org/10.1038/ngeo843
Kato, A., & Ben-Zion, Y. (2020). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. https://doi.org/10.1038/s43017-020-00108-w DOI: https://doi.org/10.1038/s43017-020-00108-w
Kato, A., & Ben-Zion, Y. (2021). Publisher Correction: The generation of large earthquakes. Nature Reviews Earth & Environment, 2(2), 160–160. https://doi.org/10.1038/s43017-021-00145-z DOI: https://doi.org/10.1038/s43017-021-00145-z
Kirkpatrick, J. D., & Brodsky, E. E. (2014). Slickenline orientations as a record of fault rock rheology. Earth and Planetary Science Letters, 408, 24–34. https://doi.org/10.1016/j.epsl.2014.09.040 DOI: https://doi.org/10.1016/j.epsl.2014.09.040
Kneafsey, T., Dobson, P., Blankenship, D., Schwering, P., White, M., Morris, J. P., Huang, L., Johnson, T., Burghardt, J., Mattson, E., Neupane, G., Strickland, C., Knox, H., Vermuel, V., Ajo-Franklin, J., Fu, P., Roggenthen, W., Doe, T., Schoenball, M., … Robertson, M. (2025). The EGS Collab project: Outcomes and lessons learned from hydraulic fracture stimulations in crystalline rock at 1.25 and 1.5 km depth. Geothermics, 126, 103178. https://doi.org/10.1016/j.geothermics.2024.103178 DOI: https://doi.org/10.1016/j.geothermics.2024.103178
Kneafsey, T. J., Dobson, P. F., Ulrich, C., Hopp, C., Rodríguez-Tribaldos, V., Guglielmi, Y., Blankenship, D., Schwering, P. C., Ingraham, M., Burghardt, J. A., White, M. D., Johnson, T. C., Strickland, C., Vermuel, V., Knox, H. A., Morris, J. P., Fu, P., Smith, M., Wu, H., … Team, E. C. (2022, June). The EGS Collab Project – Stimulations at Two Depths. 56th U.S. Rock Mechanics/Geomechanics Symposium. https://doi.org/10.56952/arma-2022-2261 DOI: https://doi.org/10.56952/ARMA-2022-2261
Kozłowska, M., Orlecka‐Sikora, B., Kwiatek, G., Boettcher, M. S., & Dresen, G. (2015). Nanoseismicity and picoseismicity rate changes from static stress triggering caused by a Mw 2.2 earthquake in Mponeng gold mine, South Africa. Journal of Geophysical Research: Solid Earth, 120(1), 290–307. https://doi.org/10.1002/2014jb011410 DOI: https://doi.org/10.1002/2014JB011410
Krietsch, H., Villiger, L., Doetsch, J., Gischig, V., Evans, K. F., Brixel, B., Jalali, M. R., Loew, S., Giardini, D., & Amann, F. (2020). Changing Flow Paths Caused by Simultaneous Shearing and Fracturing Observed During Hydraulic Stimulation. Geophysical Research Letters, 47(3). https://doi.org/10.1029/2019gl086135 DOI: https://doi.org/10.1029/2019GL086135
Kurzon, I., Lyakhovsky, V., & Ben-Zion, Y. (2018). Dynamic Rupture and Seismic Radiation in a Damage–Breakage Rheology Model. Pure and Applied Geophysics, 176(3), 1003–1020. https://doi.org/10.1007/s00024-018-2060-1 DOI: https://doi.org/10.1007/s00024-018-2060-1
Kurzon, I., Lyakhovsky, V., & Ben-Zion, Y. (2020). Earthquake source properties from analysis of dynamic ruptures and far-field seismic waves in a damage-breakage model. Geophysical Journal International, 224(3), 1793–1810. https://doi.org/10.1093/gji/ggaa509 DOI: https://doi.org/10.1093/gji/ggaa509
Kwiatek, G., Martínez‐Garzón, P., Plenkers, K., Leonhardt, M., Zang, A., von Specht, S., Dresen, G., & Bohnhoff, M. (2018). Insights Into Complex Subdecimeter Fracturing Processes Occurring During a Water Injection Experiment at Depth in Äspö Hard Rock Laboratory, Sweden. Journal of Geophysical Research: Solid Earth, 123(8), 6616–6635. https://doi.org/10.1029/2017jb014715 DOI: https://doi.org/10.1029/2017JB014715
Kwiatek, G., Saarno, T., Ader, T., Bluemle, F., Bohnhoff, M., Chendorain, M., Dresen, G., Heikkinen, P., Kukkonen, I., Leary, P., Leonhardt, M., Malin, P., Martínez-Garzón, P., Passmore, K., Passmore, P., Valenzuela, S., & Wollin, C. (2019). Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Science Advances, 5(5). https://doi.org/10.1126/sciadv.aav7224 DOI: https://doi.org/10.1126/sciadv.aav7224
Langenbruch, C., & Zoback, M. D. (2016). How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science Advances, 2(11). https://doi.org/10.1126/sciadv.1601542 DOI: https://doi.org/10.1126/sciadv.1601542
