Major California faults are smooth across multiple scales at seismogenic depth
DOI:
https://doi.org/10.26443/seismica.v2i1.324Keywords:
fault geometry, Seismicity, fault smoothness, rupture physics, seismic hazard, CaliforniaAbstract
Surface traces of earthquake faults are complex and segmented on multiple scales. At seismogenic depth the detailed geometry of faults and earthquake rupture is mainly constrained by earthquake locations. Standard earthquake locations are usually too diffuse to constrain multi-scale fault geometry, while differential-timing relocation mainly improves finest scale precision. NLL-SSST-coherence, an enhanced, absolute-timing earthquake location procedure, iteratively generates traveltime corrections to improve multi-scale precision and uses waveform similarity to improve fine-scale precision. Here we apply NLL-SSST-coherence to large-earthquake sequences and background seismicity along strike-slip faults in California. Our relocated seismicity at seismogenic depth along major fault segments and around large-earthquake ruptures often defines smooth, planar or arcuate, near-vertical surfaces across the sub-km to 10’s of km scales. These results show that multi-scale smooth fault segments are characteristic of major, strike-slip fault zones and may be essential to large earthquake rupture. Our results suggest that smoothness and curvature of faults influences earthquake initiation, rupture, rupture direction and arrest, and can define earthquake hazard. The results corroborate that surface traces of strike-slip fault zones reflect complex, shallow deformation and not directly simpler, main slip surfaces at depth, and support use of planar or smoothly curved faults for modeling primary earthquake rupture.
References
Aki, K. (1979). Characterization of barriers on an earthquake fault. Journal of Geophysical Research: Solid Earth, 84, 6140–6148. https://doi.org/10.1029/JB084iB11p06140
Aki, K., & Lee, W. H. K. (1976). Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. Journal of Geophysical Research, 81, 4381–4399. https://doi.org/10.1029/JB081i023p04381
Antoine, S. L., Klinger, Y., Wang, K., & Burgmann, R. (2023). Diffuse deformation explains the magnitude-dependent coseismic shallow slip deficit. https://doi.org/10.21203/rs.3.rs-2536085/v1
Aviles, C. A., Scholz, C. H., & Boatwright, J. (1987). Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault. Journal of Geophysical Research, 92. https://doi.org/10.1029/JB092iB01p00331
Bakun, W. H. (1980). Seismic activity on the southern Calaveras Fault in central California. Bulletin of the Seismological Society of America, 70, 1181–1197. https://doi.org/10.1785/BSSA0700041181
Bakun, W. H., Aagaard, B., Dost, B., Ellsworth, W. L., Hardebeck, J. L., Harris, R. A., & Ji, C. (2005). Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 437, 969–974. https://doi.org/10.1038/nature04067
Bakun, W. H., Stewart, R. M., Bufe, C. G., & Marks, S. M. (1980). Implication of seismicity for failure of a section of the San Andreas Fault. Bulletin of the Seismological Society of America, 70, 185–201. https://doi.org/10.1785/BSSA0700010185
Barka, A. A., & Kadinsky-Cade, K. (1988). Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7, 663–684. https://doi.org/10.1029/TC007i003p00663
Beeler, N. M. (2023). On the scale-dependence of fault surface roughness. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2022JB024856
Ben-Zion, Y., & Sammis, C. G. (2003). Characterization of Fault Zones. Pure and Applied Geophysics, 160, 677–715. https://doi.org/10.1007/PL00012554
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81, 530–533. https://doi.org/10.1785/gssrl.81.3.530
Billings, S. D., Sambridge, M. S., & Kennett, B. L. N. (1994). Errors in hypocenter location: Picking, model, and magnitude dependence. Bulletin of the Seismological Society of America, 84, 1978–1990.
Bondár, I., & McLaughlin, K. L. (2009). A New Ground Truth Data Set For Seismic Studies. Seismological Research Letters, 80, 465–472. https://doi.org/10.1785/gssrl.80.3.465
Bouchon, M., Karabulut, H., Bouin, M.-P., Schmittbuhl, J., Vallée, M., Archuleta, R., & Das, S. (2010). Faulting characteristics of supershear earthquakes. Tectonophysics, 493, 244–253. https://doi.org/10.1016/j.tecto.2010.06.011
Bruhat, L., Fang, Z., & Dunham, E. M. (2016). Rupture complexity and the supershear transition on rough faults. Journal of Geophysical Research: Solid Earth, 121, 210–224. https://doi.org/10.1002/2015JB012512
Buehler, J. S., & Shearer, P. M. (2016). Characterizing Earthquake Location Uncertainty in North America Using Source–Receiver Reciprocity and USArrayShort. Bulletin of the Seismological Society of America, 106, 2395–2401. https://doi.org/10.1785/0120150173
Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., & Brodsky, E. E. (2012). Roughness of fault surfaces over nine decades of length scales. Journal of Geophysical Research: Solid Earth, 117. https://doi.org/10.1029/2011JB009041
Cattaneo, M., Augliera, P., Spallarossa, D., & Eva, C. (1997). Reconstruction of seismogenetic structures by multiplet analysis: An example of Western Liguria, Italy. Bulletin of the Seismological Society of America, 87, 971–986. https://doi.org/10.1785/BSSA0870040971
Chaussard, E., Bürgmann, R., Fattahi, H., Nadeau, R. M., Taira, T., Johnson, C. W., & Johanson, I. (2015). Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults. Geophysical Research Letters, 42, 2734–2741. https://doi.org/10.1002/2015GL063575
Christie-Blick, N., & Biddle, K. T. (1985). Deformation and Basin Formation along Strike-Slip Faults. In K. T. Biddle & N. Christie-Blick (Eds.), Strike-Slip Deformation, Basin Formation, and Sedimentation (Vol. 37). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.85.37.0001
Cocco, M., Aretusini, S., Cornelio, C., Nielsen, S. B., Spagnuolo, E., Tinti, E., & Toro, G. (2023). Fracture Energy and Breakdown Work During Earthquakes. Annual Review of Earth and Planetary Sciences, 51. https://doi.org/10.1146/annurev-earth-071822-100304
Cockerham, R. S., & Eaton, J. P. (1984). Morgan Hill earthquake and its aftershocks: April 24 through September 30. In The Morgan Hill, California, Earthquake. California Deptartment of Conservation, Division of Mines.
