Self-sufficient seismic boxes for monitoring glacier seismology

Authors

  • Ana Nap University of Zürich
  • Fabian Walter Swiss Federal Institute WSL
  • Martin Lüthi University of Zürich
  • Adrien Wehrlé University of Zürich

DOI:

https://doi.org/10.26443/seismica.v2i1.245

Keywords:

Glaciology, cryoseismology, seismology, instumentation

Abstract

Glacier seismology is a valuable tool for investigating ice flow dynamics, but sufficient data acquisition in remote and exposed glaciated terrain remains challenging. For data acquisition on a highly crevassed and remote outlet glacier in Greenland we developed self-sufficient and easily deployable seismic stations, "SG-boxes". The SG-boxes contain their own power supply via solar panel, a three-component omni-directional geophone and a GNSS receiver. The SG-boxes can be deployed and retrieved from a hovering helicopter, allowing for deployment in difficult terrain. To assess their performance we conducted a field test comparing the SG-boxes to established on-ice geophone installations at Gornergletscher in Switzerland. Moreover, data from a first SG-box deployment in Greenland were analyzed. The SG-boxes exhibit consistently higher noise levels relative to colocated conventional geophones and a correlation between noise levels, wind and air temperature is found. Despite their noise susceptibility, the SG-boxes detected a total of 13,114 Gornergletscher icequakes over 10 days, which is 30% of the total number of icequakes detected by conventional geophone stations. Hence, even in sub-optimal weather conditions and without additional noise reduction measures, the SG-boxes can provide unique and valuable data from challenging glaciated terrain where no conventional seismic installations are possible.

References

Aster, R. C., & Winberry, J. P. (2017). Glacial seismology. Reports on Progress in Physics, 80(12), 126801. https://doi.org/10.1088/1361-6633/aa8473

Bartholomaus, T. C., Amundson, J. M., Walter, J. I., O’Neel, S., West, M. E., & Larsen, C. F. (2015). Subglacial discharge at tidewater glaciers revealed by seismic tremor. Geophysical Research Letters, 42(15), 6391–6398. https://doi.org/https://doi.org/10.1002/2015GL064590

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Canassy, P. D., Faillettaz, J., Walter, F., & Huss, M. (2012). Seismic activity and surface motion of a steep temperate glacier: a study on Triftgletscher, Switzerland. Journal of Glaciology, 58(209), 513–528. https://doi.org/10.3189/2012JoG11J104

Chmiel, M., Walter, F., Preiswerk, L., Funk, M., Meier, L., & Brenguier, F. (2021). Hanging glacier monitoring with icequake repeaters and seismic coda wave interferometry: a case study of the Eiger hanging glacier [Preprint]. Natural Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-2021-205

Faber, K., & Maxwell, P. W. (1997). Geophone spurious frequency: what is it and how does it affect seismic data quality. Can. J. Explor. Geophys, 33(1–2), 46–54.

Faillettaz, J., Funk, M., & Vincent, C. (2015). Avalanching glacier instabilities: Review on processes and early warning perspectives. Reviews of Geophysics, 53(2), 203–224. https://doi.org/https://doi.org/10.1002/2014RG000466

Frankinet, B., Lecocq, T., & Camelbeeck, T. (2021). Wind-induced seismic noise at the Princess Elisabeth Antarctica Station. The Cryosphere, 15(10), 5007–5016. https://doi.org/10.5194/tc-15-5007-2021

Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1), 149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x

Guerin, G., Mordret, A., Rivet, D., Lipovsky, B. P., & Minchew, B. M. (2021). Frictional Origin of Slip Events of the Whillans Ice Stream, Antarctica. Geophysical Research Letters, 48(11), e2021GL092950. https://doi.org/10.1029/2021GL092950

Guillemot, A., Helmstetter, A., Larose, É., Baillet, L., Garambois, S., Mayoraz, R., & Delaloye, R. (2020). Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling. Geophysical Journal International, 221(3), 1719–1735. https://doi.org/10.1093/gji/ggaa097

Helmstetter, A., Nicolas, B., Comon, P., & Gay, M. (2015). Basal icequakes recorded beneath an Alpine glacier (Glacier d’Argentière, Mont Blanc, France): Evidence for stick-slip motion? Journal of Geophysical Research: Earth Surface, 120(3), 379–401. https://doi.org/https://doi.org/10.1002/2014JF003288

Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R. B., Stern, H., & Truffer, M. (2008). Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research: Earth Surface, 113(F4). https://doi.org/https://doi.org/10.1029/2008JF001023

Köpfli, M., Gräff, D., Lipovsky, B. P., Selvadurai, P. A., Farinotti, D., & Walter, F. (2022). Hydraulic Conditions for Stick-Slip Tremor Beneath an Alpine Glacier. Geophysical Research Letters, 49(21), e2022GL100286. https://doi.org/https://doi.org/10.1029/2022GL100286

Labedz, C. R., Bartholomaus, T. C., Amundson, J. M., Gimbert, F., Karplus, M. S., Tsai, V. C., & Veitch, S. A. (2022). Seismic mapping of subglacial hydrology reveals previously undetected pressurization event. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2021JF006406

Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., & others. (2015). Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, 116, 62–74. https://doi.org/10.1016/j.jappgeo.2015.02.001

Lindner, F., Laske, G., Walter, F., & Doran, A. K. (2019). Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland. Annals of Glaciology, 60(79), 96–111. https://doi.org/10.1017/aog.2018.25

McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001

Mikesell, T., van Wijk, K., Haney, M. M., Bradford, J. H., Marshall, H.-P., & Harper, J. T. (2012). Monitoring glacier surface seismicity in time and space using Rayleigh waves. Journal of Geophysical Research: Earth Surface, 117(F2). https://doi.org/10.1029/2011JF002259

Peterson, J. R. (1993). Observations and modeling of seismic background noise.

Podolskiy, E. A. (2020). Toward the Acoustic Detection of Two-Phase Flow Patterns and Helmholtz Resonators in Englacial Drainage Systems. Geophysical Research Letters, 47(6), e2020GL086951. https://doi.org/https://doi.org/10.1029/2020GL086951

Podolskiy, E. A., & Walter, F. (2016). Cryoseismology. Reviews of Geophysics, 54(4), 708–758. https://doi.org/10.1002/2016RG000526

Ringler, A. T., Hagerty, M., Holland, J., Gonzales, A., Gee, L. S., Edwards, J., Wilson, D., & Baker, A. M. (2015). The data quality analyzer: A quality control program for seismic data. Computers & Geosciences, 76, 96–111. https://doi.org/10.1016/j.cageo.2014.12.006

Röösli, C., Helmstetter, A., Walter, F., & Kissling, E. (2016). Meltwater influences on deep stick-slip icequakes near the base of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 121(2), 223–240. https://doi.org/https://doi.org/10.1002/2015JF003601

Röösli, C., Walter, F., Ampuero, J.-P., & Kissling, E. (2016). Seismic moulin tremor. Journal of Geophysical Research: Solid Earth, 121(8), 5838–5858. https://doi.org/10.1002/2015JB012786

Röösli, C., Walter, F., Husen, S., Andrews, L. C., Lüthi, M. P., Catania, G. A., & Kissling, E. (2014). Sustained seismic tremors and icequakes detected in the ablation zone of the Greenland ice sheet. Journal of Glaciology, 60(221), 563–575. https://doi.org/10.3189/2014JoG13J210

Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., & Mordret, A. (2020). On the Green’s function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring. The Cryosphere, 14(3), 1139–1171. https://doi.org/10.5194/tc-14-1139-2020

Seydoux, L., Shapiro, N. M., de Rosny, J., Brenguier, F., & Landès, M. (2016). Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays. Geophysical Journal International, 204(3), 1430–1442. https://doi.org/10.1093/gji/ggv531

Walter, F., Deichmann, N., & Funk, M. (2008). Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland. Journal of Glaciology, 54(186), 511–521. https://doi.org/10.3189/002214308785837110

Walter, F., Roux, P., Röösli, C., Lecointre, A., Kilb, D., & Roux, P.-F. (2015). Using glacier seismicity for phase velocity measurements and Green’s function retrieval. Geophysical Journal International, 201(3), 1722–1737.

Winter, K., Lombardi, D., Diaz-Moreno, A., & Bainbridge, R. (2021). Monitoring Icequakes in East Antarctica with the Raspberry Shake. Seismological Research Letters. https://doi.org/10.1785/0220200483

Downloads

Published

2023-01-19

How to Cite

Nap, A., Walter, F., Lüthi, M., & Wehrlé, A. (2023). Self-sufficient seismic boxes for monitoring glacier seismology. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.245

Issue

Section

Reports (excl. Fast Reports)