Larochelle, S., Lapusta, N., Ampuero, J., & Cappa, F. (2021). Constraining Fault Friction and Stability With Fluid‐Injection Field Experiments. Geophysical Research Letters, 48(10). https://doi.org/10.1029/2020gl091188 DOI: https://doi.org/10.1029/2020GL091188
Latour, S., Schubnel, A., Nielsen, S., Madariaga, R., & Vinciguerra, S. (2013). Characterization of nucleation during laboratory earthquakes. Geophysical Research Letters, 40(19), 5064–5069. https://doi.org/10.1002/grl.50974 DOI: https://doi.org/10.1002/grl.50974
Leeman, J. R., Saffer, D. M., Scuderi, M. M., & Marone, C. (2016). Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Communications, 7(1). https://doi.org/10.1038/ncomms11104 DOI: https://doi.org/10.1038/ncomms11104
Lockner, D. (1993). The role of acoustic emission in the study of rock fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 883–899. https://doi.org/10.1016/0148-9062(93)90041-b DOI: https://doi.org/10.1016/0148-9062(93)90041-B
Lockner, D. A., & Byerlee, J. D. (1994). Dilatancy in hydraulically isolated faults and the suppression of instability. Geophysical Research Letters, 21(22), 2353–2356. https://doi.org/10.1029/94gl02366 DOI: https://doi.org/10.1029/94GL02366
Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., & Sidorin, A. (1991). Quasi-static fault growth and shear fracture energy in granite. Nature, 350(6313), 39–42. https://doi.org/10.1038/350039a0 DOI: https://doi.org/10.1038/350039a0
Lu, X., Lapusta, N., & Rosakis, A. J. (2007). Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proceedings of the National Academy of Sciences, 104(48), 18931–18936. https://doi.org/10.1073/pnas.0704268104 DOI: https://doi.org/10.1073/pnas.0704268104
Ma, X., Hertrich, M., Amann, F., Bröker, K., Gholizadeh Doonechaly, N., Gischig, V., Hochreutener, R., Kästli, P., Krietsch, H., Marti, M., Nägeli, B., Nejati, M., Obermann, A., Plenkers, K., Rinaldi, A. P., Shakas, A., Villiger, L., Wenning, Q., Zappone, A., … Giardini, D. (2022). Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility. Solid Earth, 13(2), 301–322. https://doi.org/10.5194/se-13-301-2022 DOI: https://doi.org/10.5194/se-13-301-2022
Mai, P. M., Galis, M., Thingbaijam, K. K. S., Vyas, J. C., & Dunham, E. M. (2017). Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations. Pure and Applied Geophysics, 174(9), 3419–3450. https://doi.org/10.1007/s00024-017-1536-8 DOI: https://doi.org/10.1007/s00024-017-1536-8
Main, I. G., Meredith, P. G., & Sammonds, P. R. (1992). Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws. Tectonophysics, 211(1–4), 233–246. https://doi.org/10.1016/0040-1951(92)90061-a DOI: https://doi.org/10.1016/0040-1951(92)90061-A
Marone, C. (1998). Laboratory-derived Friction Laws and their Application to Seismic Faulting. Annual Review of Earth and Planetary Sciences, 26(1), 643–696. https://doi.org/10.1146/annurev.earth.26.1.643 DOI: https://doi.org/10.1146/annurev.earth.26.1.643
Martínez-Garzón, P., & Poli, P. (2024). Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01285-y DOI: https://doi.org/10.1038/s43247-024-01285-y
McGarr, A. (1976). Seismic moments and volume changes. Journal of Geophysical Research, 81(8), 1487–1494. https://doi.org/10.1029/jb081i008p01487 DOI: https://doi.org/10.1029/JB081i008p01487
McGarr, A. (2014). Maximum magnitude earthquakes induced by fluid injection: Limits on fluid injection earthquakes. Journal of Geophysical Research: Solid Earth, 119(2), 1008–1019. https://doi.org/10.1002/2013jb010597 DOI: https://doi.org/10.1002/2013JB010597
McGarr, A., Spottiswoode, S. M., & Gay, N. C. (1975). Relationship of mine tremors to induced stresses and to rock properties in the focal region. Bulletin of the Seismological Society of America, 65(4), 981–993. https://doi.org/10.1785/bssa0650040981 DOI: https://doi.org/10.1785/BSSA0650040981
McGuire, J. J., & Kaneko, Y. (2018). Directly estimating earthquake rupture area using second moments to reduce the uncertainty in stress drop. Geophysical Journal International, 214(3), 2224–2235. https://doi.org/10.1093/gji/ggy201 DOI: https://doi.org/10.1093/gji/ggy201
McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904. https://doi.org/10.1029/2019jb018363 DOI: https://doi.org/10.1029/2019JB018363