Crosson, R. S. (1976). Crustal structure modeling of earthquake data: 1. Simultaneous least squares estimation of hypocenter and velocity parameters. Journal of Geophysical Research, 81, 3036–3046. https://doi.org/10.1029/JB081i017p03036
Darold, A., Holland, A., Chen, C., & Youngblood, A. (2014). Preliminary Analysis of Seismicity Near Eagleton 1-29, Carter County [Techreport]. Oklahoma Geological Survey. http://ogs.ou.edu/docs/openfile/OF2-2014.pdf
Das, S., & Aki, K. (1977). Fault plane with barriers: A versatile earthquake model. Journal of Geophysical Research, 82, 5658–5670. https://doi.org/10.1029/JB082i036p05658
Das, S., & Henry, C. (2003). Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, 41. https://doi.org/10.1029/2002RG000119
Dewey, J. W. (1976). Seismicity of Northern Anatolia. Bulletin of the Seismological Society of America, 66, 843–868. https://doi.org/10.1785/BSSA0660030843
Dieterich, J. H., & Smith, D. E. (2010). Nonplanar Faults: Mechanics of Slip and Off-fault Damage. In Yehuda Ben-Zion & C. Sammis (Eds.), Mechanics, Structure and Evolution of Fault Zones (pp. 1799–1815). Pageoph Topical Volumes. https://doi.org/10.1007/978-3-0346-0138-2_12
Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research, 101, 22371–22392. https://doi.org/10.1029/96JB02269
Dooley, T. P., & Schreurs, G. (2012). Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574–575, 1–71. https://doi.org/10.1016/j.tecto.2012.05.030
Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., & Ratchkovski, N. A. (2003). The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science, 300, 1113–1118. https://doi.org/10.1126/science.1082703
Ellsworth, W. L. (1975). Bear Valley, California, earthquake sequence of February-March 1972. Bulletin of the Seismological Society of America, 65, 483–506. https://doi.org/10.1785/BSSA0650020483
Emre, O., Duman, T. Y., Ozalp, S., Şaroğlu, F., Olgun, S., Elmacı, H., & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229–3275. https://doi.org/10.1007/s10518-016-0041-2
Emre, O., Kondo, H., Ozalp, S., & Elmaci, H. (2021). Fault geometry, segmentation and slip distribution associated with the 1939 Erzincan earthquake rupture along the North Anatolian fault, Turkey. Geological Society of London, Special Publications, 501, 23–70. https://doi.org/10.1144/SP501-2019-141
Evans, J., Shipton, Z. K., Pachell, L., S., & Robeson, K. (2000). The structure and composition of exhumed faults, and their implications for seismic processes. Proceedings of the 3rd Conference on Tectonic Problems of the San Andreas System. http://eprints.gla.ac.uk/938/1/Evansetal2000.pdf
Fang, Z., & Dunham, E. M. (2013). Additional shear resistance from fault roughness and stress levels on geometrically complex faults. Journal of Geophysical Research: Solid Earth, 118, 3642–3654. https://doi.org/10.1002/jgrb.50262
Fehler, M., Phillips, W. S., House, L., Jones, R. H., Aster, R., & Rowe, C. (2000). Improved Relative Locations of Clustered Earthquakes Using Constrained Multiple Event Location. Bulletin of the Seismological Society of America, 90, 775–780. https://doi.org/10.1785/0119990095
Ferretti, G. (2005). An Improved Method for the Recognition of Seismic Families: Application to the Garfagnana-Lunigiana Area, Italy. Bulletin of the Seismological Society of America, 95, 1903–1915. https://doi.org/10.1785/0120040078
Finzi, Y., Hearn, E. H., Ben-Zion, Y., & Lyakhovsky, V. (2009). Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology. Pure and Applied Geophysics, 166, 1537–1573. https://doi.org/10.1007/s00024-009-0522-1
Fliss, S., Bhat, H. S., Dmowska, R., & Rice, J. R. (2005). Fault branching and rupture directivity. Journal of Geophysical Research: Solid Earth, 110. https://doi.org/10.1029/2004JB003368
Font, Y., Kao, H., Lallemand, S., Liu, C.-S., & Chiao, L.-Y. (2004). Hypocentre determination offshore of eastern Taiwan using the Maximum Intersection method. Geophysical Journal International, 158, 655–675. https://doi.org/10.1111/j.1365-246X.2004.02317.x
Frémont, M.-J., & Malone, S. D. (1987). High precision relative locations of earthquakes at Mount St Helens, Washington. Journal of Geophysical Research: Solid Earth, 92, 10223–10236. https://doi.org/10.1029/JB092iB10p10223
Frohlich, C. (1979). An efficient method for joint hypocenter determination for large groups of earthquakes. Computers and Geosciences, 5, 387–389. https://doi.org/10.1016/0098-3004(79)90034-7
Gedney, L. D. (1967). A preliminary study of focal mechanisms of small earthquakes in the central Nevada region [University of Nevada, Reno]. https://scholarworks.unr.edu//handle/11714/1307
Geller, R. J., & Mueller, C. S. (1980). Four similar earthquakes in central California. Geophysical Research Letters, 7, 821–824. https://doi.org/10.1029/GL007i010p00821
Gibbons, S. J., Pabian, F., Näsholm, S. P., Kværna, T., & Mykkeltveit, S. (2017). Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections. Geophysical Journal International, 208, 101–117. https://doi.org/10.1093/gji/ggw379
