ISOLA-BaBoo, a code for full moment tensor inversion with uncertainty estimation; application to the 2025 Anydros earthquakes

Authors

DOI:

https://doi.org/10.26443/seismica.v5i1.2135

Abstract

Full moment tensors are important for revealing non-shear mechanisms of earthquake faulting. Nevertheless, non-double-couple components represent sensitive source parameters, less robust than strike, dip, rake, and moment. Thus, inversion of full moment tensors must be accompanied by uncertainty analyses. Here, we present a new version of traditional ISOLA software for inverting complete waveforms, in which uncertainty is analyzed with Bayesian bootstrap. This approach is particularly useful for obtaining uncertainty of model parameters without assuming a specific (e.g., Gaussian) distribution of data error and evaluating its covariance matrix. We assume that the set of recorded waveforms is representative, noise is low relative to the signal, and the velocity model is free of systematic error. The method is applied to 25 earthquakes of the 2025 Anydros crisis, Aegean Sea, Greece. Most of the analyzed events are Mw>4.5, and they consistently indicate a shear-tensile process, i.e., crack opening on mostly normal faults. The stress field calculated from these and previously published focal mechanisms is transtensional. The fault friction coefficient is low (~0.15). We preliminarily interpret the observed moment tensors as pointing to a fluid-assisted rupture process in a complex network of tectonic faults, likely triggered by a dike emplacement.

References

Andinisari, R., Konstantinou, K. I., & Ranjan, P. (2021a). Seismicity along the Santorini-Amorgos zone and its relationship with active tectonics and fluid distribution. Physics of the Earth and Planetary Interiors, 312, 106660. https://doi.org/10.1016/j.pepi.2021.106660

Andinisari, R., Konstantinou, K. I., & Ranjan, P. (2021b). Moment tensor inversion of microearthquakes along the Santorini-Amorgos zone: Tensile faulting and emerging volcanism in an extensional setting. Journal of Volcanology and Geothermal Research, 420, 107394. https://doi.org/10.1016/j.jvolgeores.2021.107394

Autumn, K. R., Hooft, E. E. E., & Toomey, D. R. (2025). Exploring Mid‐to‐Lower Crustal Magma Plumbing of Santorini and Kolumbo Volcanoes Using PmP Tomography. Geochemistry, Geophysics, Geosystems, 26(4). https://doi.org/10.1029/2025gc012170

Briole, P., Ganas, A., Serpetsidaki, A., Beauducel, F., Sakkas, V., Tsironi, V., & Elias, P. (2025). Volcano-tectonic interaction at Santorini. The crisis of February 2025. Constraints from geodesy. Geophysical Journal International, 242(3). https://doi.org/10.1093/gji/ggaf262

Brüstle, A. (2012). Seismicity of the eastern Hellenic Subduction Zone [Ph.D. thesis.]. Ruhr University.

Bufféral, S., Briole, P., Dupont, A., Escartin, J., & Heinrich, P. (2025). Tsunami modelling for a potential earthquake between Santorini and Amorgos (Greece). Extended Abstract. Proceedings of the 17th International Congress of the Geological Society of Greece.

Büyükakpınar, P., Isken, M. P., Heimann, S., Dahm, T., Kühn, D., Starke, J., López Comino, J. A., Cesca, S., Doubravová, J., Gudnason, E. A., & Agústsdóttir, T. (2024). Understanding the Seismic Signature of Transtensional Opening in the Reykjanes Peninsula Rift Zone, SW Iceland. Journal of Geophysical Research: Solid Earth, 130(1). https://doi.org/10.1029/2024jb029566

Cappa, F., Guglielmi, Y., Nussbaum, C., De Barros, L., & Birkholzer, J. (2022). Fluid migration in low-permeability faults driven by decoupling of fault slip and opening. Nature Geoscience, 15(9), 747–751. https://doi.org/10.1038/s41561-022-00993-4

Dahm, T., & Brandsdóttir, B. (1997). Moment tensors of microearthquakes from the Eyjafjallajökull volcano in South Iceland. Geophysical Journal International, 130(1), 183–192. https://doi.org/10.1111/j.1365-246x.1997.tb00997.x

Dahm, T., & Krüger, F. (2013). Moment tensor inversion and moment tensor interpretation. New Manual of Seismological Observatory Practice 2 (NMSOP2). https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.9

Dettmer, J., Dosso, S. E., & Holland, C. W. (2007). Uncertainty estimation in seismo-acoustic reflection travel time inversion. The Journal of the Acoustical Society of America, 122(1), 161–176. https://doi.org/10.1121/1.2736514

Dimitriadis, I., Papazachos, C., Panagiotopoulos, D., Hatzidimitriou, P., Bohnhoff, M., Rische, M., & Meier, T. (2010). P and S velocity structures of the Santorini–Coloumbo volcanic system (Aegean Sea, Greece) obtained by non-linear inversion of travel times and its tectonic implications. Journal of Volcanology and Geothermal Research, 195(1), 13–30. https://doi.org/10.1016/j.jvolgeores.2010.05.013

Dodge, Y. (2008). The Concise Encyclopedia of Statistics. Springer.

