Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye

Authors

  • Diego Melgar Department of Earth Sciences, University of Oregon, Eugene, U.S.A
  • Tuncay Taymaz Department of Geophysical Engineering, The Faculty of Mines, Istanbul Technical University, Maslak 34467, Sarıyer, Istanbul, Türkiye https://orcid.org/0000-0001-6807-9622
  • Athanassios Ganas National Observatory of Athens, Institute of Geodynamics, Athens, Greece https://orcid.org/0000-0002-1937-3283
  • Brendan Crowell Department of Earth and Space Sciences, University of Washington, Seattle, Washington https://orcid.org/0000-0001-7096-601X
  • Taylan Öcalan Department of Geomatic Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpaşa 34220, Istanbul, Türkiye https://orcid.org/0000-0003-0861-013X
  • Metin Kahraman Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak 34469, Sarıyer, Istanbul, Türkiye https://orcid.org/0000-0003-0208-1660
  • Varvara Tsironi National Observatory of Athens, Institute of Geodynamics, Athens, Greece. Department of Geology, University of Patras, 26504 Rio, Greece. https://orcid.org/0000-0002-5701-3262
  • Seda Yolsal-Çevikbilen Department of Geophysical Engineering, The Faculty of Mines, Istanbul Technical University, Maslak 34467, Sarıyer, Istanbul, Türkiye https://orcid.org/0000-0002-7250-4617
  • Sotiris Valkaniotis Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece https://orcid.org/0000-0003-0003-2902
  • Tahir Serkan Irmak Department of Geophysical Engineering, Kocaeli University, 41380 Umuttepe, Kocaeli, Türkiye https://orcid.org/0000-0002-4504-6286
  • Tuna Eken Department of Geophysical Engineering, The Faculty of Mines, Istanbul Technical University, Maslak 34467, Sarıyer, Istanbul, Türkiye https://orcid.org/0000-0001-7980-9715
  • Ceyhun Erman Department of Geophysical Engineering, The Faculty of Mines, Istanbul Technical University, Maslak 34467, Sarıyer, Istanbul, Türkiye https://orcid.org/0000-0002-5127-6387
  • Berkan Özkan Department of Geophysical Engineering, The Faculty of Mines, Istanbul Technical University, Maslak 34467, Sarıyer, Istanbul, Türkiye https://orcid.org/0000-0001-6187-579X
  • Ali Hasan Dogan Department of Geomatic Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpaşa 34220, Istanbul, Türkiye https://orcid.org/0000-0002-8490-890X
  • Cemali Altuntaş Department of Geomatic Engineering, Faculty ofCivil Engineering, Yildiz Technical University, Davutpaşa 34220, Istanbul, Türkiye https://orcid.org/0000-0002-9660-6124

DOI:

https://doi.org/10.26443/seismica.v2i3.387

Keywords:

Earthquake sources, Inversion, Strike-slip faulting

Abstract

An earthquake doublet (Mw 7.8 and Mw 7.6) occurred on the East Anatolian Fault Zone (EAFZ) on February 6th, 2023. The events produced significant ground motions and caused major impacts to life and infrastructure throughout SE Türkiye and NW Syria. Here we show the results of earthquake relocations of the first 11 days of aftershocks and rupture models for both events inferred from the kinematic inversion of HR-GNSS and strong motion data considering a multi-fault, 3D geometry. We find that the first event nucleated on a previously unmapped fault before transitioning to the East Anatolian Fault (EAF) rupturing for ~350 km and that the second event ruptured the Sürgü fault for ~160 km. Maximum rupture speeds were estimated to be 3.2 km/s for the Mw 7.8 event. For the Mw 7.6 earthquake, we find super-shear rupture at 4.8 km/s westward but sub-shear eastward rupture at 2.8 km/s. Peak slip for both events were as large as ~8m and ~6m, respectively.

