Homogenizing instrumental earthquake catalogs – a case study around the Dead Sea Transform Fault Zone





magnitude conversion, seismic catalogue, local magnitude, earthquake epicenter, middle east, instrumental, Levant, Syria, Jordan, Palestine, Red Sea, Egypt, seismic hazard, moment magnitude


The creation of a homogenized earthquake catalog is a fundamental step in seismic hazard analysis. The homogenization procedure, however, is complex and requires a good understanding of the heterogeneities among the available bulletins. Common events within the bulletins have to be identified and assigned with the most suitable origin time and location solution, while all the events have to be harmonized into a single magnitude scale. This process entails several decision variables that are usually defined using qualitative measures or expert opinion, without a clear exploration of the associated uncertainties. To address this issue, we present an automated and data-driven workflow that defines spatio-temporal margins within which duplicate events fall and converts the various reported magnitudes into a common scale. Special attention has been paid to the fitted functional form and the validity range of the derived magnitude conversion relations. The proposed methodology has been successfully applied to a wide region around the Dead Sea Transform Fault Zone (27N-36N, 31E-39E), with input data from various sources such as the International Seismological Centre and the Geophysical Institute of Israel. The produced public catalog contains more than 5500 events, between 1900 and 2017, with moment magnitude Mw above 3. The MATLAB/Python scripts used in this study are also available.

Author Biographies

Valerio Poggi, National Institute of Oceanography and Experimental Geophysics – OGS, Italy




Laurentiu Danciu, SED, ETH Zurich




Ricardo Monteiro, IUSS Pavia




Abdallah, A. Q. A., Feldman, L., & Shapira, A. (2004). The Unified Earthquake Catalogue of the region.

Aldersons, F., & Ben-Avraham, Z. (2014). The Seismogenic Thickness in the Dead Sea Area. In Modern Approaches in Solid Earth Sciences (pp. 53–89). Springer Netherlands. https://doi.org/10.1007/978-94-017-8872-4_3 DOI: https://doi.org/10.1007/978-94-017-8872-4_3

Ambraseys, N. (2009). Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press. https://doi.org/10.1017/cbo9781139195430 DOI: https://doi.org/10.1017/CBO9781139195430

Ambraseys, N. N. (2001). Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International, 145(2), 471–485. https://doi.org/10.1046/j.0956-540x.2001.01396.x DOI: https://doi.org/10.1046/j.0956-540x.2001.01396.x

Beauval, C., Yepes, H., Palacios, P., Segovia, M., Alvarado, A., Font, Y., Aguilar, J., Troncoso, L., & Vaca, S. (2013). An Earthquake Catalog for Seismic Hazard Assessment in Ecuador. Bulletin of the Seismological Society of America, 103(2A), 773–786. https://doi.org/10.1785/0120120270 DOI: https://doi.org/10.1785/0120120270

Bondar, I., Engdahl, E. R., Villasenor, A., Harris, J., & Storchak, D. (2015). ISC-GEM: Global instrumental earthquake catalogue (1900-2009), II. Location and seismicity patterns. Physics of the Earth and Planetary Interiors, 239. https://doi.org/10.1016/j.pepi.2014.06.002 DOI: https://doi.org/10.1016/j.pepi.2014.06.002

Bondar, I., Myers, S. C., Engdahl, E. R., & Bergman, E. A. (2004). Epicentre accuracy based on seismic network criteria. Geophysical Journal International, 156(3), 483–496. https://doi.org/10.1111/j.1365-246x.2004.02070.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02070.x

Bondar, I., & Storchak, D. (2011). Improved location procedures at the International Seismological Centre. Geophysical Journal International, 186(3), 1220–1244. https://doi.org/10.1111/j.1365-246x.2011.05107.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05107.x

Bormann, P., Liu, R., Xu, Z., Ren, K., Zhang, L., & Wendt, S. (2009). First application of the new IASPEI teleseismic magnitude standards to data of the China National Seismographic Network. Bulletin of the Seismological Society of America, 99(3), 1868–1891. https://doi.org/10.1785/0120080010 DOI: https://doi.org/10.1785/0120080010