Goebel, T. H. W., Becker, T. W., Sammis, C. G., Dresen, G., & Schorlemmer, D. (2014). Off-fault damage and acoustic emission distributions during the evolution of structurally complex faults over series of stick-slip events. Geophysical Journal International, 197, 1705–1718. https://doi.org/10.1093/gji/ggu074
Goebel, T. H. W., Brodsky, E. E., & Dresen, G. (2023). Fault Roughness Promotes Earthquake-Like Aftershock Clustering in the Lab. Geophysical Research Letters, 50, 2022 101241. https://doi.org/10.1029/2022GL101241
Goebel, T. H. W., Kwiatek, G., Becker, T. W., Brodsky, E. E., & Dresen, G. (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45, 815–818. https://doi.org/10.1130/G39147.1
Goertz‐Allmann, B. P., Gibbons, S. J., Oye, V., Bauer, R., & Will, R. (2017). Characterization of induced seismicity patterns derived from internal structure in event clusters. Journal of Geophysical Research: Solid Earth, 122, 3875–3894. https://doi.org/10.1002/2016JB013731
Gomberg, J. S., Shedlock, K. M., & Roecker, S. W. (1990). The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bulletin of the Seismological Society of America, 80, 1605–1628. https://doi.org/10.1785/BSSA08006A1605
Gong, J., & McGuire, J. J. (2021). Constraints on the Geometry of the Subducted Gorda Plate From Converted Phases Generated by Local Earthquakes. Journal of Geophysical Research: Solid Earth, 126. https://doi.org/10.1029/2020JB019962
Got, J.-L., Fréchet, J., & Klein, F. W. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research, 99, 15375. https://doi.org/10.1029/94JB00577
Graymer, R. W., Langenheim, V. E., Simpson, R. W., Jachens, R. C., & Ponce, D. A. (2007). Relatively simple through-going fault planes at large-earthquake depth may be concealed by the surface complexity of strike-slip faults. Geological Society of London, Special Publications, 290, 189–201. https://doi.org/10.1144/SP290.5
Hamaguchi, H., & Hasegawa, A. (1975). Recurrent Occurrence of the Earthquakes with Similar Wave Forms and Its Related Problems. Zisin1, 28, 153–169. https://doi.org/10.4294/zisin1948.28.2_153
Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., & Litchfield, N. (2017). Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake, New Zealand. Science, 356, 7194. https://doi.org/10.1126/science.aam7194
Hardebeck, J., & Husen, S. (2010). Earthquake location accuracy, Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/CORSSA-55815573
Harding, T. P. (1985). Seismic Characteristics and Identification of Negative Flower Structures, Positive Flower Structures, and Positive Structural Inversion1. AAPG Bulletin, 69, 582–600. https://doi.org/10.1306/AD462538-16F7-11D7-8645000102C1865D
Hauksson, E. (2002). The 1999 Mw 7.1 Hector Mine, California, Earthquake Sequence: Complex Conjugate Strike-Slip Faulting. Bulletin of the Seismological Society of America, 92, 1154–1170. https://doi.org/10.1785/0120000920
Hauksson, E., Jones, L. M., Hutton, K., & Eberhart-Phillips, D. (1993). The 1992 Landers Earthquake Sequence: Seismological observations. Journal of Geophysical Research, 98, 19835–19858. https://doi.org/10.1029/93JB02384
Hauksson, E., Olson, B., Grant, A., Andrews, J. R., Chung, A. I., Hough, S. E., & Kanamori, H. (2020). The Normal‐Faulting 2020 Mw 5.8 Lone Pine, Eastern California, Earthquake Sequence. Seismological Research Letters. https://doi.org/10.1785/0220200324
Hauksson, E., Stock, J. M., & Husker, A. L. (2022). Seismicity in a weak crust: the transtensional tectonics of the Brawley Seismic Zone section of the Pacific–North America Plate Boundary in Southern California, USA. Geophysical Journal International, 231, 717–735. https://doi.org/10.1093/gji/ggac205
Hauksson, E., Yang, W., & Shearer, P. M. (2012). Waveform Relocated Earthquake Catalog for Southern California. Bulletin of the Seismological Society of America, 102, 2239–2244. https://doi.org/10.1785/0120120010
Hole, J. A., Thybo, H., & Klemperer, S. L. (1996). Seismic reflections from the near-vertical San Andreas Fault. Geophysical Research Letters, 23, 237–240. https://doi.org/10.1029/96GL00019
Ishida, M., & Kanamori, H. (1978). The foreshock activity of the 1971 San Fernando earthquake, California. Bulletin of the Seismological Society of America, 68, 1265–1279. https://doi.org/10.1785/BSSA0680051265
Ito, A. (1985). High Resolution Relative Hypocenters of Similar Earthquakes by Cross-Spectral Analysis Method. Journal of Physics of the Earth, 33, 279–294. https://doi.org/10.4294/jpe1952.33.279
Jiang, J., & Lapusta, N. (2016). Deeper penetration of large earthquakes on seismically quiescent faults. Science, 352, 1293–1297. https://doi.org/10.1126/science.aaf1496
Jones, R. H., & Stewart, R. C. (1997). A method for determining significant structures in a cloud of earthquakes. Journal of Geophysical Research, 102, 8245–8254. https://doi.org/10.1029/96JB03739
Kamer, Y., Ouillon, G., Sornette, D., & Wössner, J. (2015). Condensation of earthquake location distributions: Optimal spatial information encoding and application to multifractal analysis of south Californian seismicity. Physical Review E, 92. https://doi.org/10.1103/PhysRevE.92.022808