Meier, M., Heaton, T., & Clinton, J. (2016). Evidence for universal earthquake rupture initiation behavior. Geophysical Research Letters, 43(15), 7991–7996. https://doi.org/10.1002/2016gl070081 DOI: https://doi.org/10.1002/2016GL070081
Meier, M.-A., Ampuero, J. P., & Heaton, T. H. (2017). The hidden simplicity of subduction megathrust earthquakes. Science, 357(6357), 1277–1281. https://doi.org/10.1126/science.aan5643 DOI: https://doi.org/10.1126/science.aan5643
Meier, M.-A., Ampuero, J.-P., Cochran, E., & Page, M. (2020). Apparent earthquake rupture predictability. Geophysical Journal International, 225(1), 657–663. https://doi.org/10.1093/gji/ggaa610 DOI: https://doi.org/10.1093/gji/ggaa610
Meier, M.-A., Gischig, V., Rinaldi, A., Jalali, M., Supino, M., Mosconi, F., Villiger, L., Selvadurai, P., Spagnuolo, E., Tinti, E., Dal Zilio, L., Zappone, A., Pozzi, G., Mesimeri, M., Scarabello, L., Hertrich, M., Amann, F., Cocco, M., Wiemer, S., & Giardini, D. (2025). An Induced Mw -0.4 Earthquake Under a Microscope at the BedrettoLab. https://doi.org/10.5194/egusphere-egu25-17272 DOI: https://doi.org/10.5194/egusphere-egu25-17272
Mesimeri, M., Scarabello, L., Zimmermann, E., Haag, T., Zylis, E., Villiger, L., Kaestli, P., Meier, M.-A., Rinaldi, A. P., Obermann, A., Hertrich, M., Clinton, J., Giardini, D., & Wiemer, S. (2024). Multiscale Seismic Monitoring in the Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG). Seismological Research Letters, 96(1), 182–191. https://doi.org/10.1785/0220240128 DOI: https://doi.org/10.1785/0220240128
Meyer, G. G., Giorgetti, C., Guérin-Marthe, S., & Violay, M. (2024). Off-fault deformation feedback and strain localization precursor during laboratory earthquakes. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01756-2 DOI: https://doi.org/10.1038/s43247-024-01756-2
Mignan, A., Ouillon, G., Sornette, D., & Freund, F. (2021). Global Earthquake Forecasting System (GEFS): The challenges ahead. The European Physical Journal Special Topics, 230(1), 473–490. https://doi.org/10.1140/epjst/e2020-000261-8 DOI: https://doi.org/10.1140/epjst/e2020-000261-8
Moein, M. J. A., Langenbruch, C., Schultz, R., Grigoli, F., Ellsworth, W. L., Wang, R., Rinaldi, A. P., & Shapiro, S. (2023). The physical mechanisms of induced earthquakes. Nature Reviews Earth & Environment, 4(12), 847–863. https://doi.org/10.1038/s43017-023-00497-8 DOI: https://doi.org/10.1038/s43017-023-00497-8
Mosconi, F., Tinti, E., Casarotti, E., Gabriel, A., Rinaldi, A. P., Dal Zilio, L., & Cocco, M. (2025). Modeling the 3D Dynamic Rupture of Microearthquakes Induced by Fluid Injection. Journal of Geophysical Research: Solid Earth, 130(3). https://doi.org/10.1029/2024jb029621 DOI: https://doi.org/10.1029/2024JB029621
Naoi, M., Nakatani, M., Yabe, Y., Kwiatek, G., Igarashi, T., & Plenkers, K. (2011). Twenty Thousand Aftershocks of a Very Small (M 2) Earthquake and Their Relation to the Mainshock Rupture and Geological Structures. Bulletin of the Seismological Society of America, 101(5), 2399–2407. https://doi.org/10.1785/0120100346 DOI: https://doi.org/10.1785/0120100346
Naoi, M., Ogasawara, H., Takeuchi, J., Yamamoto, A., Shimoda, N., Morishita, K., Ishii, H., Nakao, S., van Aswegen, G., Mendecki, A. J., Lenegan, P., Ebrahim‐Trollope, R., & Iio, Y. (2006). Small slow‐strain steps and their forerunners observed in gold mine in South Africa. Geophysical Research Letters, 33(12). https://doi.org/10.1029/2006gl026507 DOI: https://doi.org/10.1029/2006GL026507
Nielsen, S., Taddeucci, J., & Vinciguerra, S. (2010). Experimental observation of stick-slip instability fronts. Geophysical Journal International, 180(2), 697–702. https://doi.org/10.1111/j.1365-246x.2009.04444.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04444.x
Obara, K. (2002). Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378 DOI: https://doi.org/10.1126/science.1070378
Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353(6296), 253–257. https://doi.org/10.1126/science.aaf1512 DOI: https://doi.org/10.1126/science.aaf1512