Bormann, P., & Saul, J. (2008). The new IASPEI standard broadband magnitude mB. Seismological Research Letters, 79(5), 698–705. https://doi.org/10.1785/gssrl.79.5.698 DOI: https://doi.org/10.1785/gssrl.79.5.698

Bormann, Peter, Liu, R., Ren, X., Gutdeutsch, R., Kaiser, D., & Castellaro, S. (2007). Chinese National Network Magnitudes, Their Relation to neic Magnitudes, and Recommendations for New iaspei Magnitude Standards. Bulletin of the Seismological Society of America, 97(1B), 114–127. https://doi.org/10.1785/0120060078 DOI: https://doi.org/10.1785/0120060078

Brax, M., Albini, P., Beauval, C., Jomaa, R., & Sursock, A. (2019). An Earthquake Catalog for the Lebanese Region. Seismological Research Letters, 90(6), 2236–2249. https://doi.org/10.1785/0220180292 DOI: https://doi.org/10.1785/0220180292

Castellaro, S., & Bormann, P. (2007). Performance of Different Regression Procedures on the Magnitude Conversion Problem. Bulletin of the Seismological Society of America, 97(4), 1167–1175. https://doi.org/10.1785/0120060102 DOI: https://doi.org/10.1785/0120060102

Castellaro, S., Mulargia, F., & Kagan, Y. Y. (2006). Regression problems for magnitudes. Geophysical Journal International, 165(3), 913–930. https://doi.org/10.1111/j.1365-246x.2006.02955.x DOI: https://doi.org/10.1111/j.1365-246X.2006.02955.x

Cerchiello, V., Ceresa, P., Monteiro, R., & Komendantova, N. (2018). Assessment of social vulnerability to seismic hazard in Nablus, Palestine. International Journal of Disaster Risk Reduction, 28, 491–506. https://doi.org/10.1016/j.ijdrr.2017.12.012 DOI: https://doi.org/10.1016/j.ijdrr.2017.12.012

Danciu, L., Kale, O., & Akkar, S. (2016). The 2014 Earthquake Model of the Middle East: ground motion model and uncertainties. Bulletin of Earthquake Engineering, 16(8), 3497–3533. https://doi.org/10.1007/s10518-016-9989-1 DOI: https://doi.org/10.1007/s10518-016-9989-1

Danciu, Laurentiu, Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., Elias, A., Adamia, S., Tsereteli, N., Yalçın, H., Utkucu, M., Khan, M. A., Sayab, M., Hessami, K., Rovida, A. N., Stucchi, M., Burg, J.-P., Karakhanian, A., Babayan, H., … Giardini, D. (2017). The 2014 Earthquake Model of the Middle East: seismogenic sources. Bulletin of Earthquake Engineering, 16(8), 3465–3496. https://doi.org/10.1007/s10518-017-0096-8 DOI: https://doi.org/10.1007/s10518-017-0096-8

Deichmann, N. (2006). Local Magnitude, a Moment Revisited. Bulletin of the Seismological Society of America, 96(4A), 1267–1277. https://doi.org/10.1785/0120050115 DOI: https://doi.org/10.1785/0120050115

Del Pezzo, E., Bianco, F., & Saccorotti, G. (2003). Duration Magnitude Uncertainty due to Seismic Noise: Inferences on the Temporal Pattern of G-R b-value at Mt. Vesuvius, Italy. Bulletin of the Seismological Society of America, 93(4), 1847–1853. https://doi.org/10.1785/0120020222 DOI: https://doi.org/10.1785/0120020222

Di Giacomo, D., Bondar, I., Storchak, D. A., Engdahl, E. R., Bormann, P., & Harris, J. (2015). ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment. Physics of the Earth and Planetary Interiors, 239, 33–47. https://doi.org/10.1016/j.pepi.2014.06.005 DOI: https://doi.org/10.1016/j.pepi.2014.06.005

Di Giacomo, Domenico, & Storchak, D. A. (2015). A scheme to set preferred magnitudes in the ISC Bulletin. Journal of Seismology, 20(2), 555–567. https://doi.org/10.1007/s10950-015-9543-7 DOI: https://doi.org/10.1007/s10950-015-9543-7

