Major California faults are smooth across multiple scales at seismogenic depth




fault geometry, Seismicity, fault smoothness, rupture physics, seismic hazard, California


Surface traces of earthquake faults are complex and segmented on multiple scales. At seismogenic depth the detailed geometry of faults and earthquake rupture is mainly constrained by earthquake locations. Standard earthquake locations are usually too diffuse to constrain multi-scale fault geometry, while differential-timing relocation mainly improves finest scale precision. NLL-SSST-coherence, an enhanced, absolute-timing earthquake location procedure, iteratively generates traveltime corrections to improve multi-scale precision and uses waveform similarity to improve fine-scale precision. Here we apply NLL-SSST-coherence to large-earthquake sequences and background seismicity along strike-slip faults in California. Our relocated seismicity at seismogenic depth along major fault segments and around large-earthquake ruptures often defines smooth, planar or arcuate, near-vertical surfaces across the sub-km to 10’s of km scales. These results show that multi-scale smooth fault segments are characteristic of major, strike-slip fault zones and may be essential to large earthquake rupture. Our results suggest that smoothness and curvature of faults influences earthquake initiation, rupture, rupture direction and arrest, and can define earthquake hazard. The results corroborate that surface traces of strike-slip fault zones reflect complex, shallow deformation and not directly simpler, main slip surfaces at depth, and support use of planar or smoothly curved faults for modeling primary earthquake rupture.


Aki, K. (1979). Characterization of barriers on an earthquake fault. Journal of Geophysical Research: Solid Earth, 84, 6140–6148.

Aki, K., & Lee, W. H. K. (1976). Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. Journal of Geophysical Research, 81, 4381–4399.

Antoine, S. L., Klinger, Y., Wang, K., & Burgmann, R. (2023). Diffuse deformation explains the magnitude-dependent coseismic shallow slip deficit.

Aviles, C. A., Scholz, C. H., & Boatwright, J. (1987). Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault. Journal of Geophysical Research, 92.

Bakun, W. H. (1980). Seismic activity on the southern Calaveras Fault in central California. Bulletin of the Seismological Society of America, 70, 1181–1197.

Bakun, W. H., Aagaard, B., Dost, B., Ellsworth, W. L., Hardebeck, J. L., Harris, R. A., & Ji, C. (2005). Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 437, 969–974.

Bakun, W. H., Stewart, R. M., Bufe, C. G., & Marks, S. M. (1980). Implication of seismicity for failure of a section of the San Andreas Fault. Bulletin of the Seismological Society of America, 70, 185–201.

Barka, A. A., & Kadinsky-Cade, K. (1988). Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7, 663–684.

Beeler, N. M. (2023). On the scale-dependence of fault surface roughness. Journal of Geophysical Research: Solid Earth.

Ben-Zion, Y., & Sammis, C. G. (2003). Characterization of Fault Zones. Pure and Applied Geophysics, 160, 677–715.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81, 530–533.

Billings, S. D., Sambridge, M. S., & Kennett, B. L. N. (1994). Errors in hypocenter location: Picking, model, and magnitude dependence. Bulletin of the Seismological Society of America, 84, 1978–1990.

Bondár, I., & McLaughlin, K. L. (2009). A New Ground Truth Data Set For Seismic Studies. Seismological Research Letters, 80, 465–472.

Bouchon, M., Karabulut, H., Bouin, M.-P., Schmittbuhl, J., Vallée, M., Archuleta, R., & Das, S. (2010). Faulting characteristics of supershear earthquakes. Tectonophysics, 493, 244–253.

Bruhat, L., Fang, Z., & Dunham, E. M. (2016). Rupture complexity and the supershear transition on rough faults. Journal of Geophysical Research: Solid Earth, 121, 210–224.

Buehler, J. S., & Shearer, P. M. (2016). Characterizing Earthquake Location Uncertainty in North America Using Source–Receiver Reciprocity and USArrayShort. Bulletin of the Seismological Society of America, 106, 2395–2401.

Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., & Brodsky, E. E. (2012). Roughness of fault surfaces over nine decades of length scales. Journal of Geophysical Research: Solid Earth, 117.

Cattaneo, M., Augliera, P., Spallarossa, D., & Eva, C. (1997). Reconstruction of seismogenetic structures by multiplet analysis: An example of Western Liguria, Italy. Bulletin of the Seismological Society of America, 87, 971–986.