Obermann, A., Rosskopf, M., Durand, V., Plenkers, K., Bröker, K., Rinaldi, A. P., Gholizadeh Doonechaly, N., Gischig, V., Zappone, A., Amann, F., Cocco, M., Hertrich, M., Jalali, M., Junker, J. S., Kästli, P., Ma, X., Maurer, H., Meier, M., Schwarz, M., … Giardini, D. (2024). Seismic Response of Hectometer‐Scale Fracture Systems to Hydraulic Stimulation in the Bedretto Underground Laboratory, Switzerland. Journal of Geophysical Research: Solid Earth, 129(11). https://doi.org/10.1029/2024jb029836 DOI: https://doi.org/10.1029/2024JB029836
Ogasawara, H. (2002). Review of semi-controlled earthquake-generation experiments in South African deep gold mines (1992–2001). In Seismogenic Process Monitoring (pp. 119–150). Routledge. https://doi.org/10.1201/9780203739990-11 DOI: https://doi.org/10.1201/9780203739990-11
Ohnaka, M. (1992). Earthquake source nucleation: A physical model for short-term precursors. Tectonophysics, 211(1–4), 149–178. https://doi.org/10.1016/0040-1951(92)90057-d DOI: https://doi.org/10.1016/0040-1951(92)90057-D
Ohnaka, M. (2003). A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. Journal of Geophysical Research: Solid Earth, 108(B2). https://doi.org/10.1029/2000jb000123 DOI: https://doi.org/10.1029/2000JB000123
Ohnaka, M., & Shen, L. (1999). Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. Journal of Geophysical Research: Solid Earth, 104(B1), 817–844. https://doi.org/10.1029/1998jb900007 DOI: https://doi.org/10.1029/1998JB900007
Okubo, P. G., & Dieterich, J. H. (1984). Effects of physical fault properties on frictional instabilities produced on simulated faults. Journal of Geophysical Research: Solid Earth, 89(B7), 5817–5827. https://doi.org/10.1029/jb089ib07p05817 DOI: https://doi.org/10.1029/JB089iB07p05817
Osten, J., Schaber, T., Gaus, G., Hamdi, P., Amann, F., & Achtziger-Zupančič, P. (2024). A multi-method investigation of the permeability structure of brittle fault zones with ductile precursors in crystalline rock. Grundwasser, 29(1), 49–61. https://doi.org/10.1007/s00767-023-00561-6 DOI: https://doi.org/10.1007/s00767-023-00561-6
Paterson, M. S., & Wong, T.-F. (2005). Experimental Rock Deformation—The Brittle Field (2nd ed.). Springer.
Phil Elson, Elliott Sales de Andrade, Greg Lucas, Ryan May, Richard Hattersley, Ed Campbell, Ruth Comer, Andrew Dawson, Bill Little, Stephane Raynaud, scmc72, Alan D. Snow, lgolston, Byron Blay, Peter Killick, lbdreyer, Patrick Peglar, Nat Wilson, Andrew, … Kirkham, D. (2024). SciTools/cartopy: v0.21.0, Zenodo. Zenodo. https://doi.org/10.5281/ZENODO.1182735
Plenkers, K., Kwiatek, G., Nakatani, M., & Dresen, G. (2010). Observation of Seismic Events with Frequencies f > 25 kHz at Mponeng Deep Gold Mine, South Africa. Seismological Research Letters, 81(3), 467–479. https://doi.org/10.1785/gssrl.81.3.467 DOI: https://doi.org/10.1785/gssrl.81.3.467
Plenkers, K., Reinicke, A., Obermann, A., Gholizadeh Doonechaly, N., Krietsch, H., Fechner, T., Hertrich, M., Kontar, K., Maurer, H., Philipp, J., Rinderknecht, B., Volksdorf, M., Giardini, D., & Wiemer, S. (2023). Multi-Disciplinary Monitoring Networks for Mesoscale Underground Experiments: Advances in the Bedretto Reservoir Project. Sensors, 23(6), 3315. https://doi.org/10.3390/s23063315 DOI: https://doi.org/10.3390/s23063315
Pozzi, G., Collettini, C., Scuderi, M. M., Tesei, T., Marone, C., Amodio, A., & Cocco, M. (2023). Fabric controls fault stability in serpentinite gouges. Geophysical Journal International, 235(2), 1778–1797. https://doi.org/10.1093/gji/ggad322 DOI: https://doi.org/10.1093/gji/ggad322
Pozzi, G., De Paola, N., Nielsen, S. B., Holdsworth, R. E., & Bowen, L. (2018). A new interpretation for the nature and significance of mirror-like surfaces in experimental carbonate-hosted seismic faults. Geology, 46(7), 583–586. https://doi.org/10.1130/g40197.1 DOI: https://doi.org/10.1130/G40197.1
Proctor, B., Lockner, D. A., Kilgore, B. D., Mitchell, T. M., & Beeler, N. M. (2020). Direct Evidence for Fluid Pressure, Dilatancy, and Compaction Affecting Slip in Isolated Faults. Geophysical Research Letters, 47(16). https://doi.org/10.1029/2019gl086767 DOI: https://doi.org/10.1029/2019GL086767