Di Giacomo, Domenico, & Storchak, D. A. (2022). One hundred plus years of recomputed surface wave magnitude of shallow global earthquakes. Earth System Science Data, 14(2), 393–409. https://doi.org/10.5194/essd-14-393-2022 DOI: https://doi.org/10.5194/essd-14-393-2022

Douglas, A. (1967). Joint Epicentre Determination. Nature, 215(5096), 47–48. https://doi.org/10.1038/215047a0 DOI: https://doi.org/10.1038/215047a0

Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/jb086ib04p02825 DOI: https://doi.org/10.1029/JB086iB04p02825

Eaton, J. P. (1992). Determination of amplitude and duration magnitudes and site residuals from short-period seismographs in Northern California. Bulletin of the Seismological Society of America, 82(2), 533–579. DOI: https://doi.org/10.1785/BSSA0820020533

Faeh, D., Giardini, D., Kaestli, P., Deichmann, N., Gisler, M., Schwarz-Zanetti, G., & Bethmann, F. (2011). ECOS-09 earthquake catalogue of Switzerland release 2011 report and database. In Public catalogue, 17.4.2011, Swiss Seismological Service ETH.

Feldman. (2016). Earthquakes in and around Israel in 2012.

Garfunkel, Z., Zak, I., & Freund, R. (1981). Active faulting in the Dead Sea rift. Tectonophysics, 80(1–4), 1–26. https://doi.org/10.1016/0040-1951(81)90139-6 DOI: https://doi.org/10.1016/0040-1951(81)90139-6

Gasperini, P., Lolli, B., & Vannucci, G. (2013). Body-Wave Magnitude mb Is a Good Proxy of Moment Magnitude Mw for Small Earthquakes (mb<4.5-5.0). Seismological Research Letters, 84(6), 932–937. https://doi.org/10.1785/0220130105 DOI: https://doi.org/10.1785/0220130105

Gasperini, Paolo, Lolli, B., & Castellaro, S. (2015). Comparative Analysis of Regression Methods Used for Seismic Magnitude Conversions. Bulletin of the Seismological Society of America, 105(3), 1787–1791. https://doi.org/10.1785/0120150018 DOI: https://doi.org/10.1785/0120150018

Godey, S., Bossu, R., & Guilbert, J. (2013). Improving the Mediterranean seismicity picture thanks to international collaborations. Physics and Chemistry of the Earth, Parts A/B/C, 63, 3–11. https://doi.org/10.1016/j.pce.2013.04.012 DOI: https://doi.org/10.1016/j.pce.2013.04.012

Godey, S., Bossu, R., Guilbert, J., & Mazet-Roux, G. (2006). The Euro-Mediterranean Bulletin: A Comprehensive Seismological Bulletin at Regional Scale. Seismological Research Letters, 77(4), 460–474. https://doi.org/10.1785/gssrl.77.4.460 DOI: https://doi.org/10.1785/gssrl.77.4.460

Godey, S., Mazet-Roux, G., Bossu, R., Merrer, S., & Guilbert, J. (2009). Ten years of seismicity in the euro-mediterranean region: panorama of the EMSC bulletin 1998-2007. In Geophysical Research Abstracts (Vol. 11).

Gomberg, J. S., Shedlock, K. M., & Roecker, S. W. (1990). The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bulletin of the Seismological Society of America, 80(6A), 1605–1628. https://doi.org/10.1785/bssa08006a1605 DOI: https://doi.org/10.1785/BSSA08006A1605

Grigoratos, I. (2023). Matlab code to derive conversion relations between earthquake magnitudes. https://zenodo.org/records/8412186

Grigoratos, I., Dabeek, J., Faravelli, M., Meo, A. D., Cerchiello, V., Borzi, B., Monteiro, R., & Ceresa, P. (2016). Development of a fragility and exposure model for Palestine–application to the city of Nablus. Procedia Engineering, 161, 2023–2029. https://doi.org/10.1016/j.proeng.2016.08.797 DOI: https://doi.org/10.1016/j.proeng.2016.08.797

