Validation of Peak Ground Velocities Recorded on Very-high rate GNSS Against NGA-West2 Ground Motion Models

Authors

  • Brendan Crowell University of Washington
  • Jensen DeGrande University of Washington
  • Timothy Dittmann UNAVCO, Inc.
  • Jessica Ghent University of Washington

DOI:

https://doi.org/10.26443/seismica.v2i1.239

Keywords:

ground motions, gnss, strong motion seismology, peak ground velocity

Abstract

Observations of strong ground motion during large earthquakes are generally made with strong-motion accelerometers. These observations have a critical role in early warning systems, seismic engineering, source physics studies, basin and site amplification, and macroseismic intensity estimation. In this manuscript, we present a new observation of strong ground motion made with very high rate (>= 5 Hz) Global Navigation Satellite System (GNSS) derived velocities. We demonstrate that velocity observations recorded on GNSS instruments are consistent with existing ground motion models and macroseismic intensity observations. We find that the ground motion predictions using existing NGA-West2 models match our observed peak ground velocities with a median log total residual of 0.03-0.33 and standard deviation of 0.72-0.79, and are statistically significant following normality testing. We finish by deriving a Ground Motion Model for peak ground velocity from GNSS and find a total residual standard deviation 0.58, which can be improved by ~2% when considering a simple correction for Vs30.

References

Allen, R. M., & Melgar, D. (2019). Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47(1), 361–388. https://doi.org/10.1146/annurev-earth-053018-060457

Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., Hotovec, A. J., Lin, K., & Hearne, M. G. (2009). An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling. Bulletin of Earthquake Engineering, 7, 701–708. https://doi.org/10.1007/s10518-009-9120-y

Benedetti, E., Branzanti, M., Biagi, L., Colosimo, G., Mazzoni, A., & Crespi, M. (2014). Global Navigation Satellite Systems Seismology for the 2012 Mw 6.1 Emilia Earthquake: Exploiting the VADASE Algorithm. Seismological Research Letters, 85(3), 649–656. https://doi.org/10.1785/0220130094

Blewitt, G., Kreemer, C., Hammond, W. C., Plag, H.-P., Stein, S., & Okal, E. (2006). Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophysical Research Letters, 33(11). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GL026145

Bock, Y., Melgar, D., & Crowell, B. W. (2011). Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers. Bulletin of the Seismological Society of America, 101(6), 2904–2925. https://doi.org/10.1785/0120110007

Bommer, J. J., Stafford, P. J., & Akkar, S. (2010). Current empirical ground-motion prediction equations for Europe and their application to Eurocode 8. Bulletin of Earthquake Engineering, 8, 5. https://doi.org/10.1007/s10518-009-9122-9

Boore, D. M., Stephens, C. D., & Joyner, W. B. (2002). Comments on Baseline Correction of Digital Strong-Motion Data: Examples from the 1999 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 92(4), 1543–1560. https://doi.org/10.1785/0120000926

Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M

Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., Ancheta, T. D., Atkinson, G. M., Baker, J. W., Baltay, A., Boore, D. M., Campbell, K. W., Chiou, B. S.-J., Darragh, R., Day, S., Donahue, J., Graves, R. W., Gregor, N., Hanks, T., Idriss, I. M., Kamai, R., Kishida, T., … Youngs, R. (2014). NGA-West2 Research Project. Earthquake Spectra, 30(3), 973–987. https://doi.org/10.1193/072113EQS209M

Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3), 1087–1115. https://doi.org/10.1193/062913EQS175M

Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS219M

Clinton, J. F. (2004). Modern digital seismology: instrumentation, and small amplitude studies in the engineering world [Phdthesis, Earthquake Engineering Research Laboratory]. https://resolver.caltech.edu/CaltechEERL:EERL-2004-10

Colosimo, G., Crespi, M., & Mazzoni, A. (2011). Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration. Journal of Geophysical Research: Solid Earth, 116(B11). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JB007941

Crowell, B. W. (2021). Near‐Field Strong Ground Motions from GPS‐Derived Velocities for 2020 Intermountain Western United States Earthquakes. Seismological Research Letters, 92(2A), 840–848. https://doi.org/10.1785/0220200325

Crowell, B. W., Bock, Y., & Melgar, D. (2012). Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophysical Research Letters, 39(9). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051318

Crowell, B. W., Bock, Y., & Squibb, M. B. (2009). Demonstration of Earthquake Early Warning Using Total Displacement Waveforms from Real-time GPS Networks. Seismological Research Letters, 80(5), 772–782. https://doi.org/10.1785/gssrl.80.5.772