Rast, M., Galli, A., Ruh, J. B., Guillong, M., & Madonna, C. (2022). Geology along the Bedretto tunnel: kinematic and geochronological constraints on the evolution of the Gotthard Massif (Central Alps). Swiss Journal of Geosciences, 115(1). https://doi.org/10.1186/s00015-022-00409-w DOI: https://doi.org/10.1186/s00015-022-00409-w
Renard, F., & Candela, T. (2017). Scaling of Fault Roughness and Implications for Earthquake Mechanics. In Fault Zone Dynamic Processes (pp. 195–215). Wiley. https://doi.org/10.1002/9781119156895.ch10 DOI: https://doi.org/10.1002/9781119156895.ch10
Renner, J., Adero, B., Becker, F., Blümle, F., Boese, C. M., & Cheng, Y. (2021). STIMTEC – A mine-scale hydraulic stimulation experi-ment of anisotropic metamorphic rock with evaluation by mine-back drilling. In X. Ma (Ed.), Introduction to the special issue: deep underground laboratories (DUL), ARMA Newsletter. https://
Rice, J. R. (1975). On the stability of dilatant hardening for saturated rock masses. Journal of Geophysical Research, 80(11), 1531–1536. https://doi.org/10.1029/jb080i011p01531 DOI: https://doi.org/10.1029/JB080i011p01531
Rice, J. R. (1993). Spatio‐temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6), 9885–9907. https://doi.org/10.1029/93jb00191 DOI: https://doi.org/10.1029/93JB00191
Rice, J. R., & Cocco, M. (2007). Seismic Fault Rheology and Earthquake Dynamics. In Tectonic Faults (pp. 99–138). The MIT Press. https://doi.org/10.7551/mitpress/6703.003.0007 DOI: https://doi.org/10.7551/mitpress/6703.003.0007
Ripperger, J., Ampuero, J. ‐P., Mai, P. M., & Giardini, D. (2007). Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress. Journal of Geophysical Research: Solid Earth, 112(B4). https://doi.org/10.1029/2006jb004515 DOI: https://doi.org/10.1029/2006JB004515
Rosenau, M., Corbi, F., & Dominguez, S. (2017). Analogue earthquakes and seismic cycles: experimental modelling across timescales. Solid Earth, 8(3), 597–635. https://doi.org/10.5194/se-8-597-2017 DOI: https://doi.org/10.5194/se-8-597-2017
Rosskopf, M., Durand, V., Plenkers, K., Villiger, L., Giardini, D., & Obermann, A. (2025). Accuracy of Picoseismic Catalogs in Hectometer-Scale In Situ Experiments. Seismological Research Letters, 96(6), 3814–3836. https://doi.org/10.1785/0220240399 DOI: https://doi.org/10.1785/0220240399
Rouet‐Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., & Johnson, P. A. (2017). Machine Learning Predicts Laboratory Earthquakes. Geophysical Research Letters, 44(18), 9276–9282. https://doi.org/10.1002/2017gl074677 DOI: https://doi.org/10.1002/2017GL074677
Rubino, V., Rosakis, A. J., & Lapusta, N. (2017). Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nature Communications, 8(1). https://doi.org/10.1038/ncomms15991 DOI: https://doi.org/10.1038/ncomms15991
Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12), 10359–10370. https://doi.org/10.1029/jb088ib12p10359 DOI: https://doi.org/10.1029/JB088iB12p10359
Saffer, D. M., & Tobin, H. J. (2011). Hydrogeology and Mechanics of Subduction Zone Forearcs: Fluid Flow and Pore Pressure. Annual Review of Earth and Planetary Sciences, 39(1), 157–186. https://doi.org/10.1146/annurev-earth-040610-133408 DOI: https://doi.org/10.1146/annurev-earth-040610-133408
Sagy, A., Brodsky, E. E., & Axen, G. J. (2007). Evolution of fault-surface roughness with slip. Geology, 35(3), 283. https://doi.org/10.1130/g23235a.1 DOI: https://doi.org/10.1130/G23235A.1
Salazar Vásquez, A. F., Selvadurai, P. A., Bianchi, P., Madonna, C., Germanovich, L. N., Puzrin, A. M., Wiemer, S., Giardini, D., & Rabaiotti, C. (2024). Aseismic strain localization prior to failure and associated seismicity in crystalline rock. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-75942-9 DOI: https://doi.org/10.1038/s41598-024-75942-9
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097 DOI: https://doi.org/10.1038/34097
Scholz, C. H. (2018). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/9781316681473 DOI: https://doi.org/10.1017/9781316681473
Scholz, C. H., Sykes, L. R., & Aggarwal, Y. P. (1973). Earthquake Prediction: A Physical Basis. Science, 181(4102), 803–810. https://doi.org/10.1126/science.181.4102.803 DOI: https://doi.org/10.1126/science.181.4102.803