Grigoratos, I., Monteiro, R., Ceresa, P., Meo, A. D., Faravelli, M., & Borzi, B. (2018). Crowdsourcing Exposure Data for Seismic Vulnerability Assessment in Developing Countries. Journal of Earthquake Engineering, 25(5), 835–852. https://doi.org/10.1080/13632469.2018.1537901 DOI: https://doi.org/10.1080/13632469.2018.1537901

Grigoratos, I., Poggi, V., & Danciu, L. (2023). A homogenized instrumental earthquake catalog around the Dead Sea Transform Fault Zone. ISC Seismological Dataset Repository. https://doi.org/10.31905/UQUUGRGH DOI: https://doi.org/10.31905/UQUUGRGH

Grigoratos, I., Poggi, V., Danciu, L., & Rojo, G. (2020). An updated parametric catalog of historical earthquakes around the Dead Sea Transform Fault Zone. Journal of Seismology, 24(4), 803–832. https://doi.org/10.1007/s10950-020-09904-9 DOI: https://doi.org/10.1007/s10950-020-09904-9

Gruenthal, G., & Wahlstroem, R. (2012). The European-Mediterranean earthquake catalogue (EMEC) for the last millennium. Journal of Seismology, 16(3), 535–570. https://doi.org/10.1007/s10950-012-9302-y DOI: https://doi.org/10.1007/s10950-012-9302-y

Grünthal, G., Wahlström, R., & Stromeyer, D. (2009). The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC)—updated and expanded to the last millennium. Journal of Seismology, 13(4), 517–541. https://doi.org/10.1007/s10950-008-9144-9 DOI: https://doi.org/10.1007/s10950-008-9144-9

Gutenberg, B. (1945a). Amplitudes of surface waves and magnitudes of shallow earthquakes. Bulletin of the Seismological Society of America, 35(1), 3–12. https://doi.org/10.1785/bssa0350010003 DOI: https://doi.org/10.1785/BSSA0350010003

Gutenberg, B. (1945b). Amplitudes of P, PP, and S and magnitude of shallow earthquakesast. Bulletin of the Seismological Society of America, 35(2), 57–69. https://doi.org/10.1785/bssa0350020057 DOI: https://doi.org/10.1785/BSSA0350020057

Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration: (Second paper). Bulletin of the Seismological Society of America, 46(2), 105–145. https://doi.org/10.1785/bssa0460020105 DOI: https://doi.org/10.1785/BSSA0460020105

Hanks, T. C., & Boore, D. M. (1984). Moment-magnitude relations in theory and practice. Journal of Geophysical Research: Solid Earth, 89(B7), 6229–6235. https://doi.org/10.1029/jb089ib07p06229 DOI: https://doi.org/10.1029/JB089iB07p06229

Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/jb084ib05p02348 DOI: https://doi.org/10.1029/JB084iB05p02348

Husen, S., & Hardebeck, J. L. (2010). Earthquake location accuracy, Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-55815573

ISC. (2023). ISC Bulletin. International Seismological Centre. https://doi.org/10.31905/d808b830 DOI: https://doi.org/10.31905/D808B830

Kagan, Y. Y. (2003). Accuracy of modern global earthquake catalogs. Physics of the Earth and Planetary Interiors, 135(2–3), 173–209. https://doi.org/10.1016/s0031-9201(02)00214-5 DOI: https://doi.org/10.1016/S0031-9201(02)00214-5

Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359. https://doi.org/10.1016/0031-9201(72)90058-1 DOI: https://doi.org/10.1016/0031-9201(72)90058-1

Kanamori, H. (1978). Quantification of earthquakes. Nature, 271. https://doi.org/10.1038/271411a0 DOI: https://doi.org/10.1038/271411a0

Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. Tectonophysics, 93(3–4), 185–199. https://doi.org/10.1016/0040-1951(83)90273-1 DOI: https://doi.org/10.1016/0040-1951(83)90273-1

Krystek, M., & Anton, M. (2008). A weighted total least-squares algorithm for fitting a straight line. Measurement Science and Technology, 19(7), 79801. https://doi.org/10.1088/0957-0233/19/7/079801 DOI: https://doi.org/10.1088/0957-0233/19/7/079801

Lay, T., & Wallace, T. C. (1995). Modern Global Seismology. International Geophysics Series, 58.