References

Ambraseys, N. N. (1989). Temporary seismic quiescence: SE Turkey, Geophys. J. Int, 96(2), 11–331. https://doi.org/10.1111/j.1365-246X.1989.tb04453.x

Ambraseys, N. N., & Jackson, J. A. (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys. J. Int, 133, 390–406. https://doi.org/10.1046/j.1365-246X.1998.00508.x

Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66. https://doi.org/10.1016/j.asr.2020.04.015

Bouchon, M., Bouin, M. P., Karabulut, H., Toksöz, M. N., Dietrich, M., & Rosakis, A. J. (2001). How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes. Geophysical Research Letters, 28(14), 2723–2726. https://doi.org/10.1029/2001GL013112

Fielding, E. J., Lundgren, P. R., Taymaz, T., Yolsal-Çevikbilen, S., & Owen, S. E. (2013). Fault-Slip Source Models for the 2011 M7.1 Van Earthquake in Turkey from SAR Interferometry, Pixel Offset Tracking, GPS and Seismic Waveform Analysis. Seismological Research Letters, 84(4), 579–593, 12–00164. https://doi.org/10.1785/0220120164

Frankel, A. (2004). Rupture process of the M 7.8 Denali Fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions. Bulletin of the Seismological Society of America, 94(6B), 234–255. https://doi.org/10.1785/0120040612

Ganas, A., Kourkouli, P., Briole, P., Moshou, A., Elias, P., & Parcharidis, I. (2018). Coseismic Displacements from Moderate-Size Earthquakes Mapped by Sentinel-1 Differential Interferometry: The Case of February 2017 Gulpinar Earthquake Sequence (Biga Peninsula, Turkey). Remote Sensing, 10, 1089. https://doi.org/10.3390/rs10071089

Ganas, A., Valkaniotis, S., Briole, P., Serpetsidaki, A., Kapetanidis, V., Karasante, I., Kassaras, I., Papathanassiou, G., Karamitros, I., Tsironi, V., Elias, P., Sarhosis, V., Karakonstantis, A., Konstantakopoulou, E., Papadimitriou, P., & Sokos, E. (2021). Domino-style earthquakes along blind normal faults in Northern Thessaly (Greece): kinematic evidence from field observations, seismology, SAR interferometry and GNSS. Bulletin of the Geological Society of Greece, 58, 37–86. https://doi.org/10.12681/bgsg.27102

Goldberg, D. E., Melgar, D., Sahakian, V. J., Thomas, A. M., Xu, X., Crowell, B. W., & Geng, J. (2020). Complex rupture of an immature fault zone: A simultaneous kinematic model of the 2019 Ridgecrest, CA earthquakes. Geophysical Research Letters, 47(3), 2019 086382. https://doi.org/10.1029/2019GL086382

Klein, F. (2014). User’s Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes [Techreport]. https://doi.org/10.3133/ofr02171

Koch, P., Bravo, F., Riquelme, S., & Crempien, J. G. (2019). Near‐real‐time finite‐fault inversions for large earthquakes in Chile using strong‐motion data. Seismological Research Letters, 90(5), 1971–1986. https://doi.org/10.1785/0220180294

Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research: Solid Earth, 120(5), 3324–3349. https://doi.org/10.1002/2014JB011832

Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise Characteristics of Operational Real‐Time High‐Rate GNSS Positions in a Large Aperture Network. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2019JB019197

Melgar, D., Ganas, A., Taymaz, T., Valkaniotis, S., Crowell, B. W., Kapetanidis, V., Tsironi, V., Yolsal-Çevikbilen, S., & Öcalan, T. (2020). Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophysical Journal International, 223(2), 862–874. https://doi.org/10.1093/gji/ggaa345

Melgar, D., & Hayes, G. P. (2017). Systematic Observations of the Slip Pulse Properties of Large Earthquake Ruptures. Geophysical Research Letters, 44(19), 9691–9698. https://doi.org/10.1002/2017GL074916

Melgar, D., Lin, T., Kong, Q., Ruhl, C., & Marfito, B. (2021). MudPy: v1.3. In Zenodo. https://doi.org/10.5281/zenodo.5397091

Noll, C. E. (2010). The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Advances in Space Research, 45(12), 1421–1440. https://doi.org/10.1016/j.asr.2010.01.018

Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., … Karam, G. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B05411. https://doi.org/10.1029/2005JB004051

Reitman, N. G., Briggs, R. W., Barnhart, W. D., Thompson, J. A., DuRoss, C. B., Hatem, A. E., Gold, R. D., & Mejstrik, J. D. (2023). Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes. https://doi.org/10.5066/P985I7U2

Rosakis, A., Abdelmeguid, M., & Elbanna, A. (2023). Evidence of Early Supershear Transition in the Feb 6th 2023 Mw 7.8 Kahramanmaras ̧ Turkey Earthquake From Near-Field Records. EarthArXiv Preprints. https://doi.org/10.31223/X5W95G