Schultz, R. (2025). Reining‐In the Spring‐Slider With Reinforcement Learning. Journal of Geophysical Research: Solid Earth, 130(3). https://doi.org/10.1029/2024jb029697 DOI: https://doi.org/10.1029/2024JB029697
Schultz, R., Atkinson, G., Eaton, D. W., Gu, Y. J., & Kao, H. (2018). Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science, 359(6373), 304–308. https://doi.org/10.1126/science.aao0159 DOI: https://doi.org/10.1126/science.aao0159
Schultz, R., Lanza, F., Dyer, B., Karvounis, D., Fiori, R., Shi, P., Ritz, V., Villiger, L., Meier, P., & Wiemer, S. (2025). The bound growth of induced earthquakes could de-risk hydraulic fracturing. Communications Earth & Environment, 6(1). https://doi.org/10.1038/s43247-025-02881-2 DOI: https://doi.org/10.1038/s43247-025-02881-2
Schwarz, M. L., Maurer, H., Obermann, A. C., Selvadurai, P. A., Shakas, A., Wiemer, S., & Giardini, D. (2025). New insights on the fault structure of a geothermal testbed and the associated seismicity based on active seismic tomography. https://doi.org/10.5194/egusphere-2025-1094 DOI: https://doi.org/10.5194/egusphere-2025-1094
Scuderi, M. M., Carpenter, B. M., Johnson, P. A., & Marone, C. (2015). Poromechanics of stick‐slip frictional sliding and strength recovery on tectonic faults. Journal of Geophysical Research: Solid Earth, 120(10), 6895–6912. https://doi.org/10.1002/2015jb011983 DOI: https://doi.org/10.1002/2015JB011983
Segall, P., & Rice, J. R. (1995). Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault. Journal of Geophysical Research: Solid Earth, 100(B11), 22155–22171. https://doi.org/10.1029/95jb02403 DOI: https://doi.org/10.1029/95JB02403
Selvadurai, P. A. (2019). Laboratory Insight Into Seismic Estimates of Energy Partitioning During Dynamic Rupture: An Observable Scaling Breakdown. Journal of Geophysical Research: Solid Earth, 124(11), 11350–11379. https://doi.org/10.1029/2018jb017194 DOI: https://doi.org/10.1029/2018JB017194
Selvadurai, P. A., Galvez, P., Mai, P. M., & Glaser, S. D. (2023). Modeling frictional precursory phenomena using a wear-based rate- and state-dependent friction model in the laboratory. Tectonophysics, 847, 229689. https://doi.org/10.1016/j.tecto.2022.229689 DOI: https://doi.org/10.1016/j.tecto.2022.229689
Selvadurai, P. A., & Glaser, S. D. (2015). Laboratory‐developed contact models controlling instability on frictional faults. Journal of Geophysical Research: Solid Earth, 120(6), 4208–4236. https://doi.org/10.1002/2014jb011690 DOI: https://doi.org/10.1002/2014JB011690
Selvadurai, P. A., & Glaser, S. D. (2016). Asperity generation and its relationship to seismicity on a planar fault: a laboratory simulation. Geophysical Journal International, 208(2), 1009–1025. https://doi.org/10.1093/gji/ggw439 DOI: https://doi.org/10.1093/gji/ggw439
Selvadurai, P. A., & Selvadurai, A. P. S. (2025). On the Influence of a Dilatant Asperity Patch on the Seismic Moment. Journal of Elasticity, 157(3). https://doi.org/10.1007/s10659-025-10135-7 DOI: https://doi.org/10.1007/s10659-025-10135-7
Shipton, Z. K., Soden, A. M., Kirkpatrick, J. D., Bright, A. M., & Lunn, R. J. (2006). How thick is a fault? Fault displacement-thickness scaling revisited. In Earthquakes: Radiated Energy and the Physics of Faulting (pp. 193–198). American Geophysical Union. https://doi.org/10.1029/170gm19 DOI: https://doi.org/10.1029/170GM19
Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega‐Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017gl073023 DOI: https://doi.org/10.1002/2017GL073023
Spagnuolo, E., Cornelio, C., Aretusini, S., Pozzi, G., Cocco, M., Selvadurai, P., & Di Stefano, G. (2023). A novel apparatus to study the mechano-chemical processes active during the nucleation and propagation of earthquakes (MEERA). https://doi.org/10.5194/egusphere-egu23-8807 DOI: https://doi.org/10.5194/egusphere-egu23-8807
Supino, M., Festa, G., & Zollo, A. (2019). A probabilistic method for the estimation of earthquake source parameters from spectral inversion: application to the 2016–2017 Central Italy seismic sequence. Geophysical Journal International, 218(2), 988–1007. https://doi.org/10.1093/gji/ggz206 DOI: https://doi.org/10.1093/gji/ggz206