Lolli, B., & Gasperini, P. (2012). A comparison among general orthogonal regression methods applied to earthquake magnitude conversions. Geophysical Journal International, 190(2), 1135–1151. https://doi.org/10.1111/j.1365-246x.2012.05530.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05530.x

Luckett, R., Ottemöller, L., Butcher, A., & Baptie, B. (2018). Extending local magnitude ML to short distances. Geophysical Journal International, 216(2), 1145–1156. https://doi.org/10.1093/gji/ggy484 DOI: https://doi.org/10.1093/gji/ggy484

Madansky, A. (1959). The Fitting of Straight Lines when Both Variables are Subject to Error. Journal of the American Statistical Association, 54(285), 173–205. https://doi.org/10.1080/01621459.1959.10501505 DOI: https://doi.org/10.1080/01621459.1959.10501505

Marco, S., & Klinger, Y. (2014). Review of On-Fault Palaeoseismic Studies Along the Dead Sea Fault. In Modern Approaches in Solid Earth Sciences (pp. 183–205). Springer Netherlands. https://doi.org/10.1007/978-94-017-8872-4_7 DOI: https://doi.org/10.1007/978-94-017-8872-4_7

Meo, A. D., Borzi, B., Faravelli, M., Pagano, M., Ceresa, P., Monteiro, R., & Al-Dabbeek, J. (2018). Seismic Vulnerability Assessment of the Urban Building Environment in Nablus, Palestine. International Journal of Architectural Heritage, 12(7–8), 1196–1215. https://doi.org/10.1080/15583058.2018.1503364 DOI: https://doi.org/10.1080/15583058.2018.1503364

Musson, R. M. W. (2012). The Effect of Magnitude Uncertainty on Earthquake Activity Rates. Bulletin of the Seismological Society of America, 102(6), 2771–2775. https://doi.org/10.1785/0120110224 DOI: https://doi.org/10.1785/0120110224

Nath, S. K., Mandal, S., Adhikari, M. D., & Maiti, S. K. (2016). A unified earthquake catalogue for South Asia covering the period 1900–2014. Natural Hazards, 85(3), 1787–1810. https://doi.org/10.1007/s11069-016-2665-6 DOI: https://doi.org/10.1007/s11069-016-2665-6

Papaioannou, C. (2001). A model for the shallow and intermediate depth seismic sources in the eastern Mediterranean region. Bollettino Di Geofisica Teorica Ed Applicata, 42(1), 57–73.

Papazachos, B. C., Kiratzi, A. A., & Karacostas, B. G. (1997). Toward a homogeneous moment-magnitude determination for earthquakes in Greece and the surrounding area. Bulletin of the Seismological Society of America, 87(2), 474–483. https://doi.org/10.1785/bssa0870020474 DOI: https://doi.org/10.1785/BSSA0870020474

Poggi, V., Durrheim, R., Tuluka, G. M., Weatherill, G., Gee, R., Pagani, M., Nyblade, A., & Delvaux, D. (2017). Assessing seismic hazard of the East African Rift: a pilot study from GEM and Africa Array. Bulletin of Earthquake Engineering, 15(11), 4499–4529. https://doi.org/10.1007/s10518-017-0152-4 DOI: https://doi.org/10.1007/s10518-017-0152-4

Pondrelli, S., Salimbeni, S., Morelli, A., Ekström, G., Postpischl, L., Vannucci, G., & Boschi, E. (2011). European–Mediterranean regional centroid moment tensor catalog: solutions for 2005–2008. Physics of the Earth and Planetary Interiors, 185(3–4), 74–81. https://doi.org/10.1016/j.pepi.2011.01.007 DOI: https://doi.org/10.1016/j.pepi.2011.01.007

Pujol, J. (2016). Regression between earthquake magnitudes having errors with known variances. Journal of Seismology, 20(3), 1041–1056. https://doi.org/10.1007/s10950-016-9580-x DOI: https://doi.org/10.1007/s10950-016-9580-x

Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 1–32. https://doi.org/10.1785/bssa0250010001 DOI: https://doi.org/10.1785/BSSA0250010001

Rodgers, A., Harris, D., Ruppert, S., Lewis, J. P., O’Boyle, J., Pasyanos, M., Abdallah, A. Q. F., Al-Yazjeen, T., & Al-Gazo, A. (2003). A Broadband Seismic Deployment in Jordan. Seismological Research Letters, 74(4), 374–381. https://doi.org/10.1785/gssrl.74.4.374 DOI: https://doi.org/10.1785/gssrl.74.4.374

Rodriquez, C., Monteiro, R., & Ceresa, P. (2018). Assessing Seismic Social Vulnerability in Urban Centers—the Case-Study of Nablus, Palestine. International Journal of Architectural Heritage, 12(7–8), 1216–1230. https://doi.org/10.1080/15583058.2018.1503369 DOI: https://doi.org/10.1080/15583058.2018.1503369

Rovida, A., Locati, M., Camassi, R., Lolli, B., & Gasperini, P. (2020). The Italian earthquake catalogue CPTI15. Bulletin of Earthquake Engineering, 18(7), 2953–2984. https://doi.org/10.1007/s10518-020-00818-y DOI: https://doi.org/10.1007/s10518-020-00818-y

Schweitzer, J. (2006). How can the ISC location procedures be improved? Physics of the Earth and Planetary Interiors, 158(1), 19–26. https://doi.org/10.1016/j.pepi.2006.03.017 DOI: https://doi.org/10.1016/j.pepi.2006.03.017

Scordilis, E. M. (2006). Empirical global relations converting Ms and mb to moment magnitude. Journal of Seismology, 10(2), 225–236. https://doi.org/10.1007/s10950-006-9012-4 DOI: https://doi.org/10.1007/s10950-006-9012-4

Sesetyan, K., Danciu, L., Tuemsa, M. B. D., Giardini, D., Erdik, M., Akkar, S., & Arakelyan, A. (2018). The 2014 seismic hazard model of the Middle East: overview and results. Bulletin of Earthquake Engineering, 16(8), 3535–3566. https://doi.org/10.1007/s10518-018-0346-4 DOI: https://doi.org/10.1007/s10518-018-0347-3

Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A Unified Seismic Catalog for the Iranian Plateau (1900-2011). Seismological Research Letters, 84(2), 233–249. https://doi.org/10.1785/0220120144 DOI: https://doi.org/10.1785/0220120144

Shalev, E., Wetzler, N., Shatanawi, A., Rödiger, T., Kurzon, I., Lyakhovsky, V., Salameh, E., & Siebert, C. (2023). Induced Seismicity by Groundwater Extraction at the Dead Sea Fault, Jordan. Journal of Geophysical Research: Solid Earth, 128(1). https://doi.org/10.1029/2022jb025044 DOI: https://doi.org/10.1029/2022JB025044

Shelly, D. R., Mayeda, K., Barno, J., Whidden, K. M., Moschetti, M. P., Llenos, A. L., Rubinstein, J. L., Yeck, W. L., Earle, P. S., Gök, R., & Walter, W. R. (2021). A Big Problem for Small Earthquakes: Benchmarking Routine Magnitudes and Conversion Relationships with Coda Envelope-Derived Mw in Southern Kansas and Northern Oklahoma. Bulletin of the Seismological Society of America, 112(1), 210–225. https://doi.org/10.1785/0120210115 DOI: https://doi.org/10.1785/0120210115

Storchak, D.A., Giacomo, D. D., Engdahl, E. R., Harris, J., Bondár, I., Lee, W. H. K., Bormann, P., & Villaseñor, A. (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction. Physics of the Earth and Planetary Interiors, 239, 48–63. https://doi.org/10.1016/j.pepi.2014.06.009 DOI: https://doi.org/10.1016/j.pepi.2014.06.009

Storchak, Dmitry A. (2006). Results of locating the IASPEI GT(0-5) reference events using the standard ISC procedures. Physics of the Earth and Planetary Interiors, 158(1), 4–13. https://doi.org/10.1016/j.pepi.2006.03.003 DOI: https://doi.org/10.1016/j.pepi.2006.03.003