Taftsoglou, M., Valkaniotis, S., Karantanellis, E., Goula, E., & Papathanassiou, G. (2023). Preliminary mapping of liquefaction phenomena triggered by the February 6 2023 M7.7 earthquake based on remote sensing data. In Zenodo. https://doi.org/10.5281/zenodo.7668401

Tan, O., & Taymaz, T. (2006). Active Tectonics of the Caucasus: Earthquake Source Mechanisms and Rupture Histories Obtained from Inversion of Teleseismic Body-Waveforms. In Post-Collisional Tectonics and Magmatism in the Mediterranean Region and Asia, Geological Society of America, Special Paper 409 (pp. 531–578). https://doi.org/10.1130/2006.2409(25)

Taymaz, T., Eyidoğan, H., & Jackson, J. A. (1991). Source Parameters of large earthquakes in the East Anatolian Fault Zone (Turkey). Geophysical Journal International, 106, 537–550. https://doi.org/10.1111/j.1365-246X.1991.tb06328.x

Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T. S., Kapetanidis, V., Yolsal-Çevikbilen, S., Erman, C., Keleş, D., Esmaeili, C., Tsironi, V., & Özkan, B. (2022). The 23 February 2020 Qotur-Ravian Earthquake Doublet at the Iranian-Turkish Border: Seismological and InSAR Evidence for Escape Tectonics. Tectonophysics, 838, TECTO15364-229482. https://doi.org/10.1016/j.tecto.2022.229482

Taymaz, T., Ganas, A., Yolsal-Çevikbilen, S., Vera, F., Eken, T., Erman, C., Keleş, D., Kapetanidis, V., Valkaniotis, S., Karasante, I., Tsironi, V., Gaebler, P., Melgar, D., & Ocalan, T. (2021). Source Mechanism and Rupture Process of the 24 January 2020 Mw 6.7 Doğanyol-Sivrice Earthquake obtained from Seismological Waveform Analysis and Space Geodetic Observations on the East Anatolian Fault Zone (Turkey). Tectonophysics, 804, TECTO14240-228745. https://doi.org/10.1016/j.tecto.2021.228745

Taymaz, T., Wright, T., Yolsal, S., Tan, O., Fielding, E., & Seyitoğlu, G. (2007). Source Characteristics of June 6, 2000 Orta-Çankırı (Central Turkey) Earthquake: a synthesis of seismological, geological and geodetic (InSAR) observations, and internal deformation of Anatolian plate. In The Geodynamics of the Aegean and Anatolia. The Geological Society of London, Special Publications Book (Vol. 291, pp. 259–290). https://doi.org/10.1144/SP291.12

Trifonov, V. G., Ҫelik, H., Simakova, A. N., Bachmanov, D. M., Frolov, P. D., Trikhunkov, Y. I., Tesakov, A. S., Titov, V. M., Lebedev, V. A., Ozherelyev, D. V., Latyshev, A. V., & Sychevskaya, E. K. (2018). Pliocene – Early Pleistocene history of the Euphrates valley applied to Late Cenozoic environment of the northern Arabian Plate and its surrounding, eastern Turkey. Quaternary International, 493, 137–165. https://doi.org/10.1016/j.quaint.2018.06.009

Türkelli, N., Sandvol, E., Zor, E., Gok, R., Bekler, T., Al-Lazki, A., Karabulut, H., Kuleli, S., Eken, T., Gurbuz, C., Bayraktutan, S., Seber, D., & Barazangi, M. (2003). Seismogenic Zones in Eastern Turkey. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003GL018023

U.S. Geological Survey. (2023a). Event page for the M 7.5 - 4 km SSE of Ekinözü, Turkey, earthquake.

U.S. Geological Survey. (2023b). Event page for the M 7.8 - Central Turkey, earthquake.

Waldhauser, F., & Ellsworth, W. L. (2000). A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am, 90, 1353–1368. https://doi.org/10.1785/0120000006

Yue, H., Lay, T., Freymueller, J. T., Ding, K., Rivera, L., Ruppert, N. A., & Koper, K. D. (2013). Supershear rupture of the 5 January 2013 Craig, Alaska (MW 7.5) earthquake. Journal of Geophysical Research: Solid Earth, 118(11), 5903–5919. https://doi.org/10.1002/2013JB010594

Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media: A note on the dynamic and static displacements from a point source. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246X.2002.01610.x

Additional Files

Published

2023-03-13

How to Cite

Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbilen, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387