Kilb, D., & Rubin, A. M. (2002). Implications of diverse fault orientations imaged in relocated aftershocks of the Mount Lewis, ML 5.7, California, earthquake. Journal of Geophysical Research: Solid Earth, 107. https://doi.org/10.1029/2001JB000149
Kim, W., Hong, T.-K., Lee, J., & Taira, T. (2016). Seismicity and fault geometry of the San Andreas fault around Parkfield, California and their implications. Tectonophysics, 677–678, 34–44. https://doi.org/10.1016/j.tecto.2016.03.038
Kim, Y.-S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26, 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
King, G. C. P. (1986). Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and Applied Geophysics, 124, 567–585. https://doi.org/10.1007/BF00877216
King, G. C. P., & Nábělek, J. (1985). Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. Science, 228, 984–987. https://doi.org/10.1126/science.228.4702.984
Klinger, Y. (2010). Relation between continental strike-slip earthquake segmentation and thickness of the crust. Journal of Geophysical Research: Solid Earth, 115. https://doi.org/10.1029/2009JB006550
Koehler, R. D., Dee, S., Elliott, A., Hatem, A., Pickering, A., Pierce, I., & Seitz, G. (2021). Field Response and Surface‐Rupture Characteristics of the 2020 M 6.5 Monte Cristo Range Earthquake, Central Walker Lane, Nevada. Seismological Research Letters, 92, 823–839. https://doi.org/10.1785/0220200371
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science and Discovery, 8. https://doi.org/10.1088/1749-4699/8/1/014003
Landro, G., Amoroso, O., Stabile, T. A., Matrullo, E., Lomax, A., & Zollo, A. (2015). High-precision differential earthquake location in 3-D models: evidence for a rheological barrier controlling the microseismicity at the Irpinia fault zone in southern Apennines. Geophysical Journal International, 203, 1821–1831. https://doi.org/10.1093/gji/ggv397
Langbein, J., Borcherdt, R., Dreger, D., Fletcher, J., Hardebeck, J. L., Hellweg, M., & Ji, C. (2005). Preliminary Report on the M 6.0 Parkfield, California Earthquake. Seismological Research Letters, 76, 10–26. https://doi.org/10.1785/gssrl.76.1.10
Latorre, D., Mirabella, F., Chiaraluce, L., Trippetta, F., & Lomax, A. (2016). Assessment of earthquake locations in 3‐D deterministic velocity models: A case study from the Altotiberina Near Fault Observatory (Italy). Journal of Geophysical Research: Solid Earth, 121, 8113–8135. https://doi.org/10.1002/2016JB013170
Lin, G., & Shearer, P. (2005). Tests of relative earthquake location techniques using synthetic data. Journal of Geophysical Research: Solid Earth, 110. https://doi.org/10.1029/2004JB003380
Lin, G., Shearer, P. M., & Hauksson, E. (2007). Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. Journal of Geophysical Research, 112, 12309. https://doi.org/10.1029/2007JB004986
Liu, J., Sieh, K., & Hauksson, E. (2003). A Structural Interpretation of the Aftershock “Cloud” of the 1992 Mw 7.3 Landers Earthquake. Bulletin of the Seismological Society of America, 93, 1333–1344. https://doi.org/10.1785/0120020060
Lomax, A. (2005). A Reanalysis of the Hypocentral Location and Related Observations for the Great 1906 California Earthquake. Bulletin of the Seismological Society of America, 95, 861–877. https://doi.org/10.1785/0120040141
Lomax, A. (2008). Location of the Focus and Tectonics of the Focal Region of the California Earthquake of 18 April 1906. Bulletin of the Seismological Society of America, 98, 846–860. https://doi.org/10.1785/0120060405
Lomax, A. (2020a). Absolute Location of 2019 Ridgecrest Seismicity Reveals a Shallow Mw 7.1 Hypocenter, Migrating and Pulsing Mw 7.1 Foreshocks, and Duplex Mw 6.4 Ruptures. Bulletin of the Seismological Society of America, 110, 1845–1858. https://doi.org/10.1785/0120200006
Lomax, A. (2020b). The 2020 Mw 6.5 Monte Cristo Range, Nevada earthquake: relocated seismicity shows rupture of a complete shear-crack system. https://doi.org/10.31223/X5X015
Lomax, A., & Henry, P. (2022). Major California faults are smooth across multiple scales at seismogenic depth. In S. Baize & M. Rizza (Eds.), Proceedings of the 11th International INQUA Workshop on Paleoseismology, Active Tectonics and Archaeoseismology. https://doi.org/10.5281/zenodo.7736476
Lomax, A., McPherson, R. C., Patton, J. R., Hellweg, M., Dengler, L., & Dreger, D. S. (2022). Application of High-precision, NLL-SSST-coherence Earthquake Location to Untangle the 3D Seismo-tectonics of the Mendocino Triple-junction, Northern California. Seismological Research Letters, 93, 1240. https://doi.org/10.1785/0220220087
Lomax, A., Michelini, A., & Curtis, A. (2014). Earthquake Location, Direct, Global-Search Methods. In R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 1–33). Springer New York. https://doi.org/10.1007/978-3-642-27737-5_150-2
Lomax, A., & Savvaidis, A. (2019). Improving Absolute Earthquake Location in West Texas Using Probabilistic, Proxy Ground-Truth Station Corrections. Journal of Geophysical Research: Solid Earth, 124, 11447–11465. https://doi.org/10.1029/2019JB017727
