Ocean Bottom Seismometer Clock Correction using Ambient Seismic Noise

Authors

  • David Naranjo TU Delft, Civil Engineering & Geosciences, Applied Geophysics and Petrophysics, Delft, the Netherlands https://orcid.org/0000-0002-5975-0039
  • Laura Parisi Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia https://orcid.org/0000-0002-9430-1351
  • Sigurjón Jónsson Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia https://orcid.org/0000-0001-5378-7079
  • Philippe Jousset Helmholtz Center Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany.
  • Dieter Werthmüller TU Delft, Civil Engineering & Geosciences, Applied Geophysics and Petrophysics, Delft, the Netherlands https://orcid.org/0000-0002-8575-2484
  • Cornelis Weemstra TU Delft, Civil Engineering & Geosciences, Applied Geophysics and Petrophysics, Delft, the Netherlands https://orcid.org/0000-0003-3509-8354

DOI:

https://doi.org/10.26443/seismica.v3i1.367

Keywords:

Seismic instruments, Seismic interferometry, Ambient seismic noise, Clock drift, ocean bottom seismometer, Passive Seismology

Abstract

Ocean-bottom seismometers (OBSs) are equipped with seismic sensors that record acoustic and seismic events at the seafloor, which makes them suitable for investigating tectonic structures capable of generating earthquakes offshore. One critical parameter to obtain accurate earthquake locations is the absolute time of the incoming seismic signals recorded by the OBSs. It is, however, not possible to synchronize the internal clocks of the OBSs with a known reference time, given that GNSS signals are unable to reach the instrument at the sea bottom. To address this issue, here we introduce a new method to synchronize the clocks of large-scale OBS deployments. Our approach relies on the theoretical time-symmetry of time-lapse (averaged) crosscorrelations of ambient seismic noise. Deviations from symmetry are attributed to clock errors. This implies that the recovered clock errors will be obscured by lapse crosscorrelations' deviations from symmetry that are not due to clock errors. Non-uniform surface wave illumination patterns are arguably the most notable source which breaks the time symmetry. Using field data, we demonstrate that the adverse effects of non-uniform illumination patterns on the recovered clock errors can be mitigated by means of a weighted least-squares inversion that is based on station-station distances. In addition, our methodology permits the recovery of timing errors at the time of deployment of the OBSs. This error can be attributed to either: i) a wrong initial time synchronization of the OBS or ii) a timing error induced by changing temperature and pressure conditions while the OBS is sunk to the ocean floor. The methodology is implemented in an open-source Python package named OCloC, and we applied it to the OBS recordings acquired in the context of the IMAGE project in and around Reykjanes, Iceland. As expected, most OBSs suffered from clock drift. Surprisingly, we found incurred timing errors at the time of deployment for most of the OBSs.

References

Blanck, H., Jousset, P., Hersir, G. P., Ágústsson, K., & Flóvenz, Ó. G. (2020). Analysis of 2014–2015 on- and off-shore passive seismic data on the Reykjanes Peninsula, SW Iceland. Journal of Volcanology and Geothermal Research, 391, 106548. https://doi.org/10.1016/j.jvolgeores.2019.02.001

Boschi, L., & Weemstra, C. (2015). Stationary-phase integrals in the cross correlation of ambient noise. Reviews of Geophysics, 53(2), 411–451. https://doi.org/10.1002/2014RG000455

Dongmo Wamba, M., Montagner, J.-P., & Romanowicz, B. (2023). Imaging deep-mantle plumbing beneath La Réunion and Comores hot spots: Vertical plume conduits and horizontal ponding zones. Science Advances, 9(4), eade3723. https://doi.org/10.1126/sciadv.ade3723

Draganov, D., Wapenaar, K., Mulder, W., Singer, J., & Verdel, A. (2007). Retrieval of reflections from seismic background-noise measurements. Geophysical Research Letters, 34(4). https://doi.org/10.1029/2006GL028735

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans (pp. 1–93). SIAM. https://doi.org/10.1137/1.9781611970319

Efron, B. (1992). Bootstrap Methods: Another Look at the Jackknife. In Breakthroughs in Statistics: Methodology and Distribution (pp. 569–593). Springer New York. https://doi.org/10.1007/978-1-4612-4380-9_41

Fichtner, A. (2014). Source and processing effects on noise correlations. Geophysical Journal International, 197(3), 1527–1531. https://doi.org/10.1093/gji/ggu093

Froment, B., Campillo, M., Roux, P., Gouédard, P., Verdel, A., & Weaver, R. (2010).

Gardner, A. T., & Collins, J. A. (2012). Advancements in high-performance timing for long term underwater experiments: A comparison of chip scale atomic clocks to traditional microprocessor-compensated crystal oscillators. 2012 Oceans.

