Estimates of earthquake temperature rise and frictional energy
DOI:
https://doi.org/10.26443/seismica.v2i1.252Keywords:
earthquake, earthquake energy budget, frictional energy, coseismic temperature, biomarkers, pseudotachylyteAbstract
The development of multiple paleotemperature proxies over the last twenty years has led to an increasing number of coseismic temperature measurements collected across a variety of faults. Here we present the first compilation of coseismic temperature rise measurements and frictional energy estimates to investigate the contribution of frictional heating to the earthquake energy budget and how this varies over different fault and earthquake properties. This compilation demonstrates that there is no clear relationship between coseismic temperature and displacement or thickness of the principal slip zone. Coseismic temperature rise increases with the depth of faulting until ~5 km and below this depth temperature rise remains relatively constant. Frictional energy, similarly, increases with depth until ~5km. However, frictional energy is remarkably similar across all of the faults studied here, with most falling below 45 MJ/m2. Our results suggest that dynamic weakening mechanisms may limit frictional energy during coseismic slip. We also demonstrate a basic difference between small and large earthquakes by comparing frictional energy to other components of the earthquake energy budget. The energy budget for small earthquakes (<1-10 m of displacement) is dominated by frictional energy, while in large events (>1-10 m of displacement), frictional, radiated, and fracture energy contribute somewhat equally to the earthquake energy budget.
References
Abercrombie, R. E., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162(2), 406–424. https://doi.org/10.1111/j.1365-246X.2005.02579.x
Armstrong, E. M., Ault, A. K., Bradbury, K. K., Savage, H. M., Polissar, P. J., & Thomson, S. N. (2022). A multi‐proxy approach using zircon (U‐Th)/he thermochronometry and biomarker thermal maturity to robustly capture earthquake temperature rise along the punchbowl fault, California. Geochemistry, Geophysics, Geosystems, 23(4). https://doi.org/10.1029/2021gc010291
Aubry, J., Passelègue, F. X., Deldicque, D., Girault, F., Marty, S., Lahfid, A., & Schubnel, A. (2018). Frictional heating processes and energy budget during laboratory earthquakes. Geophysical Research Letters, 45(22), 12–274. https://doi.org/10.1029/2018GL079263
Ault, A. K., Jensen, J. L., Mcdermott, R. G., Shen, F., & Devener, B. R. (2019). Nanoscale evidence for temperature-induced transient rheology and postseismic fault healing. Geology, 48, 1–5. https://doi.org/10.1130/G46317.1
Ault, A. K., Reiners, P. W., Evans, J. P., & Thomson, S. N. (2015). Linking hematite (U-Th)/ He dating with the microtextural record of seismicity in the Wasatch fault damage zone. Geology, 43(9), 771–774. https://doi.org///doi.org/10.1130/G36897.1
Brock, W. G., & Engelder, T. (1977). Deformation associated with the movement of the Muddy Mountain overthrust in the Buffington window, southeastern Nevada. Geological Society of America Bulletin, 88, 1667–1677.