Swiss Seismological Service (SED) at ETH Zurich. (2018). Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) Seismic Network, Switzerland. ETH Zurich. https://doi.org/10.12686/SED/NETWORKS/8R
Torabi, A., & Berg, S. S. (2011). Scaling of fault attributes: A review. Marine and Petroleum Geology, 28(8), 1444–1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003 DOI: https://doi.org/10.1016/j.marpetgeo.2011.04.003
Tormann, T., Enescu, B., Woessner, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8(2), 152–158. https://doi.org/10.1038/ngeo2343 DOI: https://doi.org/10.1038/ngeo2343
Tormann, T., Wiemer, S., & Mignan, A. (2014). Systematic survey of high‐resolutionbvalue imaging along Californian faults: Inference on asperities. Journal of Geophysical Research: Solid Earth, 119(3), 2029–2054. https://doi.org/10.1002/2013jb010867 DOI: https://doi.org/10.1002/2013JB010867
Tullis, T. E. (1996). Rock friction and its implications for earthquake prediction examined via models of Parkfield earthquakes. Proceedings of the National Academy of Sciences, 93(9), 3803–3810. https://doi.org/10.1073/pnas.93.9.3803 DOI: https://doi.org/10.1073/pnas.93.9.3803
Tullis, T. E., & Tullis, J. (1986). Experimental rock deformation techniques. In Mineral and Rock Deformation: Laboratory Studies (pp. 297–324). American Geophysical Union. https://doi.org/10.1029/gm036p0297 DOI: https://doi.org/10.1029/GM036p0297
van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W., & Hosseini, S. M. (2016). Induced earthquake magnitudes are as large as (statistically) expected. Journal of Geophysical Research: Solid Earth, 121(6), 4575–4590. https://doi.org/10.1002/2016jb012818 DOI: https://doi.org/10.1002/2016JB012818
Villiger, L., Gischig, V. S., Doetsch, J., Krietsch, H., Dutler, N. O., Jalali, M., Valley, B., Selvadurai, P. A., Mignan, A., Plenkers, K., Giardini, D., Amann, F., & Wiemer, S. (2020). Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock. Solid Earth, 11(2), 627–655. https://doi.org/10.5194/se-11-627-2020 DOI: https://doi.org/10.5194/se-11-627-2020
Volpe, G., Pozzi, G., Collettini, C., Spagnuolo, E., Achtziger-Zupančič, P., Zappone, A., Aldega, L., Meier, M. A., Giardini, D., & Cocco, M. (2023). Laboratory simulation of fault reactivation by fluid injection and implications for induced seismicity at the BedrettoLab, Swiss Alps. Tectonophysics, 862, 229987. https://doi.org/10.1016/j.tecto.2023.229987 DOI: https://doi.org/10.1016/j.tecto.2023.229987
Wang, L., Kwiatek, G., Renard, F., Guérin-Marthe, S., Rybacki, E., Bohnhoff, M., Naumann, M., & Dresen, G. (2024). Fault roughness controls injection-induced seismicity. Proceedings of the National Academy of Sciences, 121(3). https://doi.org/10.1073/pnas.2310039121 DOI: https://doi.org/10.1073/pnas.2310039121
Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A., & Rubinstein, J. L. (2015). High-rate injection is associated with the increase in U.S. mid-continent seismicity. Science, 348(6241), 1336–1340. https://doi.org/10.1126/science.aab1345 DOI: https://doi.org/10.1126/science.aab1345
Wu, B., & Barbot, S. (2025). Evolution of the real area of contact during laboratory earthquakes. Proceedings of the National Academy of Sciences, 122(23). https://doi.org/10.1073/pnas.2410496122 DOI: https://doi.org/10.1073/pnas.2410496122
Wu, R., Selvadurai, P. A., Li, Y., Leith, K., Lei, Q., & Loew, S. (2023). Laboratory Acousto‐Mechanical Study Into Moisture‐Induced Reduction of Fracture Stiffness in Granite. Geophysical Research Letters, 50(23). https://doi.org/10.1029/2023gl105725 DOI: https://doi.org/10.1029/2023GL105725
Wu, R., Selvadurai, P. A., Li, Y., Sun, Y., Leith, K., & Loew, S. (2023). Laboratory acousto-mechanical study into moisture-induced changes of elastic properties in intact granite. International Journal of Rock Mechanics and Mining Sciences, 170, 105511. https://doi.org/10.1016/j.ijrmms.2023.105511 DOI: https://doi.org/10.1016/j.ijrmms.2023.105511