Dou, Z., Gao, T., Zhao, Z., Li, J., Yang, Q., & Shang, D. (2020). The role of water lubrication in critical state fault slip. Engineering Geology, 271, 105606. https://doi.org/10.1016/j.enggeo.2020.105606

Dublanchet, P., & De Barros, L. (2021). Dual Seismic Migration Velocities in Seismic Swarms. Geophysical Research Letters, 48(1). https://doi.org/10.1029/2020gl090025

Dziewonski, A. M., Chou, T. ‐A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/jb086ib04p02825

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Evangelidis, C. P., Triantafyllis, N., Samios, M., Boukouras, K., Kontakos, K., Ktenidou, O.-J., Fountoulakis, I., Kalogeras, I., Melis, N. S., Galanis, O., Papazachos, C. B., Hatzidimitriou, P., Scordilis, E., Sokos, E., Paraskevopoulos, P., Serpetsidaki, A., Kaviris, G., Kapetanidis, V., Papadimitriou, P., … Tselentis, G.-A. (2021). Seismic Waveform Data from Greece and Cyprus: Integration, Archival, and Open Access. Seismological Research Letters, 92(3), 1672–1684. https://doi.org/10.1785/0220200408

Flóvenz, O. G., Wang, R., Hersir, G. P., Dahm, T., Hainzl, S., Vassileva, M., Drouin, V., Heimann, S., Isken, M. P., Gudnason, E. A., Agústsson, K., Agústsdóttir, T., Horálek, J., Motagh, M., Walter, T. R., Rivalta, E., Jousset, P., Krawczyk, C. M., & Milkereit, C. (2022). Cyclical geothermal unrest as a precursor to Iceland’s 2021 Fagradalsfjall eruption. Nature Geoscience, 15(5), 397–404. https://doi.org/10.1038/s41561-022-00930-5

Fountoulakis, I., & Evangelidis, C. P. (2025). The 2024–2025 seismic sequence in the Santorini-Amorgos region: Insights into volcano-tectonic activity through high-resolution seismic monitoring. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1663

Ganas, A. (2023). NOAFAULTS KMZ layer Version 5.0. Zenodo. https://doi.org/10.5281/ZENODO.8075517

Ganas, A., Briole, P., Tsironi, V., Goutsos, G., Madonis, N., Liadopoulos, E., & Mintourakis, I. (2025). Geodetic monitoring of the 2024–2025 Santorini volcanic unrest using GNSS and InSAR data: Preliminary results. Extended Abstract. Proceedings of the 17th International Congress of the Geological Society of Greece.

HA, University of Athens. (2008). Hellenic unified seismological network, university of athens, seismological laboratory. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HA

Hallo, M., & Gallovič, F. (2016). Fast and cheap approximation of Green function uncertainty for waveform-based earthquake source inversions. Geophysical Journal International, 207(2), 1012–1029. https://doi.org/10.1093/gji/ggw320

HC, Technological Educational Institute of Crete. (2006). Seismological network of crete. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HC

Heath, B. A., Hooft, E. E. E., Toomey, D. R., Papazachos, C. B., Nomikou, P., Paulatto, M., Morgan, J. V., & Warner, M. R. (2019). Tectonism and Its Relation to Magmatism Around Santorini Volcano From Upper Crustal P Wave Velocity. Journal of Geophysical Research: Solid Earth, 124(10), 10610–10629. https://doi.org/10.1029/2019jb017699

Heimann, S., Isken, M., Kühn, D., Sudhaus, H., Steinberg, A., Daout, S., Cesca, S., Vasyura-Bathke, H., & Dahm, T. (2018). Grond - A probabilistic earthquake source inversion framework. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2018.003

HL, National Observatory of Athens, Institute of Geodynamics, Athens. (1975). Hellenic unified seismological network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL

HP, University of Patras. (2000). Hellenic unified seismological network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HP

Hrubcová, P., Doubravová, J., & Vavryčuk, V. (2021). Non-double-couple earthquakes in 2017 swarm in Reykjanes Peninsula, SW Iceland: Sensitive indicator of volcano-tectonic movements at slow-spreading rift. Earth and Planetary Science Letters, 563, 116875. https://doi.org/10.1016/j.epsl.2021.116875