Chaussard, E., Bürgmann, R., Fattahi, H., Nadeau, R. M., Taira, T., Johnson, C. W., & Johanson, I. (2015). Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults. Geophysical Research Letters, 42, 2734–2741.

Christie-Blick, N., & Biddle, K. T. (1985). Deformation and Basin Formation along Strike-Slip Faults. In K. T. Biddle & N. Christie-Blick (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation (Vol. 37). SEPM Society for Sedimentary Geology.

Cocco, M., Aretusini, S., Cornelio, C., Nielsen, S. B., Spagnuolo, E., Tinti, E., & Toro, G. (2023). Fracture Energy and Breakdown Work During Earthquakes. Annual Review of Earth and Planetary Sciences, 51.

Cockerham, R. S., & Eaton, J. P. (1984). Morgan Hill earthquake and its aftershocks: April 24 through September 30. In The Morgan Hill, California, Earthquake. California Deptartment of Conservation, Division of Mines.

Crosson, R. S. (1976). Crustal structure modeling of earthquake data: 1. Simultaneous least squares estimation of hypocenter and velocity parameters. Journal of Geophysical Research, 81, 3036–3046.

Darold, A., Holland, A., Chen, C., & Youngblood, A. (2014). Preliminary Analysis of Seismicity Near Eagleton 1-29, Carter County [Techreport]. Oklahoma Geological Survey.

Das, S., & Aki, K. (1977). Fault plane with barriers: A versatile earthquake model. Journal of Geophysical Research, 82, 5658–5670.

Das, S., & Henry, C. (2003). Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, 41.

Dewey, J. W. (1976). Seismicity of Northern Anatolia. Bulletin of the Seismological Society of America, 66, 843–868.

Dieterich, J. H., & Smith, D. E. (2010). Nonplanar Faults: Mechanics of Slip and Off-fault Damage. In Yehuda Ben-Zion & C. Sammis (Eds.), Mechanics, Structure and Evolution of Fault Zones (pp. 1799–1815). Pageoph Topical Volumes.

Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research, 101, 22371–22392.

Dooley, T. P., & Schreurs, G. (2012). Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574–575, 1–71.

Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., & Ratchkovski, N. A. (2003). The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science, 300, 1113–1118.

Ellsworth, W. L. (1975). Bear Valley, California, earthquake sequence of February-March 1972. Bulletin of the Seismological Society of America, 65, 483–506.

Emre, O., Duman, T. Y., Ozalp, S., Şaroğlu, F., Olgun, S., Elmacı, H., & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229–3275.

Emre, O., Kondo, H., Ozalp, S., & Elmaci, H. (2021). Fault geometry, segmentation and slip distribution associated with the 1939 Erzincan earthquake rupture along the North Anatolian fault, Turkey. Geological Society of London, Special Publications, 501, 23–70.

Evans, J., Shipton, Z. K., Pachell, L., S., & Robeson, K. (2000). The structure and composition of exhumed faults, and their implications for seismic processes. Proceedings of the 3rd Conference on Tectonic Problems of the San Andreas System.

Fang, Z., & Dunham, E. M. (2013). Additional shear resistance from fault roughness and stress levels on geometrically complex faults. Journal of Geophysical Research: Solid Earth, 118, 3642–3654.

Fehler, M., Phillips, W. S., House, L., Jones, R. H., Aster, R., & Rowe, C. (2000). Improved Relative Locations of Clustered Earthquakes Using Constrained Multiple Event Location. Bulletin of the Seismological Society of America, 90, 775–780.

Ferretti, G. (2005). An Improved Method for the Recognition of Seismic Families: Application to the Garfagnana-Lunigiana Area, Italy. Bulletin of the Seismological Society of America, 95, 1903–1915.

Finzi, Y., Hearn, E. H., Ben-Zion, Y., & Lyakhovsky, V. (2009). Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology. Pure and Applied Geophysics, 166, 1537–1573.

Fliss, S., Bhat, H. S., Dmowska, R., & Rice, J. R. (2005). Fault branching and rupture directivity. Journal of Geophysical Research: Solid Earth, 110.

Font, Y., Kao, H., Lallemand, S., Liu, C.-S., & Chiao, L.-Y. (2004). Hypocentre determination offshore of eastern Taiwan using the Maximum Intersection method. Geophysical Journal International, 158, 655–675.

Frémont, M.-J., & Malone, S. D. (1987). High precision relative locations of earthquakes at Mount St Helens, Washington. Journal of Geophysical Research: Solid Earth, 92, 10223–10236.