Lomax, A., & Savvaidis, A. (2022). High-Precision Earthquake Location Using Source-Specific Station Terms and Inter-Event Waveform Similarity. Journal of Geophysical Research: Solid Earth, 127. https://doi.org/10.1029/2021JB023190
Lomax, A., & Savvaidis, A. (2021-05-13). Files and instructions for running NLL-SSST-coherence for a subset of Parkfield events, Zenodo. https://doi.org/10.5281/zenodo.4756709
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In Thurber, C. H., & N. Rabinowitz (Eds.), Advances in Seismic Event Location Modern Approaches in Geophysics (Vol. 18, pp. 101-134,). Springer Netherlands. https://doi.org/10.1007/978-94-015-9536-0_5
Lomax, Anthony, & Henry, P. (2023). Supplementary Datasets and Movies for the Paper “Major California faults are smooth across multiple scales at seismogenic depth.” https://doi.org/10.5281/zenodo.7802679
Ma, S., & Andrews, D. J. (2010). Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault. Journal of Geophysical Research: Solid Earth, 115. https://doi.org/10.1029/2009JB006382
Madariaga, R. (1977). High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophysical Journal International, 51, 625–651. https://doi.org/10.1111/j.1365-246X.1977.tb04211.x
Manighetti, I., Mercier, A., & Barros, L. (2021). Fault Trace Corrugation and Segmentation as a Measure of Fault Structural Maturity. Geophysical Research Letters, 48. https://doi.org/10.1029/2021GL095372
Manighetti, Isabelle, Campillo, M., Bouley, S., & Cotton, F. (2007). Earthquake scaling, fault segmentation, and structural maturity. Earth and Planetary Science Letters, 253, 429–438. https://doi.org/10.1016/j.epsl.2006.11.004
Marone, C., & Scholz, C. H. (1988). The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 15, 621–624. https://doi.org/10.1029/GL015i006p00621
Matoza, R. S., Shearer, P. M., Lin, G., Wolfe, C. J., & Okubo, P. G. (2013). Systematic relocation of seismicity on Hawaii Island from 1992 to 2009 using waveform cross correlation and cluster analysis. Journal of Geophysical Research: Solid Earth, 118, 2275–2288. https://doi.org/10.1002/jgrb.50189
McClay, K., & Bonora, M. (2001). Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin, 85, 233–260.
Michael, A. J. (1988). Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence. Bulletin of the Seismological Society of America, 78, 1199–1221. https://doi.org/10.1785/BSSA0780031199
Michele, M., Chiaraluce, L., Stefano, R. D., & Waldhauser, F. (2020). Fine-Scale Structure of the 2016–2017 Central Italy Seismic Sequence From Data Recorded at the Italian National Network. Journal of Geophysical Research: Solid Earth, 125. https://doi.org/10.1029/2019JB018440
Michelini, A., & Lomax, A. (2004). The effect of velocity structure errors on double-difference earthquake location. Geophysical Research Letters, 31. https://doi.org/10.1029/2004GL019682
Michelini, A., & McEvilly, T. V. (1991). Seismological studies at Parkfield. I. Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization. Bulletin of the Seismological Society of America, 81, 524–552. https://doi.org/10.1785/BSSA0810020524
Muhuri, S. K., Dewers, T. A., Scott, T. E., Jr., & Reches, Z. (2003). Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion? Geology, 31, 881–884. https://doi.org/10.1130/G19601.1
Myers, S. C. (2000). Improving Sparse Network Seismic Location with Bayesian Kriging and Teleseismically Constrained Calibration Events. Bulletin of the Seismological Society of America, 90, 199–211. https://doi.org/10.1785/0119980171
Nadeau, R., Antolik, M., Johnson, P. A., Foxall, W., & McEvilly, T. V. (1994). Seismological studies at Parkfield III: microearthquake clusters in the study of fault-zone dynamics. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 31, 271. https://doi.org/10.1016/0148-9062(94)90077-9
Nakamura, Y. (1978). A1 moonquakes: source distribution and mechanism. Proceedings of the Lunar and Planetary Science Conference, 3589–3607. https://ci.nii.ac.jp/naid/10006236523/en/
Naylor, M. A., Mandl, G., & Supesteijn, C. H. K. (1986). Fault geometries in basement-induced wrench faulting under different initial stress states. Journal of Structural Geology, 8, 737–752. https://doi.org/10.1016/0191-8141(86)90022-2
NCEDC. (2014). Northern California Earthquake Data Center. https://doi.org/10.7932/NCEDC
Neves, M., Peng, Z., & Lin, G. (2022). A High‐Resolution Earthquake Catalog for the 2004 Mw 6 Parkfield Earthquake Sequence Using a Matched Filter Technique. Seismological Research Letters. https://doi.org/10.1785/0220220206
Nicholson, T., Clarke, D., & Townend, J. (2008). Regional earthquake location using empirical traveltimes in a region of strong lateral velocity heterogeneity. Geophysical Journal International, 175, 560–570. https://doi.org/10.1111/j.1365-246X.2008.03858.x
Nooshiri, N., Saul, J., Heimann, S., Tilmann, F., & Dahm, T. (2017). Revision of earthquake hypocentre locations in global bulletin data sets using source-specific station terms. Geophysical Journal International, 208, 589–602. https://doi.org/10.1093/gji/ggw405