Geissler, W. H., Matias, L., Stich, D., Carrilho, F., Jokat, W., Monna, S., IbenBrahim, A., Mancilla, F., Gutscher, M.-A., Sallarès, V., & Zitellini, N. (n.d.). Focal mechanisms for sub-crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment. Geophysical Research Letters, 37(18).

Gouédard, P., Seher, T., McGuire, J., Collins, J., & Hilst, R. D. (2014). Correction of Ocean‐Bottom Seismometer Instrumental Clock Errors Using Ambient Seismic Noise. Bulletin of the Seismological Society of America, 104, 1276–1288. https://doi.org/10.1785/0120130157

Groos, J. C., Bussat, S., & Ritter, J. R. R. (2012). Performance of different processing schemes in seismic noise cross-correlations. Geophysical Journal International, 188(2), 498–512. https://doi.org/10.1111/j.1365-246X.2011.05288.x

Hable, S., Sigloch, K., Barruol, G., Stähler, S. C., & Hadziioannou, C. (2018). Clock errors in land and ocean bottom seismograms: high-accuracy estimates from multiple-component noise cross-correlations. Geophysical Journal International, 214(3), 2014–2034. https://doi.org/10.1093/gji/ggy236

Halliday, D., & Curtis, A. (2008). Seismic interferometry, surface waves and source distribution. Geophysical Journal International, 175(3), 1067–1087. https://doi.org/10.1111/j.1365-246X.2008.03918.x

Hannemann, K., Krueger, F., & Dahm, T. (2014). Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise. Geophysical Journal International, 196, 1034–1042. https://doi.org/10.1093/gji/ggt434

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Jochumsen, K., Schnurr, S. M., & Quadfasel, D. (2016). Bottom temperature and salinity distribution and its variability around Iceland. Deep Sea Research Part I: Oceanographic Research Papers, 111, 79–90. https://doi.org/10.1016/j.dsr.2016.02.009

Jousset, P., Blanck, H., Franke, S., Metz, M., Águstsson, K., Verdel, A., Ryberg, T., Hersir, G. P., Weemstra, K., Bruhn, D., & Flovenz, O. G. (2016). “Seismic Tomography in Reykjanes , SW Iceland.” European Geothermal Congress 2016, 1–10. http://europeangeothermalcongress.eu/

Jousset, P., Budi-Santoso, A., Jolly, A. D., Boichu, M., Surono, Dwiyono, S., Sumarti, S., Hidayati, S., & Thierry, P. (2013). Signs of magma ascent in LP and VLP seismic events and link to degassing: An example from the 2010 explosive eruption at Merapi volcano, Indonesia. Journal of Volcanology and Geothermal Research, 261, 171–192. https://doi.org/10.1016/j.jvolgeores.2013.03.014

Jousset, P., Hersir, G. P., Blanck, H., Kirk, H., Erbas, K., Hensch, M., Franke, S., Bruhn, D., & Huenges, E. (2020). IMAGE (Integrated Methods for Advanced Geothermal Exploration). GFZ Data Services. Other/Seismic Network. https://doi.org/10.14470/9Y7569325908

Jousset, P., Mortensen, A. K., Fridleifsson, G. Ó., Ágústsson, K., & Gudmundsson, M. T. (2020). Reykjanes, Iceland: Structure and dynamics of mid-oceanic ridge geo/hydrothermal systems. Journal of Volcanology and Geothermal Research, 391, 106692. https://doi.org/10.1016/j.jvolgeores.2019.106692

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem. Computational Science and Discovery, 8, 14003. https://doi.org/10.1088/1749-4699/8/1/014003

Lindner, F., Weemstra, C., Walter, F., & Hadziioannou, C. (2018). Towards monitoring the englacial fracture state using virtual-reflector seismology. Geophysical Journal International, 214(2), 825–844. https://doi.org/10.1093/gji/ggy156

Lobkis, O. I., & Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. Journal of the Acoustical Society of America, 110(6), 3011–3017. https://doi.org/10.1121/1.1417528

Loviknes, K., Jeddi, Z., Ottemöller, L., & Barreyre, T. (2020). When Clocks Are Not Working: OBS Time Correction. Seismological Research Letters, 91(4), 2247–2258. https://doi.org/10.1785/0220190342

Matsumoto, H., Zampolli, M., Haralabus, G., Stanley, J., Mattila, J., & Meral Ozel, N. (2019). Interpretation of detections of volcanic activity at Ioto Island obtained from in situ seismometers and remote hydrophones of the International Monitoring System. Scientific Reports, 9, 19519. https://doi.org/10.1038/s41598-019-55918-w

Mulargia, F. (2012). The seismic noise wavefield is not diffuse. The Journal of the Acoustical Society of America, 131(4), 2853. https://doi.org/10.1121/1.3689551

Rücker, C., Günther, T., & Wagner, F. M. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Computers and Geosciences, 109, 106–123. https://doi.org/10.1016/j.cageo.2017.07.011