Frohlich, C. (1979). An efficient method for joint hypocenter determination for large groups of earthquakes. Computers and Geosciences, 5, 387–389.

Gedney, L. D. (1967). A preliminary study of focal mechanisms of small earthquakes in the central Nevada region [University of Nevada, Reno].

Geller, R. J., & Mueller, C. S. (1980). Four similar earthquakes in central California. Geophysical Research Letters, 7, 821–824.

Gibbons, S. J., Pabian, F., Näsholm, S. P., Kværna, T., & Mykkeltveit, S. (2017). Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections. Geophysical Journal International, 208, 101–117.

Goebel, T. H. W., Becker, T. W., Sammis, C. G., Dresen, G., & Schorlemmer, D. (2014). Off-fault damage and acoustic emission distributions during the evolution of structurally complex faults over series of stick-slip events. Geophysical Journal International, 197, 1705–1718.

Goebel, T. H. W., Brodsky, E. E., & Dresen, G. (2023). Fault Roughness Promotes Earthquake-Like Aftershock Clustering in the Lab. Geophysical Research Letters, 50, 2022 101241.

Goebel, T. H. W., Kwiatek, G., Becker, T. W., Brodsky, E. E., & Dresen, G. (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45, 815–818.

Goertz‐Allmann, B. P., Gibbons, S. J., Oye, V., Bauer, R., & Will, R. (2017). Characterization of induced seismicity patterns derived from internal structure in event clusters. Journal of Geophysical Research: Solid Earth, 122, 3875–3894.

Gomberg, J. S., Shedlock, K. M., & Roecker, S. W. (1990). The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bulletin of the Seismological Society of America, 80, 1605–1628.

Gong, J., & McGuire, J. J. (2021). Constraints on the Geometry of the Subducted Gorda Plate From Converted Phases Generated by Local Earthquakes. Journal of Geophysical Research: Solid Earth, 126.

Got, J.-L., Fréchet, J., & Klein, F. W. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research, 99, 15375.

Graymer, R. W., Langenheim, V. E., Simpson, R. W., Jachens, R. C., & Ponce, D. A. (2007). Relatively simple through-going fault planes at large-earthquake depth may be concealed by the surface complexity of strike-slip faults. Geological Society of London, Special Publications, 290, 189–201.

Hamaguchi, H., & Hasegawa, A. (1975). Recurrent Occurrence of the Earthquakes with Similar Wave Forms and Its Related Problems. Zisin1, 28, 153–169.

Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., & Litchfield, N. (2017). Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake, New Zealand. Science, 356, 7194.

Hardebeck, J., & Husen, S. (2010). Earthquake location accuracy, Community Online Resource for Statistical Seismicity Analysis.

Harding, T. P. (1985). Seismic Characteristics and Identification of Negative Flower Structures, Positive Flower Structures, and Positive Structural Inversion1. AAPG Bulletin, 69, 582–600.

Hauksson, E. (2002). The 1999 Mw 7.1 Hector Mine, California, Earthquake Sequence: Complex Conjugate Strike-Slip Faulting. Bulletin of the Seismological Society of America, 92, 1154–1170.

Hauksson, E., Jones, L. M., Hutton, K., & Eberhart-Phillips, D. (1993). The 1992 Landers Earthquake Sequence: Seismological observations. Journal of Geophysical Research, 98, 19835–19858.

Hauksson, E., Olson, B., Grant, A., Andrews, J. R., Chung, A. I., Hough, S. E., & Kanamori, H. (2020). The Normal‐Faulting 2020 Mw 5.8 Lone Pine, Eastern California, Earthquake Sequence. Seismological Research Letters.

Hauksson, E., Stock, J. M., & Husker, A. L. (2022). Seismicity in a weak crust: the transtensional tectonics of the Brawley Seismic Zone section of the Pacific–North America Plate Boundary in Southern California, USA. Geophysical Journal International, 231, 717–735.

Hauksson, E., Yang, W., & Shearer, P. M. (2012). Waveform Relocated Earthquake Catalog for Southern California. Bulletin of the Seismological Society of America, 102, 2239–2244.

Hole, J. A., Thybo, H., & Klemperer, S. L. (1996). Seismic reflections from the near-vertical San Andreas Fault. Geophysical Research Letters, 23, 237–240.