Oglesby, D. D. (2005). The Dynamics of Strike-Slip Step-Overs with Linking Dip-Slip Faults. Bulletin of the Seismological Society of America, 95, 1604–1622. https://doi.org/10.1785/0120050058
Oglesby, D. D., & Mai, P. M. (2012). Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophysical Journal International, 188, 1071–1087. https://doi.org/10.1111/j.1365-246X.2011.05289.x
Okubo, P. G., & Dieterich, J. H. (1984). Effects of physical fault properties on frictional instabilities produced on simulated faults. Journal of Geophysical Research: Solid Earth, 89, 5817–5827. https://doi.org/10.1029/JB089iB07p05817
Oppenheimer, D. H., Bakun, W. H., & Lindh, A. G. (1990). Slip partitioning of the Calaveras Fault, California, and prospects for future earthquakes. Journal of Geophysical Research: Solid Earth, 95, 8483–8498. https://doi.org/10.1029/JB095iB06p08483
Oppenheimer, D. H., Bakun, W. H., Parsons, T., Simpson, R. W., Boatwright, J., & Uhrhammer, R. A. (2010). The 2007 M5.4 Alum Rock, California, earthquake: Implications for future earthquakes on the central and southern Calaveras Fault. Journal of Geophysical Research: Solid Earth, 115. https://doi.org/10.1029/2009JB006683
Parsons, T. (2002). Crustal Structure of the Coastal and Marine San Francisco Bay Region, California [Techreport]. U.S. Geological Survey. https://pubs.usgs.gov/pp/1658/
Parsons, T., & Minasian, D. L. (2015). Earthquake rupture process recreated from a natural fault surface. Journal of Geophysical Research: Solid Earth, 120, 7852–7862. https://doi.org/10.1002/2015JB012448
Pavlis, G. L. (1986). Appraising earthquake hypocenter location errors: A complete, practical approach for single-event locations. Bulletin of the Seismological Society of America, 76, 1699–1717.
Pavlis, G. L., & Hokanson, N. B. (1985a). Separated earthquake location. Journal of Geophysical Research: Solid Earth, 90, 12777–12789. https://doi.org/10.1029/JB090iB14p12777
Pavlis, G. L., & Hokanson, N. B. (1985b). Separated earthquake location. Journal of Geophysical Research: Solid Earth, 90, 12777–12789. https://doi.org/10.1029/JB090iB14p12777
Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., & Gaudemer, Y. (2016). Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121, 3666–3685. https://doi.org/10.1002/2015JB012671
Perrin, C., Waldhauser, F., Choi, E., & Scholz, C. H. (2019). Persistent fine-scale fault structure and rupture development: A new twist in the Parkfield, California, story. Earth and Planetary Science Letters, 521, 128–138. https://doi.org/10.1016/j.epsl.2019.06.010
Podvin, P., & Lecomte, I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International, 105, 271–284. https://doi.org/10.1111/j.1365-246X.1991.tb03461.x
Poliakov, A. N. B., Dmowska, R., & Rice, J. R. (2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. Journal of Geophysical Research: Solid Earth, 107. https://doi.org/10.1029/2001JB000572
Ponce, D. A., Simpson, R. W., Graymer, R. W., & Jachens, R. C. (2004). Gravity, magnetic, and high-precision relocated seismicity profiles suggest a connection between the Hayward and Calaveras Faults, northern California. Geochemistry, Geophysics, Geosystems, 5. https://doi.org/10.1029/2003GC000684
Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research, 89, 5719–5731. https://doi.org/10.1029/JB089iB07p05719
Poupinet, G., Glangeaud, F., & Cote, P. (1982). P-Time delay measurement of a doublet of microearthquakes. Proceedings of ICASSP 1982: IEEE International Conference on Acoustics, Speech, and Signal Processing, 7, 1516-1519,. https://doi.org/10.1109/ICASSP.1982.1171796
Power, W. L., Tullis, T. E., & Weeks, J. D. (1988). Roughness and wear during brittle faulting. Journal of Geophysical Research: Solid Earth, 93, 15268–15278. https://doi.org/10.1029/JB093iB12p15268
Preuss, S., Ampuero, J. P., Gerya, T., & Dinther, Y. van. (2020). Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults. Solid Earth, 11, 1333-1360,. https://doi.org/10.5194/se-11-1333-2020
Ramos, M. D., Thakur, P., Huang, Y., Harris, R. A., & Ryan, K. J. (2022). Working with Dynamic Earthquake Rupture Models: A Practical Guide. Seismological Research Letters, 93, 2096–2110. https://doi.org/10.1785/0220220022
Reasenberg, P., & Ellsworth, W. L. (1982). Aftershocks of the Coyote Lake. Journal of Geophysical Research, 87, 10637–10655. https://doi.org/10.1029/JB087iB13p10637
Reid, H. F., & Lawson, A. C. (1908). The California earthquake of April 18, 1906: report of the State Earthquake Investigation Commission, in two volumes and atlas. Carnegie Institution of Washington publication. https://catalog.hathitrust.org/Record/011812500
Renard, F., & Candela, T. (2017). Scaling of Fault Roughness and Implications for Earthquake Mechanics. In Fault Zone Dynamic Processes (pp. 195–215). American Geophysical Union. https://doi.org/10.1002/9781119156895.ch10
Renard, F., Voisin, C., Marsan, D., & Schmittbuhl, J. (2006). High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales. Geophysical Research Letters, 33. https://doi.org/10.1029/2005GL025038
Richard, P., Naylor, M., & Koopman, A. (1995). Experimental models of strike-slip tectonics. Petroleum Geoscience. https://doi.org/10.1144/petgeo.1.1.71