Crowell, B. W., Melgar, D., Bock, Y., Haase, J. S., & Geng, J. (2013). Earthquake magnitude scaling using seismogeodetic data. Geophysical Research Letters, 40(23), 6089–6094. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013GL058391

Crowell, B. W., Schmidt, D. A., Bodin, P., Vidale, J. E., Gomberg, J., Renate Hartog, J., Kress, V. C., Melbourne, T. I., Santillan, M., Minson, S. E., & Jamison, D. G. (2016). Demonstration of the Cascadia G‐FAST Geodetic Earthquake Early Warning System for the Nisqually, Washington, Earthquake. Seismological Research Letters, 87(4), 930–943. https://doi.org/10.1785/0220150255

Dittmann, T., Liu, Y., Morton, Y., & Mencin, D. (2022). Supervised Machine Learning of High Rate GNSS Velocities for Earthquake Strong Motion Signals. Journal of Geophysical Research: Solid Earth, 127(11), e2022JB024854. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022JB024854

Dittmann, Tim, Hodgkinson, K., Morton, J., Mencin, D., & Mattioli, G. S. (2022). Comparing Sensitivities of Geodetic Processing Methods for Rapid Earthquake Magnitude Estimation. Seismological Research Letters, 93(3), 1497–1509. https://doi.org/10.1785/0220210265

Fang, R., Zheng, J., Geng, J., Shu, Y., Shi, C., & Liu, J. (2020). Earthquake Magnitude Scaling Using Peak Ground Velocity Derived from High‐Rate GNSS Observations. Seismological Research Letters, 92(1), 227–237. https://doi.org/10.1785/0220190347

Geng, J., Shi, C., Ge, M., Dodson, A. H., Lou, Y., Zhao, Q., & Liu, J. (2012). Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. Journal of Geodesy, 86, 579–589. https://doi.org/10.1007/s00190-011-0537-0

Geng, T., Xie, X., Fang, R., Su, X., Zhao, Q., Liu, G., Li, H., Shi, C., & Liu, J. (2016). Real-time capture of seismic waves using high-rate multi-GNSS observations: Application to the 2015 Mw 7.8 Nepal earthquake. Geophysical Research Letters, 43(1), 161–167. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL067044

Goldberg, D. E., Melgar, D., Hayes, G. P., Crowell, B. W., & Sahakian, V. J. (2021). A Ground‐Motion Model for GNSS Peak Ground Displacement. Bulletin of the Seismological Society of America, 111(5), 2393–2407. https://doi.org/10.1785/0120210042

Grapenthin, R., Johanson, I. A., & Allen, R. M. (2014). Operational real-time GPS-enhanced earthquake early warning. Journal of Geophysical Research: Solid Earth, 119(10), 7944–7965. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JB011400

Grapenthin, Ronni, West, M., Tape, C., Gardine, M., & Freymueller, J. (2018). Single‐Frequency Instantaneous GNSS Velocities Resolve Dynamic Ground Motion of the 2016 Mw 7.1 Iniskin, Alaska, Earthquake. Seismological Research Letters, 89(3), 1040–1048. https://doi.org/10.1785/0220170235

Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., … Stirling, M. (2017). Complex multifault rupture during the 2016 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science, 356(6334), eaam7194. https://www.science.org/doi/abs/10.1126/science.aam7194

Hayes, G. P. (2017). The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth and Planetary Science Letters, 468, 94–100. https://www.sciencedirect.com/science/article/pii/S0012821X17301826

Heath, D. C., Wald, D. J., Worden, C. B., Thompson, E. M., & Smoczyk, G. M. (2020). A global hybrid VS 30 map with a topographic slope–based default and regional map insets. Earthquake Spectra, 36(3), 1570–1584. https://doi.org/10.1177/8755293020911137

Joyner, W. B. (1984). A scaling law for the spectra of large earthquakes. Bulletin of the Seismological Society of America, 74(4), 1167–1188. https://doi.org/10.1785/BSSA0740041167

Katsanos, E. I., Sextos, A. G., & Manolis, G. D. (2010). Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective. Soil Dynamics and Earthquake Engineering, 30(4), 157–169. https://www.sciencedirect.com/science/article/pii/S0267726109001602

Klobuchar, J. A. (1987). Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems, AES-23(3), 325–331. https://ieeexplore.ieee.org/document/4104345

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association, 62(318), 399–402. https://www.tandfonline.com/doi/abs/10.1080/01621459.1967.10482916