Xu, S., Fukuyama, E., Yamashita, F., Kawakata, H., Mizoguchi, K., & Takizawa, S. (2023). Fault strength and rupture process controlled by fault surface topography. Nature Geoscience, 16(1), 94–100. https://doi.org/10.1038/s41561-022-01093-z DOI: https://doi.org/10.1038/s41561-022-01093-z
Yabe, Y., Nakatani, M., Naoi, M., Philipp, J., Janssen, C., Watanabe, T., Katsura, T., Kawakata, H., Georg, D., & Ogasawara, H. (2015). Nucleation process of an M2 earthquake in a deep gold mine in South Africa inferred from on‐fault foreshock activity. Journal of Geophysical Research: Solid Earth, 120(8), 5574–5594. https://doi.org/10.1002/2014jb011680 DOI: https://doi.org/10.1002/2014JB011680
Yamada, T., Mori, J. J., Ide, S., Abercrombie, R. E., Kawakata, H., Nakatani, M., Iio, Y., & Ogasawara, H. (2007). Stress drops and radiated seismic energies of microearthquakes in a South African gold mine. Journal of Geophysical Research: Solid Earth, 112(B3). https://doi.org/10.1029/2006jb004553 DOI: https://doi.org/10.1029/2006JB004553
Ye, Z., & Ghassemi, A. (2018). Injection‐Induced Shear Slip and Permeability Enhancement in Granite Fractures. Journal of Geophysical Research: Solid Earth, 123(10), 9009–9032. https://doi.org/10.1029/2018jb016045 DOI: https://doi.org/10.1029/2018JB016045
Zang, A., Stephansson, O., Stenberg, L., Plenkers, K., Specht, S., Milkereit, C., Schill, E., Kwiatek, G., Dresen, G., Zimmermann, G., Dahm, T., & Weber, M. (2016). Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophysical Journal International, 208(2), 790–813. https://doi.org/10.1093/gji/ggw430 DOI: https://doi.org/10.1093/gji/ggw430
Zappone, A., Rinaldi, A. P., Grab, M., Wenning, Q. C., Roques, C., Madonna, C., Obermann, A. C., Bernasconi, S. M., Brennwald, M. S., Kipfer, R., Soom, F., Cook, P., Guglielmi, Y., Nussbaum, C., Giardini, D., Mazzotti, M., & Wiemer, S. (2021). Fault sealing and caprock integrity for CO 2 storage: an in situ injection experiment. Solid Earth, 12(2), 319–343. https://doi.org/10.5194/se-12-319-2021 DOI: https://doi.org/10.5194/se-12-319-2021
Zhong, Z., Song, Z., Li, B., Elsworth, D., Hu, Y., Zhang, F., & Chen, Z. (2025). Controls of Gouge Heterogeneity on Cyclic Reactivation of Fault‐Valve Systems. Geophysical Research Letters, 52(14). https://doi.org/10.1029/2025gl115092 DOI: https://doi.org/10.1029/2025GL115092
Ziegler, M., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Stromeyer, D., Dahm, T., Dresen, G., & Hofmann, G. (2015). Mining-Induced Stress Transfer and Its Relation to a Mw 1.9 Seismic Event in an Ultra-deep South African Gold Mine. Pure and Applied Geophysics, 172(10), 2557–2570. https://doi.org/10.1007/s00024-015-1033-x DOI: https://doi.org/10.1007/s00024-015-1033-x
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Men-Andrin Meier, Paul Selvadurai, Valentin Gischig, Marian Hertrich, Elisa Tinti, Antonio Pio Rinaldi, Mohammedreza Jalali, Elena Spagnuolo, Alba Zappone, Luca Dal Zilio, Giacomo Pozzi, Frédérick Massin, Alberto Ceccato, Alexis Shakas, Peter Achtziger-Zupančič, Stefano Aretusini, Viola Becattini, Kathrin Behnen, Kai Bröker, Victor Clasen Repollés, John Clinton, Cristiano Collettini, Paul Cook, Chiara Cornelio, Georgia Cua, Nikolaj Dahmen, Jonas Dickmann, Fiona Dresler-Dorn, Virginie Durand, Pascal Edme, Nima Gholizadeh Doonechaly, Giuseppe Volpe, Yves Guglielmi, Ivo Graber, Thomas Haag, Leon Hibbard, Rebecca Hochreutener, Danyang Jiang, Philipp Kästli, Barnabas Kövér, Michal Kruszewski, Aurora Lambiase, Federica Lanza, Laura Laurenti, Alexandra Lightfoot, Cara Magnabosco, Michèle Marti, Hansruedi Maurer, Olivier Meyers, Leila Mizrahi, Francesco Mosconi, Anne Obermann, Kadek Palgunadi, Edoardo Pezzulli, Katrin Plenkers, Giulio Poggiali, Pooya Hamdi, Martina Rosskopf, Luca Scarabello, Tom Schaber, Nico Schliwa, Ryan Schultz, Miriam Schwarz, Florian Soom, Mariano Supino, Lu Tian, Katinka Tuinstra, Liliana Vargas Meleza, Linus Villiger, Zhe Wang, Mathilde Wimez, Jiayi Ye, Stefanie Zeller, Eric Zimmermann, Florian Amann, Massimo Cocco, Stefan Wiemer, Domenico Giardini

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
European Research Council
Grant numbers 856559