Brodsky, E. E., Mori, J. J., Anderson, L., Chester, F. M., Conin, M., Dunham, E. M., Eguchi, N., Fulton, P. M., Hino, R., Hirose, T., & Others. (2020). The state of stress on the fault before, during, and after a major earthquake. Annual Review of Earth and Planetary Sciences, 48(1), 49–74. https://doi.org/10.1146/annurev-earth-053018-060507
Byerlee, J. (1978). Friction of Rocks. In J. D. Byerlee & M. Wyss (Eds.), Rock Friction and Earthquake Prediction (pp. 615–626). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7182-2_4
Carpenter, B. M., Scuderi, M. M., Collettini, C., & Marone, C. (2014). Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy. Journal of Geophysical Research: Solid Earth, 119(12), 9062–9076. https://doi.org/10.1002/2014JB011337
Chang, J. C., Lockner, D. A., & Reches, Z. (2012). Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments. Science, 338(6103), 101–105. https://doi.org/10.1126/science.1221195
Chester, J. S., Chester, F. M., & Kronenberg, A. K. (2005). Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437(7055), 133–136. https://doi.org/10.1038/nature03942
Cocco, M., Aretusini, S., Cornelio, C., Nielsen, S. B., Spagnuolo, E., Tinti, E., & Toro, G. (2023). Fracture Energy and Breakdown Work During Earthquakes. Annual Review of Earth and Planetary Sciences, 51. https://doi.org/10.1146/annurev-earth-071822-100304
Cocco, M., & Tinti, E. (2008). Scale dependence in the dynamics of earthquake propagation: Evidence from seismological and geological observations. Earth and Planetary Science Letters, 273(1–2), 123–131. https://doi.org/doi.org/10.1016/j.epsl.2008.06.025
Coffey, G. L., Savage, H. M., Polissar, P. J., Cox, S. E., Hemming, S. R., Winckler, G., & Bradbury, K. K. (2022). History of earthquakes along the creeping section of the San Andreas fault. Geology, 50(4), 516–521. https://doi.org/10.1130/G49451.1
Coffey, G. L., Savage, H. M., Polissar, P. J., Meneghini, F., Ikari, M. J., Fagereng, A., Morgan, J. K., & Wang, M. (2021). Evidence of seismic slip on a large splay fault in the hikurangi subduction zone. Geochemistry, Geophysics, Geosystems, 22(8). https://doi.org/10.1029/2021gc009638
Coffey, G. L., Savage, H. M., Polissar, P. J., Rowe, C. D., & Rabinowitz, H. S. (2019). Hot on the trail: Coseismic heating on a localized structure along the Muddy Mountain fault, Nevada. Journal of Structural Geology, 120, 67–79. https://doi.org/10.1016/j.jsg.2018.12.012
Collettini, C., Carpenter, B. M., Viti, C., Cruciani, F., Mollo, S., & Tesei, T. (2014). Fault structure and slip localization in carbonate-bearing normal faults: An example from the Northern Apennines of Italy. Journal of Structural Geology, 67, 154–166. https://doi.org/10.1016/j.jsg.2014.07.017
Collettini, C., Niemeijer, A., Viti, C., & Marone, C. (2009). Fault zone fabric and fault weakness. Nature, 462(7275), 907–910. https://doi.org/10.1038/nature08585
Collettini, C., Viti, C., Tesei, T., & Mollo, S. (2013). Thermal decomposition along natural carbonate faults during earthquakes. Geology, 41, 927–930. https://doi.org/10.1130/G34421.1
Di Toro, G., Han, R., Hirose, T., Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838
Di Toro, G., & Pennacchioni, G. (2005). Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites, Adamello batholith, Southern Alps. Tectonophysics, 402(1-4 SPEC. ISS.), 55–80. https://doi.org/10.1016/j.tecto.2004.12.036
Fulton, P., Brodsky, E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., Harris, R., Lin, W., Eguchi, N., & Toczko, S. (2013). Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements. Science, 6153, 1214–1217. https://doi.org/10.1126/science.1243641