Sánchez-Pastor, P., Obermann, A., Schimmel, M., Weemstra, C., Verdel, A., & Jousset, P. (2019). Short- and Long-Term Variations in the Reykjanes Geothermal Reservoir From Seismic Noise Interferometry. Geophysical Research Letters, 46(11), 5788–5798. https://doi.org/10.1029/2019GL082352

Schnaidt, S., & Heinson, G. (2015). Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling. Geophysical Journal International, 203(1), 92–106. https://doi.org/10.1093/gji/ggv264

Seats, K. J., Lawrence, J. F., & Prieto, G. A. (2012). Improved ambient noise correlation functions using Welch’s method. Geophysical Journal International, 188(2), 513–523. https://doi.org/10.1111/j.1365-246X.2011.05263.x

Sens-Schönfelder, C. (2008). Synchronizing seismic networks with ambient noise. Geophysical Journal International, 174(3), 966–970. https://doi.org/10.1111/j.1365-246X.2008.03842.x

Shapiro, N. M., & Campillo, M. (n.d.). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7).

Shariat-Panahi, S., Alegria, F. C., Làzaro, A. M., & del Rio, J. (2009). Time Drift of Ocean Bottom Seismometers ( Obs ). Proceedings of the 19th IMEKO World Congress on Fundamental and Applied Metrology, 2548–2553.

Snieder, R. (2004). Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Phys. Rev. E, 69(4), 46610. https://doi.org/10.1103/PhysRevE.69.046610

Stehly, L., Campillo, M., & Shapiro, N. M. (n.d.). A study of the seismic noise from its long-range correlation properties. Journal of Geophysical Research: Solid Earth, 111(B10).

Tary, J. B., Géli, L., Henry, P., Natalin, B., Gasperini, L., Çomoğlu, M., Çağatay, N., & Bardainne, T. (2011). Sea-Bottom Observations from the Western Escarpment of the Sea of Marmara. Bulletin of the Seismological Society of America, 101(2), 775–791. https://doi.org/10.1785/0120100014

Tsai, V. C. (2009). On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophysical Journal International, 178(3), 1555–1564. https://doi.org/10.1111/j.1365-246X.2009.04239.x

Wapenaar, K., & Fokkema, J. (2006). Green’s function representations for seismic interferometry. GEOPHYSICS, 71(4), SI33–SI46. https://doi.org/10.1190/1.2213955

Warner, M., & Guasch, L. (2014). Adaptive Waveform Inversion - FWI Without Cycle Skipping - Theory. 76th Conference and Exhibition, EAGE, Expanded Abstracts. https://doi.org/10.3997/2214-4609.20141092

Weaver, R., Froment, B., & Campillo, M. (2009). On the correlation of non-isotropically distributed ballistic scalar diffuse waves. The Journal of the Acoustical Society of America, 126(4), 1817–1826. https://doi.org/10.1121/1.3203359

Weemstra, C., Westra, W., Snieder, R., & Boschi, L. (2014). On estimating attenuation from the amplitude of the spectrally whitened ambient seismic field. Geophysical Journal International, 197, 1770–1788. https://doi.org/10.1093/gji/ggu088

Weemstra, Cornelis, Boschi, L., Goertz, A., & Artman, B. (2013). Seismic attenuation from recordings of ambient noise. GEOPHYSICS, 78(1), Q1–Q14. https://doi.org/10.1190/geo2012-0132.1

Weemstra, Cornelis, de Laat, J. I., Verdel, A., & Smets, P. (2021). Systematic recovery of instrumental timing and phase errors using interferometric surface-waves retrieved from large-N seismic arrays. Geophysical Journal International, 224(2), 1028–1055. https://doi.org/10.1093/gji/ggaa504

Werthmüller, D., Rochlitz, R., Castillo-Reyes, O., & Heagy, L. (2021). Towards an open-source landscape for 3-D CSEM modelling. Geophysical Journal International, 227(1), 644–659. https://doi.org/10.1093/gji/ggab238

Wes McKinney. (2010a). Data Structures for Statistical Computing in Python. In Stéfan van der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

Wes McKinney. (2010b). Data Structures for Statistical Computing in Python. In Stéfan van der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

Yang, Y., & Ritzwoller, M. H. (n.d.). Characteristics of ambient seismic noise as a source for surface wave tomography. Geochemistry, Geophysics, Geosystems, 9(2).

Zhang, J., Zhao, M., Yao, Y., & Qiu, X. (n.d.). Analysis of clock drift based on a three-dimensional controlled-source ocean bottom seismometer experiment. Geophysical Prospecting.

Additional Files

Published

2024-01-19

How to Cite

Naranjo, D., Parisi, L., Jónsson, S., Jousset, P., Werthmüller, D., & Weemstra, C. (2024). Ocean Bottom Seismometer Clock Correction using Ambient Seismic Noise. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.367

Issue

Section

Articles