Ishida, M., & Kanamori, H. (1978). The foreshock activity of the 1971 San Fernando earthquake, California. Bulletin of the Seismological Society of America, 68, 1265–1279.

Ito, A. (1985). High Resolution Relative Hypocenters of Similar Earthquakes by Cross-Spectral Analysis Method. Journal of Physics of the Earth, 33, 279–294.

Jiang, J., & Lapusta, N. (2016). Deeper penetration of large earthquakes on seismically quiescent faults. Science, 352, 1293–1297.

Jones, R. H., & Stewart, R. C. (1997). A method for determining significant structures in a cloud of earthquakes. Journal of Geophysical Research, 102, 8245–8254.

Kamer, Y., Ouillon, G., Sornette, D., & Wössner, J. (2015). Condensation of earthquake location distributions: Optimal spatial information encoding and application to multifractal analysis of south Californian seismicity. Physical Review E, 92.

Kilb, D., & Rubin, A. M. (2002). Implications of diverse fault orientations imaged in relocated aftershocks of the Mount Lewis, ML 5.7, California, earthquake. Journal of Geophysical Research: Solid Earth, 107.

Kim, W., Hong, T.-K., Lee, J., & Taira, T. (2016). Seismicity and fault geometry of the San Andreas fault around Parkfield, California and their implications. Tectonophysics, 677–678, 34–44.

Kim, Y.-S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26, 503–517.

King, G. C. P. (1986). Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and Applied Geophysics, 124, 567–585.

King, G. C. P., & Nábělek, J. (1985). Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. Science, 228, 984–987.

Klinger, Y. (2010). Relation between continental strike-slip earthquake segmentation and thickness of the crust. Journal of Geophysical Research: Solid Earth, 115.

Koehler, R. D., Dee, S., Elliott, A., Hatem, A., Pickering, A., Pierce, I., & Seitz, G. (2021). Field Response and Surface‐Rupture Characteristics of the 2020 M 6.5 Monte Cristo Range Earthquake, Central Walker Lane, Nevada. Seismological Research Letters, 92, 823–839.

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science and Discovery, 8.

Landro, G., Amoroso, O., Stabile, T. A., Matrullo, E., Lomax, A., & Zollo, A. (2015). High-precision differential earthquake location in 3-D models: evidence for a rheological barrier controlling the microseismicity at the Irpinia fault zone in southern Apennines. Geophysical Journal International, 203, 1821–1831.

Langbein, J., Borcherdt, R., Dreger, D., Fletcher, J., Hardebeck, J. L., Hellweg, M., & Ji, C. (2005). Preliminary Report on the M 6.0 Parkfield, California Earthquake. Seismological Research Letters, 76, 10–26.

Latorre, D., Mirabella, F., Chiaraluce, L., Trippetta, F., & Lomax, A. (2016). Assessment of earthquake locations in 3‐D deterministic velocity models: A case study from the Altotiberina Near Fault Observatory (Italy). Journal of Geophysical Research: Solid Earth, 121, 8113–8135.

Lin, G., & Shearer, P. (2005). Tests of relative earthquake location techniques using synthetic data. Journal of Geophysical Research: Solid Earth, 110.

Lin, G., Shearer, P. M., & Hauksson, E. (2007). Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. Journal of Geophysical Research, 112, 12309.

Liu, J., Sieh, K., & Hauksson, E. (2003). A Structural Interpretation of the Aftershock “Cloud” of the 1992 Mw 7.3 Landers Earthquake. Bulletin of the Seismological Society of America, 93, 1333–1344.

Lomax, A. (2005). A Reanalysis of the Hypocentral Location and Related Observations for the Great 1906 California Earthquake. Bulletin of the Seismological Society of America, 95, 861–877.

Lomax, A. (2008). Location of the Focus and Tectonics of the Focal Region of the California Earthquake of 18 April 1906. Bulletin of the Seismological Society of America, 98, 846–860.

Lomax, A. (2020a). Absolute Location of 2019 Ridgecrest Seismicity Reveals a Shallow Mw 7.1 Hypocenter, Migrating and Pulsing Mw 7.1 Foreshocks, and Duplex Mw 6.4 Ruptures. Bulletin of the Seismological Society of America, 110, 1845–1858.

Lomax, A. (2020b). The 2020 Mw 6.5 Monte Cristo Range, Nevada earthquake: relocated seismicity shows rupture of a complete shear-crack system.