Hufstetler, R. S., Hooft, E. E. E., Toomey, D. R., VanderBeek, B. P., Papazachos, C. B., & Chatzis, N. (2025). Seismic Structure of the Mid to Upper Crust at the Santorini‐Kolumbo Magma System From Joint Earthquake and Active Source Vp‐Vs Tomography. Geochemistry, Geophysics, Geosystems, 26(4). https://doi.org/10.1029/2024gc012022

Isken, M. P., Karstens, J., Nomikou, P., Parks, M. M., Drouin, V., Rivalta, E., Crutchley, G. J., Haghshenas Haghighi, M., Hooft, E. E. E., Cesca, S., Walter, T. R., Hainzl, S., Saul, J., Anastasiou, D., Raptakis, K., Shapiro, N. M., Münchmeyer, J., Higueret, Q., Soubestre, J., … Urlaub, M. (2025). Volcanic crisis reveals coupled magma system at Santorini and Kolumbo. Nature, 645(8082), 939–945. https://doi.org/10.1038/s41586-025-09525-7

Karakostas, V., Lomax, A., Anagnostou, V., Papadimitriou, E., Acocella, V., Hicks, S., & Henry, P. (2025). The 2025 seismicity burst in the Santorini–Amorgos seismovolcanic zone. Extended Abstract. Proceedings of the 17th International Congress of the Geological Society of Greece.

Karstens, J., Nomikou, P., Isken, M., Parks, M. M., Drouin, V., Hooft, E. E. E., Walter, T. R., Haghshenas Haghighi, M., & Anastasiou, D. (2025). The 2025 seismic crisis reveals a coupled magma feeding system at Santorini and Kolumbo. Extended Abstract. Proceedings of the 17th International Congress of the Geological Society of Greece.

Krizova, D., Zahradnik, J., & Kiratzi, A. (2013). Resolvability of Isotropic Component in Regional Seismic Moment Tensor Inversion. Bulletin of the Seismological Society of America, 103(4), 2460–2473. https://doi.org/10.1785/0120120097

Křížová, D., Zahradník, J., & Kiratzi, A. (2016). Possible Indicator of a Strong Isotropic Earthquake Component: Example of Two Shallow Earthquakes in Greece. Bulletin of the Seismological Society of America, 106(6), 2784–2795. https://doi.org/10.1785/0120160086

Kühn, D., Heimann, S., Isken, M. P., Ruigrok, E., & Dost, B. (2020). Probabilistic Moment Tensor Inversion for Hydrocarbon-Induced Seismicity in the Groningen Gas Field, The Netherlands, Part 1: Testing. Bulletin of the Seismological Society of America, 110(5), 2095–2111. https://doi.org/10.1785/0120200099

Lomax, A. (2025). NLL-SSST-coherence high-precision earthquake location catalog for the 2025 Santorini-Amorgos earthquake swarm. Zenodo. https://doi.org/10.5281/ZENODO.14956645

Lomax, A., Anagnostou, V., Karakostas, V., Hicks, S. P., & Papadimitriou, E. (2025). The 2025 Santorini unrest unveiled: Rebounding magmatic dike intrusion with triggered seismicity. Science, 390(6775). https://doi.org/10.1126/science.adz8538

Martínez‐Garzón, P., Kwiatek, G., Bohnhoff, M., & Dresen, G. (2017). Volumetric components in the earthquake source related to fluid injection and stress state. Geophysical Research Letters, 44(2), 800–809. https://doi.org/10.1002/2016gl071963

Novotný, O., Zahradník, J., & Tselentis, G. A. (2001). Northwestern Turkey Earthquakes and the Crustal Structure Inferred from Surface Waves Observed in Western Greece. Bulletin of the Seismological Society of America, 91(4), 875–879. https://doi.org/10.1785/0120000116

Poppeliers, C., & Preston, L. (2022). An efficient method to propagate model uncertainty when inverting seismic data for time domain seismic moment tensors. Geophysical Journal International, 231(2), 1221–1232. https://doi.org/10.1093/gji/ggac227

Rodriguez, J. E., & Williams, D. R. (2022). Bayesian Bootstrapped Correlation Coefficients. The Quantitative Methods for Psychology, 18(1), 39–54. https://doi.org/10.20982/tqmp.18.1.p039

Rubin, D. B. (1981). The Bayesian Bootstrap. The Annals of Statistics, 9(1). https://doi.org/10.1214/aos/1176345338