Jeppson, T. N., Bradbury, K. K., & Evans, J. P. (2010). Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. Journal of Geophysical Research: Solid Earth, 115(12), 1–20. https://doi.org/10.1029/2010JB007563
Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes. Reports on Progress in Physics, 67(8), 1429–1496. https://doi.org/10.1088/0034-4885/67/8/R03
Kanamori, H., & Heaton, T. H. (2000). Microscopic and macroscopic physics of earthquakes. Geophysical Monograph Series, 120, 147–163. https://doi.org/10.1029/GM120
Kanamori, H., & Rivera, L. (2006). Energy partitioning during an earthquake. Geophysical Monograph Series, 170, 3–13. https://doi.org/10.1029/170GM03
Kaneko, Y., Nielsen, S. B., & Carpenter, B. M. (2016). The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state fault. Journal of Geophysical Research: Solid Earth, 121(8), 6071–6091. https://doi.org/10.1002/2016JB013143
Kirkpatrick, J. D., Dobson, K. J., Mark, D. F., Shipton, Z. K., Brodsky, E. E., & Stuart, F. M. (2012). The depth of pseudotachylyte formation from detailed thermochronology and constraints on coseismic stress drop variability. Journal of Geophysical Research: Solid Earth, 117(6), 1–13. https://doi.org/10.1029/2011JB008846
Kirkpatrick, J. D., & Rowe, C. D. (2013). Disappearing ink: How pseudotachylytes are lost from the rock record. Journal of Structural Geology, 52, 183–198. https://doi.org/10.1016/j.jsg.2013.03.003
Kirkpatrick, J. D., Shipton, Z. K., & Persano, C. (2009). Pseudotachylytes: Rarely generated, rarely preserved, or rarely reported? Bulletin of the Seismological Society of America, 99(1), 382–388. https://doi.org/10.1785/0120080114
Lachenbruch, A. H. (1986). Simple models for the estimation and measurement of frictional heating by an earthquake (pp. 1–13).
Lambert, V., & Lapusta, N. (2020). Rupture-dependent breakdown energy in fault models with thermo-hydro-mechanical processes. Solid Earth, 11(6), 2283–2302. https://doi.org/10.5194/se-11-2283-2020 Lambert, V., Lapusta, N., & Perry, S. (2021). Propagation of large earthquakes as self-healing pulses or mild cracks. Nature, 591(7849), 252–258. https://doi.org/10.1038/s41586-021-03248-1
McBeck, J., Cordonnier, B., Mair, K., & Renard, F. (2019). The evolving energy budget of experimental faults within continental crust: Insights from in situ dynamic X-ray microtomography. Journal of Structural Geology, 123, 42–53. https://doi.org/10.1016/j.jsg.2019.03.005
McDermott, R. G., Ault, A. K., Evans, J. P., & Reiners, P. W. (2017). Thermochronometric and textural evidence for seismicity via asperity flash heating on exhumed hematite fault mirrors, Wasatch fault zone, UT, USA. Earth and Planetary Science Letters, 471, 85–93. https://doi.org/10.1016/j.epsl.2017.04.020
Meneghini, F., & Moore, J. C. (2007). Deformation and hydrofracture in a subduction thrust at seismogenic depths: The Rodeo Cove thrust zone, Marin Headlands, California. Bulletin of the Geological Society of America, 119(1–2), 174–183. https://doi.org/10.1130/B25807.1
Nicol, A., Robinson, R., Dissen, R. J., & Harvison, A. (2016). Variability of recurrence interval and single-event slip for surface-rupturing earthquakes in New Zealand. New Zealand Journal of Geology and Geophysics, 59(1), 97–116. https://doi.org/10.1080/00288306.2015.1127822
Noda, H., & Lapusta, N. (2013). Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493(7433), 518–521. https://doi.org/10.1038/nature11703
Otsuki, K., Monzawa, N., & Nagase, T. (2003). Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms. Journal of Geophysical Research: Solid Earth, 108(B4). https://doi.org/10.1029/2001JB001711
Paola, N. D., Hirose, T., Mitchell, T., Toro, G. D., Viti, C., Shimamoto, T., & Laterina, V. (2011). Fault lubrication and earthquake propagation in thermally unstable rocks. Geology, 39(1), 35–38. https://doi.org/10.1130/G31398.1
Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S., Deldicque, D., & Madariaga, R. (2016). Dynamic rupture processes inferred from laboratory microearthquakes. Journal of Geophysical Research: Solid Earth, 121(6), 4343–4365. https://doi.org/10.1002/2015JB012694
Pittarello, L., Di Toro, G., Bizzarri, A., Pennacchioni, G., Hadizadeh, J., & Cocco, M. (2008). Energy partitioning during seismic slip in pseudotachylyte-bearing faults, Gole Larghe Fault, Adamello, Italy. Earth and Planetary Science Letters, 269(1–2), 131–139. https://doi.org/10.1016/j.epsl.2008.01.052
Polissar, P. J., Savage, H. M., & Brodsky, E. E. (2011). Extractable organic material in fault zones as a tool to investigate frictional stress. Earth and Planetary Science Letters, 311(3–4), 439–447. https://doi.org/10.1016/j.epsl.2011.09.004
Rabinowitz, H. S., Kirkpatrick, J. D., Savage, H. M., Polissar, P. J., & Rowe, C. D. (2020). Earthquake slip surfaces identified by biomarker thermal maturity within the 2011 Tohoku-Oki earthquake fault zone. Nature Communications, 11(533), 1–9. https://doi.org/10.1038/s41467-020-14447-1
Rabinowitz, H. S., Polissar, P. J., & Savage, H. M. (2017). Reaction kinetics of alkenone and n-alkane thermal alteration at seismic timescales. Geochemistry, Geophysics, Geosystems, 18(1), 204–219. https://doi.org/10.1002/2016GC006553
Reches, Z., & Lockner, D. A. (2010). Fault weakening and earthquake instability by powder lubrication. Nature, 467(7314), 452–455. https://doi.org/10.1038/nature09348
Regalla, C. A., Rowe, C. D., Harrichhausen, N., Tarling, M. S., & Singh, J. (2018). Styles of underplating in the Marin Headlands terrane, Franciscan complex, California. Special Paper of the Geological Society of America, 534, 155–173. https://doi.org/10.1130/2018.2534(10)
Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research, 111, 1–29. https://doi.org/10.1029/2005JB004006
Rice, J. R., Rudnicki, J. W., & Platt, J. D. (2014). Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis. Journal of Geophysical Research: Solid Earth, 119(5), 4311–4333. https://doi.org/10.1002/2013JB010710
Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A. B., & Ortega-Huertas, M. (2009). Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. The American Mineralogist, 94(4), 578–593. https://doi.org/10.2138/am.2009.3021
Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1–26. https://doi.org/10.1016/j.jsg.2015.06.006
Rowe, C. D., Meneghini, F., & Casey Moore, J. (2011). Textural record of the seismic cycle: Strain-rate variation in an ancient subduction thrust. Geological Society Special Publication, 359(1), 77–95. https://doi.org/10.1144/SP359.5
Rowe, C. D., Moore, J. C., Meneghini, F., & McKeirnan, A. W. (2005). Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. Geology, 33(12), 937–940. https://doi.org/10.1130/G21856.1
Rubino, V., Rosakis, A. J., & Lapusta, N. (2017). Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nature Communications, 8, 15991. https://doi.org/10.1038/ncomms15991
Saffer, D. M., Wallace, L. M., Barnes, P. M., Pecher, I. A., Petronotis, K. E., Levay, L. J., Bell, R. E., Crundwell, M. P., Fagereng, A., Fulton, P. M., Greve, A., Harris, R. N., Hashimoto, Y., Ikari, M. J., Ito, Y., Kitajima, H., Kutterolf, S., Lee, H., Li, X., & Wang, X. (2019). Site U1518. Proceedings of the International Ocean Discovery Program, 372B/375, 1–63. https://doi.org/10.14379/iodp.proc.372B375.101.2019
Sakaguchi, A., Chester, F., Curewitz, D., Fabbri, O., Goldsby, D., Kimura, G., Li, C. F., Masaki, Y., Screaton, E. J., Tsutsumi, A., Ujiie, K., & Yamaguchi, A. (2011). Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on integrated ocean drilling program nantro SEIZE cores. Geology, 39(4), 395–398. https://doi.org/10.1130/G31642.1