Lomax, A., & Henry, P. (2022). Major California faults are smooth across multiple scales at seismogenic depth. In S. Baize & M. Rizza (Eds.), Proceedings of the 11th International INQUA Workshop on Paleoseismology, Active Tectonics and Archaeoseismology.

Lomax, A., McPherson, R. C., Patton, J. R., Hellweg, M., Dengler, L., & Dreger, D. S. (2022). Application of High-precision, NLL-SSST-coherence Earthquake Location to Untangle the 3D Seismo-tectonics of the Mendocino Triple-junction, Northern California. Seismological Research Letters, 93, 1240.

Lomax, A., Michelini, A., & Curtis, A. (2014). Earthquake Location, Direct, Global-Search Methods. In R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 1–33). Springer New York.

Lomax, A., & Savvaidis, A. (2019). Improving Absolute Earthquake Location in West Texas Using Probabilistic, Proxy Ground-Truth Station Corrections. Journal of Geophysical Research: Solid Earth, 124, 11447–11465.

Lomax, A., & Savvaidis, A. (2022). High-Precision Earthquake Location Using Source-Specific Station Terms and Inter-Event Waveform Similarity. Journal of Geophysical Research: Solid Earth, 127.

Lomax, A., & Savvaidis, A. (2021-05-13). Files and instructions for running NLL-SSST-coherence for a subset of Parkfield events, Zenodo.

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In Thurber, C. H., & N. Rabinowitz (Eds.), Advances in Seismic Event Location Modern Approaches in Geophysics (Vol. 18, pp. 101-134,). Springer Netherlands.

Lomax, Anthony, & Henry, P. (2023). Supplementary Datasets and Movies for the Paper “Major California faults are smooth across multiple scales at seismogenic depth.”

Ma, S., & Andrews, D. J. (2010). Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault. Journal of Geophysical Research: Solid Earth, 115.

Madariaga, R. (1977). High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophysical Journal International, 51, 625–651.

Manighetti, I., Mercier, A., & Barros, L. (2021). Fault Trace Corrugation and Segmentation as a Measure of Fault Structural Maturity. Geophysical Research Letters, 48.

Manighetti, Isabelle, Campillo, M., Bouley, S., & Cotton, F. (2007). Earthquake scaling, fault segmentation, and structural maturity. Earth and Planetary Science Letters, 253, 429–438.

Marone, C., & Scholz, C. H. (1988). The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 15, 621–624.

Matoza, R. S., Shearer, P. M., Lin, G., Wolfe, C. J., & Okubo, P. G. (2013). Systematic relocation of seismicity on Hawaii Island from 1992 to 2009 using waveform cross correlation and cluster analysis. Journal of Geophysical Research: Solid Earth, 118, 2275–2288.

McClay, K., & Bonora, M. (2001). Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin, 85, 233–260.

Michael, A. J. (1988). Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence. Bulletin of the Seismological Society of America, 78, 1199–1221.

Michele, M., Chiaraluce, L., Stefano, R. D., & Waldhauser, F. (2020). Fine-Scale Structure of the 2016–2017 Central Italy Seismic Sequence From Data Recorded at the Italian National Network. Journal of Geophysical Research: Solid Earth, 125.

Michelini, A., & Lomax, A. (2004). The effect of velocity structure errors on double-difference earthquake location. Geophysical Research Letters, 31.

Michelini, A., & McEvilly, T. V. (1991). Seismological studies at Parkfield. I. Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization. Bulletin of the Seismological Society of America, 81, 524–552.

Muhuri, S. K., Dewers, T. A., Scott, T. E., Jr., & Reches, Z. (2003). Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology, 31, 881–884.

Myers, S. C. (2000). Improving Sparse Network Seismic Location with Bayesian Kriging and Teleseismically Constrained Calibration Events. Bulletin of the Seismological Society of America, 90, 199–211.

Nadeau, R., Antolik, M., Johnson, P. A., Foxall, W., & McEvilly, T. V. (1994). Seismological studies at Parkfield III: microearthquake clusters in the study of fault-zone dynamics. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 31, 271.

Nakamura, Y. (1978). A1 moonquakes: source distribution and mechanism. Proceedings of the Lunar and Planetary Science Conference, 3589–3607.

Naylor, M. A., Mandl, G., & Supesteijn, C. H. K. (1986). Fault geometries in basement-induced wrench faulting under different initial stress states. Journal of Structural Geology, 8, 737–752.

