False positives are common in single-station template matching


  • Jack Muir University of Oxford https://orcid.org/0000-0003-2617-3420
  • Benjamin Fernando University of Oxford
  • Elizabeth Barrett Jet Propulsion Laboratory, National Aeronautics and Space Administration, United States of America




Template Matching, False Positives, Planetary Seismology


Template matching has become a cornerstone technique of observational seismology. By taking known events, and scanning them against a continuous record, new events smaller than the signal-to-noise ratio can be found, substantially improving the magnitude of completeness of earthquake catalogues. Template matching is normally used in an array setting, however as we move into the era of planetary seismology, we are likely to apply template matching for very small arrays or even single stations. Given the high impact of planetary seismology studies on our understanding of the structure and dynamics of non-Earth bodies, it is important to assess the reliability of template matching in the small-n setting. Towards this goal, we estimate a lower bound on the rate of false positives for single-station template matching by examining the behaviour of correlations of totally uncorrelated white noise. We find that, for typical processing regimes and match thresholds, false positives are likely quite common. We must therefore be exceptionally careful when considering the output of template matching in the small-n setting.


Anstey, N. A. (1964). Correlation Techniques –a Review*. Geophysical Prospecting, 12(4), 355–382. https://doi.org/10.1111/j.1365-2478.1964.tb01911.x

Beaucé, E., Frank, W. B., & Romanenko, A. (2017). Fast Matched Filter (FMF): An Efficient Seismic Matched-Filter Search for Both CPU and GPU Architectures. Seismological Research Letters, 89(1), 165–172. https://doi.org/10.1785/0220170181

Bobrov, D., Kitov, I., & Zerbo, L. (2014). Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre. Pure and Applied Geophysics, 171(3), 439–468. https://doi.org/10.1007/s00024-012-0626-x

Dahmen, N. L., Clinton, J. F., Ceylan, S., van Driel, M., Giardini, D., Khan, A., Stähler, S. C., Böse, M., Charalambous, C., Horleston, A., & others. (2021). Super High Frequency Events: A New Class of Events Recorded by the InSight Seismometers on Mars. Journal of Geophysical Research: Planets, 126(2), e2020JE006599. https://doi.org/10.1029/2020JE006599

Fernando, B., Wójcicka, N., Maguire, R., Stähler, S. C., Stott, A. E., Ceylan, S., Charalambous, C., Clinton, J., Collins, G. S., Dahmen, N., & others. (2022). Seismic Constraints from a Mars Impact Experiment Using InSight and Perseverance. Nature Astronomy, 6(1), 59–64. https://doi.org/10.1038/s41550-021-01502-0

Gao, D., & Kao, H. (2020). Optimization of the Match-Filtering Method for Robust Repeating Earthquake Detection: The Multisegment Cross-Correlation Approach. Journal of Geophysical Research: Solid Earth, 125(7), e2020JB019714. https://doi.org/10.1029/2020JB019714

Garcia, R. F., Daubar, I. J., Beucler, É., Posiolova, L. V., Collins, G. S., Lognonné, P., Rolland, L., Xu, Z., Wójcicka, N., Spiga, A., & others. (2022). Newly Formed Craters on Mars Located Using Seismic and Acoustic Wave Data from InSight. Nature Geoscience, 15(10), 774–780. https://doi.org/10.1038/s41561-022-01014-0

Gibbons, S. J., & Ringdal, F. (2006). The Detection of Low Magnitude Seismic Events Using Array-Based Waveform Correlation. Geophysical Journal International, 165(1), 149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x

Kim, D., Davis, P., Lekić, V., Maguire, R., Compaire, N., Schimmel, M., Stutzmann, E., C. E. Irving, J., Lognonné, P., Scholz, J.-R., Clinton, J., Zenhäusern, G., Dahmen, N., Deng, S., Levander, A., Panning, M. P., Garcia, R. F., Giardini, D., Hurst, K., … Banerdt, W. B. (2021). Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars InSight Mission. Bulletin of the Seismological Society of America, 111(6), 2982–3002. https://doi.org/10.1785/0120210123

Kurihara, R., Kato, A., Kurata, S., & Nagao, H. (2021). Detection of Low-Frequency Earthquakes by the Matched Filter Technique Using the Product of Mutual Information and Correlation Coefficient. Earth, Planets and Space, 73(1), 225. https://doi.org/10.1186/s40623-021-01534-w

Li, Z., & Zhan, Z. (2018). Pushing the Limit of Earthquake Detection with Distributed Acoustic Sensing and Template Matching: A Case Study at the Brady Geothermal Field. Geophysical Journal International, 215(3), 1583–1593. https://doi.org/10.1093/gji/ggy359

Muir, J. B., Fernando, B., & Barrett, E. (2023). Notebook & Data for “False Positives Are Common in Single-Station Template Matching.” Zenodo. https://doi.org/10.5281/zenodo.8181443

Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for Hidden Earthquakes in Southern California. Science, 364(6442), 767–771. https://doi.org/10.1126/science.aaw6888

Shearer, P. M. (1994). Global Seismic Event Detection Using a Matched Filter on Long-Period Seismograms. Journal of Geophysical Research: Solid Earth, 99(B7), 13713–13725. https://doi.org/10.1029/94JB00498

Sun, Weijia, & Tkalčić, H. (2022). Repetitive Marsquakes in Martian Upper Mantle. Nature Communications, 13(1), 1695. https://doi.org/10.1038/s41467-022-29329-x

Sun, WeiJia, Zhao, L., Wei, Y., & Fu, L.-Y. (2019). Detection of Seismic Events on Mars: A Lunar Perspective. Earth and Planetary Physics, 3(4), 290–297. https://doi.org/10.26464/epp2019030

Tanimoto, T., Eitzel, M., & Yano, T. (2008). The Noise Cross-Correlation Approach for Apollo 17 LSPE Data: Diurnal Change in Seismic Parameters in Shallow Lunar Crust. Journal of Geophysical Research: Planets, 113(E8). https://doi.org/10.1029/2007JE003016

Additional Files



How to Cite

Muir, J., Fernando, B., & Barrett, E. (2023). False positives are common in single-station template matching. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.385




Funding data