Sakaguchi, A., Kimura, G., Strasser, M., Screaton, E. J., Curewitz, D., & Murayama, M. (2011). Episodic seafloor mud brecciation due to great subduction zone earthquakes. Geology, 39(10), 919–922. https://doi.org/10.1130/G32043.1
Savage, H. M., & Polissar, P. J. (2019). Biomarker Thermal Maturity Reveals Localized Temperature Rise from Paleoseismic Slip along the Punchbowl Fault, CA, USA. Geochemistry, Geophysics, Geosystems, 20, 3201–3215. https://doi.org/10.1029/2019GC008225
Savage, H. M., Polissar, P. J., Sheppard, R., Rowe, C. D., & Brodsky, E. E. (2014). Biomarkers heat up during earthquakes: New evidence of seismic slip in the rock record. Geology, 42(2), 99–102. https://doi.org/10.1130/G34901.1
Savage, H. M., Rabinowitz, H. S., Spagnuolo, E., Aretusini, S., Polissar, P. J., & Di, G. (2018). Biomarker thermal maturity experiments at earthquake slip rates. Earth and Planetary Science Letters, 502, 253–261. https://doi.org/10.1016/j.epsl.2018.08.038
Seyler, C. E., Kirkpatrick, J. D., Savage, H. M., Hirose, T., & Faulkner, D. R. (2020). Rupture to the trench? Frictional properties and fracture energy of incoming sediments at the Cascadia subduction zone. Earth and Planetary Science Letters, 546, 116413. https://doi.org/10.1016/j.epsl.2020.116413
Sheppard, R. E., Polissar, P. J., & Savage, H. M. (2015). Organic thermal maturity as a proxy for frictional fault heating: Experimental constraints on methylphenanthrene kinetics at earthquake timescales. Geochimica et Cosmochimica Acta, 151, 103–116. https://doi.org/10.1016/j.gca.2014.11.020
Sibson, R. H. (1973). Interactions between Temperature and Pore-Fluid Pressure during Earthquake Faulting and a Mechanism for Partial or Total Stress Relief. Nature, 243, 66–68. https://doi.org/10.1038/physci243066a0
Sibson, R. H. (1975). Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal of the Royal Astronomical Society, 43, 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x
Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191–213. https://doi.org/10.1144/gsjgs.133.3.0191
Sibson, R. H., & Toy, V. G. (2006). The habitat of fault-generated pseudotachylyte: Presence vs. absence of friction-melt. Geophysical Monograph Series, 170, 153–166. https://doi.org/10.1029/170GM16
Sun, T., Wang, K., Fujiwara, T., Kodaira, S., & He, J. (2017). Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nature Communications, 8, 4–11. https://doi.org/10.1038/ncomms14044
Ujiie, K., Yamaguchi, H., Sakaguchi, A., & Toh, S. (2007). Pseudotachylytes in an ancient accretionary complex and implications for melt lubrication during subduction zone earthquakes. Journal of Structural Geology, 29(4), 599–613. https://doi.org/10.1016/j.jsg.2006.10.012
Venkataraman, A., & Kanamori, H. (2004). Observational constraints on the fracture energy of subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 109, 1–20. https://doi.org/10.1029/2003JB002549
Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8(11), 875–879. https://doi.org/10.1038/ngeo2554
Williams, J. N., Barrell, D. J. A., Stirling, M. W., Sauer, K. M., Duke, G. C., & Hao, K. X. (2018). Surface rupture of the Hundalee fault during the 2016 Mw 7.8 Kaikōura earthquake. Bulletin of the Seismological Society of America, 108(3B), 1540–1555. https://doi.org/10.1785/0120170291
Ye, L., Lay, T., Kanamori, H., & Rivera, L. (2016). Rupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 - 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research: Solid Earth, 121, 3782–3803. https://doi.org/10.1002/2015JB012426
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Genevieve Coffey, Heather Savage, Pratigya Polissar

This work is licensed under a Creative Commons Attribution 4.0 International License.