NCEDC. (2014). Northern California Earthquake Data Center.

Neves, M., Peng, Z., & Lin, G. (2022). A High‐Resolution Earthquake Catalog for the 2004 Mw 6 Parkfield Earthquake Sequence Using a Matched Filter Technique. Seismological Research Letters.

Nicholson, T., Clarke, D., & Townend, J. (2008). Regional earthquake location using empirical traveltimes in a region of strong lateral velocity heterogeneity. Geophysical Journal International, 175, 560–570.

Nooshiri, N., Saul, J., Heimann, S., Tilmann, F., & Dahm, T. (2017). Revision of earthquake hypocentre locations in global bulletin data sets using source-specific station terms. Geophysical Journal International, 208, 589–602.

Oglesby, D. D. (2005). The Dynamics of Strike-Slip Step-Overs with Linking Dip-Slip Faults. Bulletin of the Seismological Society of America, 95, 1604–1622.

Oglesby, D. D., & Mai, P. M. (2012). Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophysical Journal International, 188, 1071–1087.

Okubo, P. G., & Dieterich, J. H. (1984). Effects of physical fault properties on frictional instabilities produced on simulated faults. Journal of Geophysical Research: Solid Earth, 89, 5817–5827.

Oppenheimer, D. H., Bakun, W. H., & Lindh, A. G. (1990). Slip partitioning of the Calaveras Fault, California, and prospects for future earthquakes. Journal of Geophysical Research: Solid Earth, 95, 8483–8498.

Oppenheimer, D. H., Bakun, W. H., Parsons, T., Simpson, R. W., Boatwright, J., & Uhrhammer, R. A. (2010). The 2007 M5.4 Alum Rock, California, earthquake: Implications for future earthquakes on the central and southern Calaveras Fault. Journal of Geophysical Research: Solid Earth, 115.

Parsons, T. (2002). Crustal Structure of the Coastal and Marine San Francisco Bay Region, California [Techreport]. U.S. Geological Survey.

Parsons, T., & Minasian, D. L. (2015). Earthquake rupture process recreated from a natural fault surface. Journal of Geophysical Research: Solid Earth, 120, 7852–7862.

Pavlis, G. L. (1986). Appraising earthquake hypocenter location errors: A complete, practical approach for single-event locations. Bulletin of the Seismological Society of America, 76, 1699–1717.

Pavlis, G. L., & Hokanson, N. B. (1985a). Separated earthquake location. Journal of Geophysical Research: Solid Earth, 90, 12777–12789.

Pavlis, G. L., & Hokanson, N. B. (1985b). Separated earthquake location. Journal of Geophysical Research: Solid Earth, 90, 12777–12789.

Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., & Gaudemer, Y. (2016). Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121, 3666–3685.

Perrin, C., Waldhauser, F., Choi, E., & Scholz, C. H. (2019). Persistent fine-scale fault structure and rupture development: A new twist in the Parkfield, California, story. Earth and Planetary Science Letters, 521, 128–138.

Podvin, P., & Lecomte, I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International, 105, 271–284.

Poliakov, A. N. B., Dmowska, R., & Rice, J. R. (2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. Journal of Geophysical Research: Solid Earth, 107.

Ponce, D. A., Simpson, R. W., Graymer, R. W., & Jachens, R. C. (2004). Gravity, magnetic, and high-precision relocated seismicity profiles suggest a connection between the Hayward and Calaveras Faults, northern California. Geochemistry, Geophysics, Geosystems, 5.

Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research, 89, 5719–5731.

Poupinet, G., Glangeaud, F., & Cote, P. (1982). P-Time delay measurement of a doublet of microearthquakes. Proceedings of ICASSP 1982: IEEE International Conference on Acoustics, Speech, and Signal Processing, 7, 1516-1519,.

Power, W. L., Tullis, T. E., & Weeks, J. D. (1988). Roughness and wear during brittle faulting. Journal of Geophysical Research: Solid Earth, 93, 15268–15278.

Preuss, S., Ampuero, J. P., Gerya, T., & Dinther, Y. van. (2020). Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults. Solid Earth, 11, 1333-1360,.

Ramos, M. D., Thakur, P., Huang, Y., Harris, R. A., & Ryan, K. J. (2022). Working with Dynamic Earthquake Rupture Models: A Practical Guide. Seismological Research Letters, 93, 2096–2110.

