Locating the Nordstream explosions using polarization analysis


  • Simon C. Stähler Institute of geophysics, ETH Zürich
  • Géraldine Zenhäusern Institute of geophysics, ETH Zürich
  • John Clinton Swiss Seismological Service, ETH Zürich, Switzerland
  • Domenico Giardini Institute of geophysics, ETH Zürich




The seismic events that preceded the leaks in the Nordstream natural gas pipelines in the Baltic Sea have been interpreted as explosions on the seabed. We use a polarization-based location method initially developed for marsquakes to locate the source region without the need for a subsurface velocity model. We show that the 2 largest seismic events can be unambiguously attributed to the methane plumes observed on the sea surface. The two largest events can be located with this method, using 4 and 5 stations located around the source, with the uncertainties in elliptical bounds of 30 x 30 km and 10 x 60 km, respectively. We can further show that both events emitted seismic energy for at least ten minutes after the initial explosion, indicative of resonances in the water column or the depressurizing pipeline.


Becker, J., Sandwell, D., Smith, W., & others (2009). Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Mar. Geod, 32(4), 355-371.

Bose, M., Clinton, J., Ceylan, S., & others (2016). A Probabilistic Framework for Single-Station Location of Seismicity on Earth and Mars. Phys. Earth Planet. Inter, 262, 48-65.

Ceylan, S., Clinton, J., Giardini, D., Stähler, S., & others (2022). The marsquake catalogue from InSight, 0-1011. Physics of the Earth and Planetary Interiors, 1069.

Christian Albrechts (2017). Universitat zu Kiel Kiel University Earthquake Monitoring.

Clinton, Ceylan, van Driel, Giardini, Stähler, Böse, Charalambous, Dahmen, Horleston, Kawamura, Khan, Orhand-Mainsant, Scholz, Euchner, Banerdt, Lognonne, Banfield, Beucler, Garcia, Kedar, Panning, Perrin, Pike, Smrekar, & Spiga (2021). The Marsquake catalogue from InSight. Phys. Earth Planet. Inter, 310, 0-478.

Devaud, M., Hocquet, T., Bacri, J.C., & Leroy, V. (2008). Eur. J. Phys., 29(6), 1263-1285.

Geofon Data Center (1993). GEOFON Seismic Network.

Grelowska, G. (2016). Study of Seasonal Acoustic Properties of Sea Water in selected Waters of the Southern Baltic. Pol. Marit. Res, 23(1), 89.

Grünthal, G., Stromeyer, D., Wylegalla, K., & others (2008). The Mw 3.1-4.7 earthquakes in the southern Baltic Sea and adjacent areas in 2000, 2001 and 2004. J Seismol, 12(3), 413-429.

Hall, A., & van Boeckel, M. (2020). Origin of the Baltic Sea basin by Pleistocene glacial erosion. GFF, 142(3), 237-252.

Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del R'io, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, & Abbasi (2020). Array Programming with NumPy. Nature, 585, 357-362.

Hosseini, K., & Sigloch, K. (2017). ObspyDMT: A Python toolbox for retrieving and processing large seismological data sets. Solid Earth, 8(5), 1047-1070.

Hunter, J. (2007). Matplotlib: a 2d graphics environment. Comput. Sci. Eng, 9(3), 90-95.

Krischer, L., Megies, T., Barsch, R., & others (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput. Sci. Discov, 8(1), 14003-01400.

Kristekova, M., Kristek, J., Moczo, P., & Day, S. (2006). Misfit Criteria for Quantitative Comparison of Seismograms. Bull. Seismol. Soc. Am, 96(5), 1836-1850.

Lognonné, P., Banerdt, W., Giardini, D., Pike, W., & others (2019). SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Sci. Rev, 215(1), 12-12.

Lund, B., Schmidt, P., Hossein~Shomali, Z., & Roth, M. (2021). The Modern Swedish National Seismic Network: Two Decades of Intraplate Microseismic Observation. Seismological Research Letters, 92(3), 1747-1758.

Ostrovsky, A., Flueh, E., & Luosto, U. (1994). Deep seismic structure of the Earth's crust along the Baltic Sea profile. Tectonophysics, 233(3), 279-292.

Peterson, J. (1993). Observations and Modeling of Seismic Background Noise [White paper]. Technical report, Albuquerque, New Mexico.

Samson, J. (1983). Pure states polarized waves, and principal components in the spectra of multiple, geophysical time-series. Geophysical Journal International, 72(3), 647-664.

Schimmel, M., & Gallart, J. (2003). The use of instantaneous polarization attributes for seismic signal detection and image enhancement. Geophys. J. Int, 155(2), 653-668.

Schweitzer, J., Köhler, A., & Christensen, J. (2021). Development of the NORSAR Network over the Last 50 Yr. Seismological Research Letters, 92(3), 1501-1511.

SNSN. Swedish National Seismic Network (1904). Uppsala University, Uppsala, Sweden.

Stähler, S. (2022). Zenodo.

Strollo, Cambaz, Clinton, Danecek, Evangelidis, Marmureanu, Ottemöller, Pedersen, Sleeman, Stammler, Armbruster, Bienkowski, Boukouras, Evans, Fares, Neagoe, Heimers, Heinloo, Hoffmann, Kaestli, Lauciani, Michalek, Odon~Muhire, Ozer, & Palangeanu (2021). EIDA: The European Integrated Data Archive and Service Infrastructure within ORFEUS. Seismological Research Letters, 92(3), 1788-1795.

Vejbæk, O., Stouge, S., & Poulsen, K. (1994). Palaeozoic tectonic and sedimentary evolution and hyrdrocarbon prospectivity in the Bornholm area. Dan. Geol. Unders. Ser. A, 34, 1-23.

Virtanen, P., Gommers, R., Oliphant, T., & others (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods, 17(3), 261-272.

Waskom, M. (2021). J. Open Source Softw, 6(60), 3021.

Zenhäusern, G., Stähler, S., & others (2022). Low-Frequency Marsquakes and Where to Find Them: Back Azimuth Determination Using a Polarization Analysis Approach. Bulletin of the Seismological Society of America.

Zenhäusern, G., Stähler, S., & van Driel, M. (2022). Polarisation analysis for seismic data. Zenodo.




How to Cite

Stähler, S. C., Zenhäusern, G., Clinton, J., & Giardini, D. (2022). Locating the Nordstream explosions using polarization analysis. Seismica, 1(1). https://doi.org/10.26443/seismica.v1i1.253



Fast Reports