Self-sufficient seismic boxes for monitoring glacier seismology


  • Ana Nap University of Zürich
  • Fabian Walter Swiss Federal Institute WSL
  • Martin Lüthi University of Zürich
  • Adrien Wehrlé University of Zürich



Glaciology, cryoseismology, seismology, instumentation


Glacier seismology is a valuable tool for investigating ice flow dynamics, but sufficient data acquisition in remote and exposed glaciated terrain remains challenging. For data acquisition on a highly crevassed and remote outlet glacier in Greenland we developed self-sufficient and easily deployable seismic stations, "SG-boxes". The SG-boxes contain their own power supply via solar panel, a three-component omni-directional geophone and a GNSS receiver. The SG-boxes can be deployed and retrieved from a hovering helicopter, allowing for deployment in difficult terrain. To assess their performance we conducted a field test comparing the SG-boxes to established on-ice geophone installations at Gornergletscher in Switzerland. Moreover, data from a first SG-box deployment in Greenland were analyzed. The SG-boxes exhibit consistently higher noise levels relative to colocated conventional geophones and a correlation between noise levels, wind and air temperature is found. Despite their noise susceptibility, the SG-boxes detected a total of 13,114 Gornergletscher icequakes over 10 days, which is 30% of the total number of icequakes detected by conventional geophone stations. Hence, even in sub-optimal weather conditions and without additional noise reduction measures, the SG-boxes can provide unique and valuable data from challenging glaciated terrain where no conventional seismic installations are possible.


Aster, R. C., & Winberry, J. P. (2017). Glacial seismology. Reports on Progress in Physics, 80(12), 126801.

Bartholomaus, T. C., Amundson, J. M., Walter, J. I., O’Neel, S., West, M. E., & Larsen, C. F. (2015). Subglacial discharge at tidewater glaciers revealed by seismic tremor. Geophysical Research Letters, 42(15), 6391–6398.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533.

Canassy, P. D., Faillettaz, J., Walter, F., & Huss, M. (2012). Seismic activity and surface motion of a steep temperate glacier: a study on Triftgletscher, Switzerland. Journal of Glaciology, 58(209), 513–528.

Chmiel, M., Walter, F., Preiswerk, L., Funk, M., Meier, L., & Brenguier, F. (2021). Hanging glacier monitoring with icequake repeaters and seismic coda wave interferometry: a case study of the Eiger hanging glacier [Preprint]. Natural Hazards and Earth System Sciences.

Faber, K., & Maxwell, P. W. (1997). Geophone spurious frequency: what is it and how does it affect seismic data quality. Can. J. Explor. Geophys, 33(1–2), 46–54.

Faillettaz, J., Funk, M., & Vincent, C. (2015). Avalanching glacier instabilities: Review on processes and early warning perspectives. Reviews of Geophysics, 53(2), 203–224.

Frankinet, B., Lecocq, T., & Camelbeeck, T. (2021). Wind-induced seismic noise at the Princess Elisabeth Antarctica Station. The Cryosphere, 15(10), 5007–5016.

Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1), 149–166.

Guerin, G., Mordret, A., Rivet, D., Lipovsky, B. P., & Minchew, B. M. (2021). Frictional Origin of Slip Events of the Whillans Ice Stream, Antarctica. Geophysical Research Letters, 48(11), e2021GL092950.

Guillemot, A., Helmstetter, A., Larose, É., Baillet, L., Garambois, S., Mayoraz, R., & Delaloye, R. (2020). Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling. Geophysical Journal International, 221(3), 1719–1735.

Helmstetter, A., Nicolas, B., Comon, P., & Gay, M. (2015). Basal icequakes recorded beneath an Alpine glacier (Glacier d’Argentière, Mont Blanc, France): Evidence for stick-slip motion? Journal of Geophysical Research: Earth Surface, 120(3), 379–401.

Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R. B., Stern, H., & Truffer, M. (2008). Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research: Earth Surface, 113(F4).

Köpfli, M., Gräff, D., Lipovsky, B. P., Selvadurai, P. A., Farinotti, D., & Walter, F. (2022). Hydraulic Conditions for Stick-Slip Tremor Beneath an Alpine Glacier. Geophysical Research Letters, 49(21), e2022GL100286.

Labedz, C. R., Bartholomaus, T. C., Amundson, J. M., Gimbert, F., Karplus, M. S., Tsai, V. C., & Veitch, S. A. (2022). Seismic mapping of subglacial hydrology reveals previously undetected pressurization event. Journal of Geophysical Research: Earth Surface.

Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., & others. (2015). Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, 116, 62–74.

Lindner, F., Laske, G., Walter, F., & Doran, A. K. (2019). Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland. Annals of Glaciology, 60(79), 96–111.

McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527.

Mikesell, T., van Wijk, K., Haney, M. M., Bradford, J. H., Marshall, H.-P., & Harper, J. T. (2012). Monitoring glacier surface seismicity in time and space using Rayleigh waves. Journal of Geophysical Research: Earth Surface, 117(F2).

Peterson, J. R. (1993). Observations and modeling of seismic background noise.

Podolskiy, E. A. (2020). Toward the Acoustic Detection of Two-Phase Flow Patterns and Helmholtz Resonators in Englacial Drainage Systems. Geophysical Research Letters, 47(6), e2020GL086951.

Podolskiy, E. A., & Walter, F. (2016). Cryoseismology. Reviews of Geophysics, 54(4), 708–758.

Ringler, A. T., Hagerty, M., Holland, J., Gonzales, A., Gee, L. S., Edwards, J., Wilson, D., & Baker, A. M. (2015). The data quality analyzer: A quality control program for seismic data. Computers & Geosciences, 76, 96–111.

Röösli, C., Helmstetter, A., Walter, F., & Kissling, E. (2016). Meltwater influences on deep stick-slip icequakes near the base of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 121(2), 223–240.

Röösli, C., Walter, F., Ampuero, J.-P., & Kissling, E. (2016). Seismic moulin tremor. Journal of Geophysical Research: Solid Earth, 121(8), 5838–5858.

Röösli, C., Walter, F., Husen, S., Andrews, L. C., Lüthi, M. P., Catania, G. A., & Kissling, E. (2014). Sustained seismic tremors and icequakes detected in the ablation zone of the Greenland ice sheet. Journal of Glaciology, 60(221), 563–575.

Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., & Mordret, A. (2020). On the Green’s function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring. The Cryosphere, 14(3), 1139–1171.

Seydoux, L., Shapiro, N. M., de Rosny, J., Brenguier, F., & Landès, M. (2016). Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays. Geophysical Journal International, 204(3), 1430–1442.

Walter, F., Deichmann, N., & Funk, M. (2008). Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland. Journal of Glaciology, 54(186), 511–521.

Walter, F., Roux, P., Röösli, C., Lecointre, A., Kilb, D., & Roux, P.-F. (2015). Using glacier seismicity for phase velocity measurements and Green’s function retrieval. Geophysical Journal International, 201(3), 1722–1737.

Winter, K., Lombardi, D., Diaz-Moreno, A., & Bainbridge, R. (2021). Monitoring Icequakes in East Antarctica with the Raspberry Shake. Seismological Research Letters.




How to Cite

Nap, A., Walter, F., Lüthi, M., & Wehrlé, A. (2023). Self-sufficient seismic boxes for monitoring glacier seismology. Seismica, 2(1).



Reports (excl. Fast Reports)