Reasenberg, P., & Ellsworth, W. L. (1982). Aftershocks of the Coyote Lake. Journal of Geophysical Research, 87, 10637–10655.

Reid, H. F., & Lawson, A. C. (1908). The California earthquake of April 18, 1906: report of the State Earthquake Investigation Commission, in two volumes and atlas. Carnegie Institution of Washington publication.

Renard, F., & Candela, T. (2017). Scaling of Fault Roughness and Implications for Earthquake Mechanics. In Fault Zone Dynamic Processes (pp. 195–215). American Geophysical Union.

Renard, F., Voisin, C., Marsan, D., & Schmittbuhl, J. (2006). High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales. Geophysical Research Letters, 33.

Richard, P., Naylor, M., & Koopman, A. (1995). Experimental models of strike-slip tectonics. Petroleum Geoscience.

Richards, P. G., Waldhauser, F., Schaff, D., & Kim, W.-Y. (2006). The Applicability of Modern Methods of Earthquake Location. Pure and Applied Geophysics, 163, 351–372.

Richards-Dinger, K. B., & Shearer, P. M. (2000). Earthquake locations in southern California obtained using source-specific station terms. Journal of Geophysical Research, 105, 10939–10960.

Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L., Bergman, E. A., & Engdahl, E. R. (2003). Ability of a global three-dimensional model to locate regional events. Journal of Geophysical Research, 108.

Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., & Zhan, Z. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366, 346–351.

Rowe, C. A., Aster, R. C., Phillips, W. S., Jones, R. H., Borchers, B., & Fehler, M. C. (2002). Using Automated, High-precision Repicking to Improve Delineation of Microseismic Structures at the Soultz Geothermal Reservoir. Pure and Applied Geophysics, 159, 34.

Rubin, A. M., & Gillard, D. (2000). Aftershock asymmetry/rupture directivity among central San Andreas fault microearthquakes. Journal of Geophysical Research: Solid Earth, 105, 19095–19109.

Rubin, A. M., Gillard, D., & Got, J.-L. (1999). Streaks of microearthquakes along creeping faults. Nature, 400, 635–641.

Ryaboy, V., Baumgardt, D. R., Firbas, P., & Dainty, A. M. (2001). Application of 3-D Crustal and Upper Mantle Velocity Model of North America for Location of Regional Seismic Events. Pure and Applied Geophysics, 158, 79–103.

Sagy, A., Brodsky, E. E., & Axen, G. J. (2007). Evolution of fault-surface roughness with slip. Geology, 35, 283–286.

Savran, W. H., & Olsen, K. B. (2020). Kinematic Rupture Generator Based on 3-D Spontaneous Rupture Simulations Along Geometrically Rough Faults. Journal of Geophysical Research: Solid Earth, 125, 2020 019464.

SCEDC. (2013). Southern California Earthquake Data Center.

Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., & Ellsworth, W. L. (2002). High-resolution image of Calaveras Fault seismicity. Journal of Geophysical Research: Solid Earth, 107.

Schlaphorst, D., Rychert, C. A., Harmon, N., Hicks, S. P., Bogiatzis, P., Kendall, J.-M., & Abercrombie, R. E. (2023). Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations. Geophysical Journal International, 124.

Schoenball, M., & Ellsworth, W. L. (2017). Waveform‐Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network. Seismological Research Letters, 88, 1252–1258.

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391, 37–42.

Scholz, C. H. (2019). The Mechanics of Earthquakes and Faulting. Cambridge University Press.

Shearer, P. M. (1997). Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence. Journal of Geophysical Research, 102, 8269–8283.

Shearer, P. M. (2005). Southern California Hypocenter Relocation with Waveform Cross-Correlation, Part 2: Results Using Source-Specific Station Terms and Cluster Analysis. Bulletin of the Seismological Society of America, 95, 904–915.

Shelly, D. R. (2020). A High-Resolution Seismic Catalog for the Initial 2019 Ridgecrest Earthquake Sequence: Foreshocks, Aftershocks, and Faulting Complexity. Seismological Research Letters, 91, 1971–1978.

Shi, Z., & Day, S. M. (2013). Rupture dynamics and ground motion from 3-D rough-fault simulations. Journal of Geophysical Research: Solid Earth, 118, 1122–1141.

Sibson, R. H. (1982). Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bulletin of the Seismological Society of America, 72, 151–163.

Sibson, R. H. (1985). Stopping of earthquake ruptures at dilational fault jogs. Nature, 316, 248–251.