Richards, P. G., Waldhauser, F., Schaff, D., & Kim, W.-Y. (2006). The Applicability of Modern Methods of Earthquake Location. Pure and Applied Geophysics, 163, 351–372. https://doi.org/10.1007/s00024-005-0019-5
Richards-Dinger, K. B., & Shearer, P. M. (2000). Earthquake locations in southern California obtained using source-specific station terms. Journal of Geophysical Research, 105, 10939–10960. https://doi.org/10.1029/2000JB900014
Ritzwoller, M. H., Shapiro, N. M., Levshin, A. L., Bergman, E. A., & Engdahl, E. R. (2003). Ability of a global three-dimensional model to locate regional events. Journal of Geophysical Research, 108. https://doi.org/10.1029/2002JB002167
Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., & Zhan, Z. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366, 346–351. https://doi.org/10.1126/science.aaz0109
Rowe, C. A., Aster, R. C., Phillips, W. S., Jones, R. H., Borchers, B., & Fehler, M. C. (2002). Using Automated, High-precision Repicking to Improve Delineation of Microseismic Structures at the Soultz Geothermal Reservoir. Pure and Applied Geophysics, 159, 34. https://doi.org/10.1007/978-3-0348-8179-1_24
Rubin, A. M., & Gillard, D. (2000). Aftershock asymmetry/rupture directivity among central San Andreas fault microearthquakes. Journal of Geophysical Research: Solid Earth, 105, 19095–19109. https://doi.org/10.1029/2000JB900129
Rubin, A. M., Gillard, D., & Got, J.-L. (1999). Streaks of microearthquakes along creeping faults. Nature, 400, 635–641. https://doi.org/10.1038/23196
Ryaboy, V., Baumgardt, D. R., Firbas, P., & Dainty, A. M. (2001). Application of 3-D Crustal and Upper Mantle Velocity Model of North America for Location of Regional Seismic Events. Pure and Applied Geophysics, 158, 79–103. https://doi.org/10.1007/PL00001169
Sagy, A., Brodsky, E. E., & Axen, G. J. (2007). Evolution of fault-surface roughness with slip. Geology, 35, 283–286. https://doi.org/10.1130/G23235A.1
Savran, W. H., & Olsen, K. B. (2020). Kinematic Rupture Generator Based on 3-D Spontaneous Rupture Simulations Along Geometrically Rough Faults. Journal of Geophysical Research: Solid Earth, 125, 2020 019464. https://doi.org/10.1029/2020JB019464
SCEDC. (2013). Southern California Earthquake Data Center. https://doi.org/10.7914/SN/CI
Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., & Ellsworth, W. L. (2002). High-resolution image of Calaveras Fault seismicity. Journal of Geophysical Research: Solid Earth, 107. https://doi.org/10.1029/2001JB000633
Schlaphorst, D., Rychert, C. A., Harmon, N., Hicks, S. P., Bogiatzis, P., Kendall, J.-M., & Abercrombie, R. E. (2023). Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations. Geophysical Journal International, 124. https://doi.org/10.1093/gji/ggad124
Schoenball, M., & Ellsworth, W. L. (2017). Waveform‐Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network. Seismological Research Letters, 88, 1252–1258. https://doi.org/10.1785/0220170083
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391, 37–42. https://doi.org/10.1038/34097
Scholz, C. H. (2019). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/9781316681473
Shearer, P. M. (1997). Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence. Journal of Geophysical Research, 102, 8269–8283. https://doi.org/10.1029/96JB03228
Shearer, P. M. (2005). Southern California Hypocenter Relocation with Waveform Cross-Correlation, Part 2: Results Using Source-Specific Station Terms and Cluster Analysis. Bulletin of the Seismological Society of America, 95, 904–915. https://doi.org/10.1785/0120040168
Shelly, D. R. (2020). A High-Resolution Seismic Catalog for the Initial 2019 Ridgecrest Earthquake Sequence: Foreshocks, Aftershocks, and Faulting Complexity. Seismological Research Letters, 91, 1971–1978. https://doi.org/10.1785/0220190309
Shi, Z., & Day, S. M. (2013). Rupture dynamics and ground motion from 3-D rough-fault simulations. Journal of Geophysical Research: Solid Earth, 118, 1122–1141. https://doi.org/10.1002/jgrb.50094
Sibson, R. H. (1982). Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bulletin of the Seismological Society of America, 72, 151–163. https://doi.org/10.1785/BSSA0720010151
Sibson, R. H. (1985). Stopping of earthquake ruptures at dilational fault jogs. Nature, 316, 248–251. https://doi.org/10.1038/316248a0
Simpson, R. W., Barall, M., Langbein, J., Murray, J. R., & Rymer, M. J. (2006). San Andreas Fault Geometry in the Parkfield, California, Region. Bulletin of the Seismological Society of America, 96, 28–37. https://doi.org/10.1785/0120050824
Smith, S. W., Knapp, J. S., & McPherson, R. C. (1993). Seismicity of the Gorda Plate, structure of the continental margin, and an eastward jump of the Mendocino Triple Junction. Journal of Geophysical Research: Solid Earth, 98, 8153–8171. https://doi.org/10.1029/93JB00026
Stauder, W., & Ryall, A. (1967). Spatial distribution and source mechanism of microearthquakes in Central Nevada. Bulletin of the Seismological Society of America, 57, 1317–1345.
Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x
Stirling, M. W., Wesnousky, S. G., & Shimazaki, K. (1996). Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey. Geophysical Journal International, 124, 833–868. https://doi.org/10.1111/j.1365-246X.1996.tb05641.x
Thorbjarnardottir, B. S., & Pechmann, J. C. (1987). Constraints on relative earthquake locations from cross-correlation of waveforms. Bulletin of the Seismological Society of America, 77, 1626–1634. https://doi.org/10.1785/BSSA0770051626
Thurber, C. H. (1983). Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area, central California. Journal of Geophysical Research: Solid Earth, 88, 8226–8236. https://doi.org/10.1029/JB088iB10p08226
Thurber, C. H., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., & Eberhart-Phillips, D. (2006). Three-Dimensional Compressional Wavespeed Model, Earthquake Relocations, and Focal Mechanisms for the Parkfield, California, Region. Bulletin of the Seismological Society of America, 96, 38–49. https://doi.org/10.1785/0120050825
Trugman, D. T., & Dunham, E. M. (2014). A 2D Pseudodynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults. Bulletin of the Seismological Society of America, 104, 95–112. https://doi.org/10.1785/0120130138
Trugman, D. T., & Shearer, P. M. (2017). GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 88, 379–391. https://doi.org/10.1785/0220160188
Tucker, W., Herrin, E., & Freedman, H. W. (1968). Some statistical aspects of the estimation of seismic travel times. Bulletin of the Seismological Society of America, 58, 1243–1260. https://doi.org/10.1785/BSSA0580041243
Wagner, M., Husen, S., Lomax, A., Kissling, E., & Giardini, D. (2013). High-precision earthquake locations in Switzerland using regional secondary arrivals in a 3-D velocity model. Geophysical Journal International, 193, 1589–1607. https://doi.org/10.1093/gji/ggt052
Waldhauser, F. (2009). Near-Real-Time Double-Difference Event Location Using Long-Term Seismic Archives, with Application to Northern California. Bulletin of the Seismological Society of America, 99, 2736–2748. https://doi.org/10.1785/0120080294
Waldhauser, F., & Ellsworth, W. L. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90, 1353-1368,. https://doi.org/10.1785/0120000006
Waldhauser, F., Ellsworth, W. L., Schaff, D. P., & Cole, A. (2004). Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophysical Research Letters, 31. https://doi.org/10.1029/2004GL020649
Waldhauser, F., & Schaff, D. P. (2008). Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods. Journal of Geophysical Research: Solid Earth, 113. https://doi.org/10.1029/2007JB005479
Watt, J. T., Ponce, D. A., Graymer, R. W., Jachens, R. C., & Simpson, R. W. (2014). Subsurface geometry of the San Andreas-Calaveras fault junction: Influence of serpentinite and the Coast Range Ophiolite. Tectonics, 33, 2025–2044. https://doi.org/10.1002/2014TC003561
Wesnousky, S. G. (1988). Seismological and structural evolution of strike-slip faults. Nature, 335, 340–343. https://doi.org/10.1038/335340a0
Wesnousky, S. G. (2006). Predicting the endpoints of earthquake ruptures. Nature, 444, 358-360,. https://doi.org/10.1038/nature05275
Wesnousky, S. G. (2008). Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98, 1609–1632. https://doi.org/10.1785/0120070111
Williams, R. T., & Fagereng, A. (2022). The Role of Quartz Cementation in the Seismic Cycle: A Critical Review. Reviews of Geophysics, 60. https://doi.org/10.1029/2021RG000768
Wu, J. E., McClay, K., Whitehouse, P., & Dooley, T. (2009). 4D analogue modelling of transtensional pull-apart basins. Marine and Petroleum Geology, 26, 1608–1623. https://doi.org/10.1016/j.marpetgeo.2008.06.007
Zhou, H. (1994). Rapid three-dimensional hypocentral determination using a master station method. Journal of Geophysical Research, 99. https://doi.org/10.1029/94JB00934
Zhou, Y., McNally, K. C., & Lay, T. (1993). Analysis of the 1986 Mt. Lewis, California, earthquake: preshock sequence-mainshock-aftershock sequence. Physics of the Earth and Planetary Interiors, 75, 267–288. https://doi.org/10.1016/0031-9201(93)90005-T
Zoback, M. L., Jachens, R. C., & Olson, J. A. (1999). Abrupt along-strike change in tectonic style: San Andreas Fault zone, San Francisco Peninsula. Journal of Geophysical Research, 104, 10719–10742. https://doi.org/10.1029/1998JB900059
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Anthony Lomax, Pierre Henry

This work is licensed under a Creative Commons Attribution 4.0 International License.