Rutter, E. H., Hackston, A. J., Yeatman, E., Brodie, K. H., Mecklenburgh, J., & May, S. E. (2013). Reduction of friction on geological faults by weak-phase smearing. Journal of Structural Geology, 51, 52–60. https://doi.org/10.1016/j.jsg.2013.03.008

Schmid, F., Petersen, G., Hooft, E., Paulatto, M., Chrapkiewicz, K., Hensch, M., & Dahm, T. (2022). Heralds of Future Volcanism: Swarms of Microseismicity Beneath the Submarine Kolumbo Volcano Indicate Opening of Near‐Vertical Fractures Exploited by Ascending Melts. Geochemistry, Geophysics, Geosystems, 23(7). https://doi.org/10.1029/2022gc010420

Sokos, E., & Zahradnik, J. (2013). Evaluating Centroid-Moment-Tensor Uncertainty in the New Version of ISOLA Software. Seismological Research Letters, 84(4), 656–665. https://doi.org/10.1785/0220130002

Tape, W., & Tape, C. (2012). A geometric setting for moment tensors. Geophysical Journal International, 190(1), 476–498. https://doi.org/10.1111/j.1365-246x.2012.05491.x

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial. https://doi.org/10.1137/1.9780898717921

Triantafyllis, N., Sokos, E., Ilias, A., & Zahradník, J. (2015). Scisola: Automatic Moment Tensor Solution for SeisComP3. Seismological Research Letters, 87(1), 157–163. https://doi.org/10.1785/0220150065

Triantafyllis, N., Venetis, I. E., Fountoulakis, I., Pikoulis, E.-V., Sokos, E., & Evangelidis, C. P. (2021). Gisola: A High-Performance Computing Application for Real-Time Moment Tensor Inversion. Seismological Research Letters, 93(2A), 957–966. https://doi.org/10.1785/0220210153

Vackář, J., Burjánek, J., Gallovič, F., Zahradník, J., & Clinton, J. (2017). Bayesian ISOLA: new tool for automated centroid moment tensor inversion. Geophysical Journal International, 210(2), 693–705. https://doi.org/10.1093/gji/ggx158

Vavryčuk, V. (2011). Tensile earthquakes: Theory, modeling, and inversion. Journal of Geophysical Research, 116(B12). https://doi.org/10.1029/2011jb008770

Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. https://doi.org/10.1093/gji/ggu224

Vavryčuk, V. (2015). Earthquake Mechanisms and Stress Field. In Encyclopedia of Earthquake Engineering (pp. 1–21). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_295-1

Waldhauser, F. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006

Waldhauser, F. (2001). hypoDD-A Program to Compute Double-Difference Hypocenter Locations. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr01113

Zahradník, J., & Sokos, E. (2018). ISOLA code for multiple-point source modeling –review. In Moment Tensor Solutions - A Useful Tool for Seismotectonics. In Springer Natural Hazards. Springer International Publishing. https://doi.org/10.1007/978-3-319-77359-9

Zahradnik, J., & Sokos, E. (2025). ISOLA-BaBoo codes and data of two 2025 Anydros earthquake examples. Zenodo. https://doi.org/10.5281/ZENODO.16745285

Zahradník, J., & Sokos, E. (2025). ISOLA2024: Assessing and Understanding Uncertainties of Full Moment Tensors. Seismological Research Letters, 96(4), 2647–2659. https://doi.org/10.1785/0220240420

Zahradnik, J., Sokos, E., Roumelioti, Z., & Turhan, F. (2025a). Full moment tensors of the 2025 Santorini-Amorgos earthquakes. Zenodo. https://doi.org/10.5281/ZENODO.14995536

Zahradník, J., Sokos, E., Roumelioti, Z., & Turhan, F. (2025). Non-shear faulting of the 2025 Santorini-Amorgos (Anydros) earthquakes. Extended abstract 00320. Extended Abstract. Proceedings of the 17th International Congress of the Geological Society of Greece. https://ege2025lesvos.gr/abstracts/

Zahradnik, J., Sokos, E., Roumelioti, Z., & Turhan, F. (2025b). Positive isotropic components of the 2025 Santorini-Amorgos earthquakes. https://doi.org/10.31223/x5rd9s

Downloads

Additional Files

Published

2026-02-18

How to Cite

Zahradník, J., Sokos, E., & Turhan, F. (2026). ISOLA-BaBoo, a code for full moment tensor inversion with uncertainty estimation; application to the 2025 Anydros earthquakes. Seismica, 5(1). https://doi.org/10.26443/seismica.v5i1.2135

Issue

Section

Reports (excl. Fast Reports)