Spatiotemporal evaluation of Rayleigh surface wave estimated from roadside dark fiber DAS array and traffic noise




Distributed acoustic sensing, seismic interferometry, traffic noise, smart city, dark fiber


Seismic imaging and monitoring of the near-surface structure are crucial for the sustainable development of urban areas. However, standard seismic surveys based on cabled or autonomous geophone arrays are expensive and hard to adapt to noisy metropolitan environments. Distributed acoustic sensing (DAS) with pre-existing telecom fiber optic cables, together with seismic ambient noise interferometry, have the potential to fulfill this gap. However, a detailed noise wavefield characterization is needed before retrieving
coherent waves from chaotic noise sources. We analyze local seismic ambient noise by tracking five-month changes in signal-to-noise ratio (SNR) of Rayleigh surface wave estimated from traffic noise recorded by DAS along the straight university campus busy road. We apply the seismic interferometry method to the 800 m long part of the Penn State Fiber-Optic For Environment Sensing (FORESEE) array. We evaluate the 160 virtual shot gathers (VSGs) by determining the SNR using the slant-stack technique. We observe strong SNR variations in time and space. We notice higher SNR for virtual source points close to road obstacles. The spatial noise distribution confirms that noise energy focuses mainly on bumps and utility holes. We also see the destructive impact of precipitation, pedestrian traffic, and traffic along main intersections on VSGs. A similar processing workflow can be applied to various straight roadside fiber optic arrays in metropolitan areas.


Ajo-Franklin, J., Dou, S., Lindsey, N., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., & Li, X. (2019). Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Scientific Reports, 9(1), 1328. DOI:

Bensen, G., Ritzwoller, M., Barmin, M., Levshin, A., Lin, F., Moschetti, M., Shapiro, N., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169, 1239–1260. DOI:

Czarny, R., & Zhu, T. (2022). Estimating Rayleigh surface wave from ambient noise recorded by Distributed Acoustic Sensing (DAS) dark fiber array in the city. SEG Technical Program Expanded Abstracts, 2133–2137. DOI:

Díaz, J., Ruiz, M., Sánchez-Pastor, P., & Romero, P. (2017). Urban Seismology: On the origin of earth vibrations within a city. Scientific Reports, 7(1), 1–11. DOI:

Dou, S., Lindsey, N., Wagner, A., Daley, T., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E., & Ajo-Franklin, J. (2017). Distributed Acoustic Sensing for Seismic Monitoring of the Near Surface: A Traffic-Noise Interferometry Case Study. Scientific Reports, 7(1), 1–12. DOI:

Drake, J., & Harmon, R. (1973). Hydrochemical environments of carbonate terrains. Water resources research, 9(4), 949–957. DOI:

Fang, G., Li, Y., Zhao, Y., & Martin, E. (2020). Urban Near-Surface Seismic Monitoring Using Distributed Acoustic Sensing. Geophysical Research Letters, 47(6), 1–9. DOI:

Li, Y., Karrenbach, M., & Ajo-Franklin, J. (2022). Distributed acoustic sensing in geophysics: Methods and applications (268. John Wiley and Sons. DOI:

Li, L., Tan, J., Schwarz, B., Staněk, F., Poiata, N., Shi, P., & Gajewski, D. (2020). Recent advances and challenges of waveform‐based seismic location methods at multiple scales. Reviews of Geophysics, 58(1). DOI:

Lindsey, N., & Martin, E. (2021). Fiber-Optic Seismology. Annual Review of Earth and Planetary Sciences, 49(1), 1–35. DOI:

Martin, E., Lindsey, N., & Biondi, B. (2018). Introduction to Interferometry of Fiber Optic Strain Measurements. EarthArXiv, 2, 1–33. DOI:

Nakata, N., Chang, J., Lawrence, J., & Boué, P. (2015). Body wave extraction and tomography at Long Beach, California, with ambient-noise interferometry. Journal of Geophysical Research: Solid Earth, 120(2), 1159–1173. DOI:

Nakata, N., Gualtieri, L., & Fichtner, A. (2019). Seismic ambient noise. Cambridge University Press. DOI:

Nayak, A., & Ajo-Franklin, J. (2021). Distributed Acoustic Sensing Using Dark Fiber for Array Detection of Regional Earthquakes. Seismological Research Letters, 92(4), 2441–2452. DOI:

Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., & Fichtner, A. (2021). Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves. Bulletin of the Seismological Society of America, 111(1), 1–10. DOI:

Rabade, S., Wu, S., Lin, F., & Chambers, D. (2022). Isolating and Tracking Noise Sources across an Active Longwall Mine Using Seismic Interferometry. Bulletin of the Seismological Society of America, 112(5), 2396–2407. DOI:

Shen, J., & Zhu, T. (2021). Seismic noises by telecommunication fiber optics reveal the impact of COVID-19 measures on human activities. The Seismic Record, 1(1), 46–55. DOI:

Shen, J., & Zhu, T.. (2023). DAS with telecommunication fiber-optic cable in urban areas can record storm-induced seismic noise.

Song, Z., Zeng, X., Xie, J., Bao, F., & Zhang, G. (2021). Sensing Shallow Structure and Traffic Noise with Fiber-optic Internet Cables in an Urban Area. Surveys in Geophysics, 42(6), 1401–1423. DOI:

Song, Z., Zeng, X., Chi, B., Bao, F., & Osotuyi, A. (2022). Using the three-station interferometry method to improve urban DAS ambient noise tomography. Frontiers in Earth Science, 10. DOI:

Spica, Z., Perton, M., Martin, E., Beroza, G., & Biondi, B. (2020). Urban Seismic Site Characterization by Fiber-Optic Seismology. Journal of Geophysical Research: Solid Earth, 125(3), 1–14. DOI:

Spica, Z., J., A.F., C., B., B., B., F., C., B., G., B., L., E., M., J., S., C., T., L., V., H., W., A., W., H., X., & T, Z. (2022). PubDAS: a PUBlic Distributed Acoustic Sensing1datasets repository for geosciences. EarthArXiv. DOI:

Titov, A., Fan, Y., Kutun, K., & Jin, G. (2022). Distributed Acoustic Sensing (DAS) Response of Rising Taylor Bubbles in Slug Flow. Sensors, 22(3). DOI:

Tribaldos, V., & Ajo‐Franklin, J. (2021). Aquifer Monitoring Using Ambient Seismic Noise Recorded with Distributed Acoustic Sensing (DAS) Deployed on Dark Fiber. Journal of Geophysical Research: Solid Earth, 1–20.

Ende, M., & Ampuero, J. (2021). Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 12(4), 915–934. DOI:

Vidal, C., Draganov, D., Neut, J., Drijkoningen, G., & Wapenaar, K. (2014). Retrieval of reflections from ambient noise using illumination diagnosis. Geophysical Journal International, 198(3), 1572–1584. DOI:

Wapenaar, K., Draganov, D., & Snieder, R. (2010). Tutorial on seismic interferometry: Part 1 - Basic principles and applications. Geophysics, 75, 75 195–75 209. DOI:

Yang, Y., Atterholt, J., Shen, Z., Muir, J., Williams, E., & Zhan, Z. (2022). Sub‐Kilometer Correlation Between Near‐Surface Structure and Ground Motion Measured With Distributed Acoustic Sensing. Geophysical Research Letters, 49(1). DOI:

Zeng, X., Lancelle, C., Thurber, C., Fratta, D., Wang, H., Lord, N., Chalari, A., & Clarke, A. (2017). Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California. Bulletin of the Seismological Society of America, 107(2), 603–610. DOI:

Zhu, T., Shen, J., & Martin, E. (2021). Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: An urban experiment in Pennsylvania, USA. Solid Earth, 12(1), 219–235. DOI:



How to Cite

Czarny, R., Zhu, T., & Shen, J. (2023). Spatiotemporal evaluation of Rayleigh surface wave estimated from roadside dark fiber DAS array and traffic noise. Seismica, 2(2).