Simpson, R. W., Barall, M., Langbein, J., Murray, J. R., & Rymer, M. J. (2006). San Andreas Fault Geometry in the Parkfield, California, Region. Bulletin of the Seismological Society of America, 96, 28–37.

Smith, S. W., Knapp, J. S., & McPherson, R. C. (1993). Seismicity of the Gorda Plate, structure of the continental margin, and an eastward jump of the Mendocino Triple Junction. Journal of Geophysical Research: Solid Earth, 98, 8153–8171.

Stauder, W., & Ryall, A. (1967). Spatial distribution and source mechanism of microearthquakes in Central Nevada. Bulletin of the Seismological Society of America, 57, 1317–1345.

Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604.

Stirling, M. W., Wesnousky, S. G., & Shimazaki, K. (1996). Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey. Geophysical Journal International, 124, 833–868.

Thorbjarnardottir, B. S., & Pechmann, J. C. (1987). Constraints on relative earthquake locations from cross-correlation of waveforms. Bulletin of the Seismological Society of America, 77, 1626–1634.

Thurber, C. H. (1983). Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area, central California. Journal of Geophysical Research: Solid Earth, 88, 8226–8236.

Thurber, C. H., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., & Eberhart-Phillips, D. (2006). Three-Dimensional Compressional Wavespeed Model, Earthquake Relocations, and Focal Mechanisms for the Parkfield, California, Region. Bulletin of the Seismological Society of America, 96, 38–49.

Trugman, D. T., & Dunham, E. M. (2014). A 2D Pseudodynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults. Bulletin of the Seismological Society of America, 104, 95–112.

Trugman, D. T., & Shearer, P. M. (2017). GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 88, 379–391.

Tucker, W., Herrin, E., & Freedman, H. W. (1968). Some statistical aspects of the estimation of seismic travel times. Bulletin of the Seismological Society of America, 58, 1243–1260.

Wagner, M., Husen, S., Lomax, A., Kissling, E., & Giardini, D. (2013). High-precision earthquake locations in Switzerland using regional secondary arrivals in a 3-D velocity model. Geophysical Journal International, 193, 1589–1607.

Waldhauser, F. (2009). Near-Real-Time Double-Difference Event Location Using Long-Term Seismic Archives, with Application to Northern California. Bulletin of the Seismological Society of America, 99, 2736–2748.

Waldhauser, F., & Ellsworth, W. L. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90, 1353-1368,.

Waldhauser, F., Ellsworth, W. L., Schaff, D. P., & Cole, A. (2004). Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophysical Research Letters, 31.

Waldhauser, F., & Schaff, D. P. (2008). Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods. Journal of Geophysical Research: Solid Earth, 113.

Watt, J. T., Ponce, D. A., Graymer, R. W., Jachens, R. C., & Simpson, R. W. (2014). Subsurface geometry of the San Andreas-Calaveras fault junction: Influence of serpentinite and the Coast Range Ophiolite. Tectonics, 33, 2025–2044.

Wesnousky, S. G. (1988). Seismological and structural evolution of strike-slip faults. Nature, 335, 340–343.

Wesnousky, S. G. (2006). Predicting the endpoints of earthquake ruptures. Nature, 444, 358-360,.

Wesnousky, S. G. (2008). Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98, 1609–1632.

Williams, R. T., & Fagereng, A. (2022). The Role of Quartz Cementation in the Seismic Cycle: A Critical Review. Reviews of Geophysics, 60.

Wu, J. E., McClay, K., Whitehouse, P., & Dooley, T. (2009). 4D analogue modelling of transtensional pull-apart basins. Marine and Petroleum Geology, 26, 1608–1623.

Zhou, H. (1994). Rapid three-dimensional hypocentral determination using a master station method. Journal of Geophysical Research, 99.

Zhou, Y., McNally, K. C., & Lay, T. (1993). Analysis of the 1986 Mt. Lewis, California, earthquake: preshock sequence-mainshock-aftershock sequence. Physics of the Earth and Planetary Interiors, 75, 267–288.

Zoback, M. L., Jachens, R. C., & Olson, J. A. (1999). Abrupt along-strike change in tectonic style: San Andreas Fault zone, San Francisco Peninsula. Journal of Geophysical Research, 104, 10719–10742.




How to Cite

Lomax, A., & Henry, P. (2023). Major California faults are smooth across multiple scales at seismogenic depth. Seismica, 2(1).