Meier, M.-A. (2017). How “good” are real-time ground motion predictions from Earthquake Early Warning systems? Journal of Geophysical Research: Solid Earth, 122(7), 5561–5577. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JB014025

Melgar, D., Bock, Y., Sanchez, D., & Crowell, B. W. (2013). On robust and reliable automated baseline corrections for strong motion seismology. Journal of Geophysical Research: Solid Earth, 118(3), 1177–1187. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrb.50135

Melgar, D., Crowell, B. W., Bock, Y., & Haase, J. S. (2013). Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy. Geophysical Research Letters, 40(12), 2963–2968. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/grl.50590

Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise Characteristics of Operational Real-Time High-Rate GNSS Positions in a Large Aperture Network. Journal of Geophysical Research: Solid Earth, 125(7). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JB019197

Minson, S. E., Murray, J. R., Langbein, J. O., & Gomberg, J. S. (2014). Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data. Journal of Geophysical Research: Solid Earth, 119(4), 3201–3231. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JB010622

Murray, J., Crowell, B., Hagerty, M., Kress, V., Smith, D., Murray, M., Aranha, M., Hodgkinson, K., McGuire, J., Ulberg, C., & others. (2021). Toward inclusion of peak ground displacement magnitude estimates in ShakeAlert. AGU Fall Meeting Abstracts, 2021, S13A-08.

Murray, J. R., Crowell, B. W., Grapenthin, R., Hodgkinson, K., Langbein, J. O., Melbourne, T., Melgar, D., Minson, S. E., & Schmidt, D. A. (2018). Development of a Geodetic Component for the U.S. West Coast Earthquake Early Warning System. Seismological Research Letters, 89(6), 2322–2336. https://doi.org/10.1785/0220180162

Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth, 101(B2), 3227–3246. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95JB03048

Parker, G. A., Stewart, J. P., Boore, D. M., Atkinson, G. M., & Hassani, B. (2022). NGA-subduction global ground motion models with regional adjustment factors. Earthquake Spectra, 38(1), 456–493. https://doi.org/10.1177/87552930211034889

Rasanen, R. A., Marafi, N. A., & Maurer, B. W. (2021). Compilation and forecasting of paleoliquefaction evidence for the strength of ground motions in the U.S. Pacific Northwest. Engineering Geology, 292, 106253. https://www.sciencedirect.com/science/article/pii/S0013795221002647

Shu, Y., Fang, R., Li, M., Shi, C., Li, M., & Liu, J. (2018). Very high-rate GPS for measuring dynamic seismic displacements without aliasing: performance evaluation of the variometric approach. GPS Solutions, 22, 121. https://doi.org/10.1007/s10291-018-0785-z

Shu, Yuanming, Fang, R., Liu, Y., Ding, D., Qiao, L., Li, G., & Liu, J. (2020). Precise coseismic displacements from the GPS variometric approach using different precise products: Application to the 2008 MW 7.9 Wenchuan earthquake. Advances in Space Research, 65(10), 2360–2371. https://www.sciencedirect.com/science/article/pii/S0273117720301058

Thakoor, K., Andrews, J., Hauksson, E., & Heaton, T. (2019). From Earthquake Source Parameters to Ground‐Motion Warnings near You: The ShakeAlert Earthquake Information to Ground‐Motion (eqInfo2GM) Method. Seismological Research Letters, 90(3), 1243–1257. https://doi.org/10.1785/0220180245

Thompson, E. M., & Baltay, A. S. (2018). The Case for Mean Rupture Distance in Ground‐Motion Estimation. Bulletin of the Seismological Society of America, 108(5A), 2462–2477. https://doi.org/10.1785/0120170306

Wald, D. J., Quitoriano, V., Heaton, T. H., Kanamori, H., Scrivner, C. W., & Worden, C. B. (1999). TriNet “ShakeMaps”: Rapid Generation of Peak Ground Motion and Intensity Maps for Earthquakes in Southern California. Earthquake Spectra, 15(3), 537–555. https://doi.org/10.1193/1.1586057

Williamson, A. L., Melgar, D., Crowell, B. W., Arcas, D., Melbourne, T. I., Wei, Y., & Kwong, K. (2020). Toward Near-Field Tsunami Forecasting Along the Cascadia Subduction Zone Using Rapid GNSS Source Models. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB019636. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB019636

Downloads

Additional Files

Published

2023-03-01

How to Cite

Crowell, B., DeGrande, J., Dittmann, T., & Ghent, J. (2023). Validation of Peak Ground Velocities Recorded on Very-high rate GNSS Against NGA-West2 Ground Motion Models. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.239

Issue

Section

Articles

Funding data