Storchak, Dmitry A., Harris, J., Brown, L., Lieser, K., Shumba, B., Verney, R., Giacomo, D. D., & Korger, E. I. M. (2017). Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964–1979. Geoscience Letters, 4(1). https://doi.org/10.1186/s40562-017-0098-z DOI: https://doi.org/10.1186/s40562-017-0098-z

Stromeyer, D., Grünthal, G., & Wahlström, R. (2004). Chi-square regression for seismic strength parameter relations, and their uncertainties, with applications to an Mw based earthquake catalogue for central, northern and northwestern Europe. Journal of Seismology, 8(1), 143–153. https://doi.org/10.1023/b:jose.0000009503.80673.51 DOI: https://doi.org/10.1023/B:JOSE.0000009503.80673.51

Tinti, S., & Mulargia, F. (1985). Effects of magnitude uncertainties on estimating the parameters in the Gutenberg-Richter frequency-magnitude law. Bulletin of the Seismological Society of America, 75(6), 1681–1697. https://doi.org/10.1785/bssa0750061681 DOI: https://doi.org/10.1785/BSSA0750061681

Tormann, T., Wiemer, S., & Hauksson, E. (2010). Changes of Reporting Rates in the Southern California Earthquake Catalog, Introduced by a New Definition of ML. Bulletin of the Seismological Society of America, 100(4), 1733–1742. https://doi.org/10.1785/0120090124 DOI: https://doi.org/10.1785/0120090124

Trabant, C., Hutko, A. R., Bahavar, M., Karstens, R., Ahern, T., & Aster, R. (2012). Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications. Seismological Research Letters, 83(5), 846–854. https://doi.org/10.1785/0220120032 DOI: https://doi.org/10.1785/0220120032

Waldhauser, F., & Ellsworth, W. L. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006 DOI: https://doi.org/10.1785/0120000006

Wang, Q., Jackson, D. D., & Kagan, Y. Y. (2009). California Earthquakes, 1800-2007: A Unified Catalog with Moment Magnitudes, Uncertainties, and Focal Mechanisms. Seismological Research Letters, 80(3), 446–457. https://doi.org/10.1785/gssrl.80.3.446 DOI: https://doi.org/10.1785/gssrl.80.3.446

Weatherill, G. A., Pagani, M., & Garcia, J. (2016). Exploring earthquake databases for the creation of magnitude-homogeneous catalogues: tools for application on a regional and global scale. Geophysical Journal International, 206(3), 1652–1676. https://doi.org/10.1093/gji/ggw232 DOI: https://doi.org/10.1093/gji/ggw232

Wetzler, N., & Kurzon, I. (2016). The Earthquake Activity of Israel: Revisiting 30 Years of Local and Regional Seismic Records along the Dead Sea Transform. Seismological Research Letters, 87(1), 47–58. https://doi.org/10.1785/0220150157 DOI: https://doi.org/10.1785/0220150157

Willemann, R. J., & Storchak, D. A. (2001). Data Collection at the International Seismological Centre. Seismological Research Letters, 72(4), 440–453. https://doi.org/10.1785/gssrl.72.4.440 DOI: https://doi.org/10.1785/gssrl.72.4.440

Woessner, J., Hardebeck, J. L., & Haukkson, E. (2010). What is an instrumental seismicity catalog. Community Online Resource for Statistical Seismicity Analysis, 10.

Yadav, R. B. S., Bormann, P., Rastogi, B. K., Das, M. C., & Chopra, S. (2009). A Homogeneous and Complete Earthquake Catalog for Northeast India and the Adjoining Region. Seismological Research Letters, 80(4), 609–627. https://doi.org/10.1785/gssrl.80.4.609 DOI: https://doi.org/10.1785/gssrl.80.4.609

Zare, M., Amini, H., Yazdi, P., Sesetyan, K., Demircioglu, M. B., Kalafat, D., Erdik, M., Giardini, D., Khan, M. A., & Tsereteli, N. (2014). Recent developments of the Middle East catalog. Journal of Seismology, 18(4), 749–772. https://doi.org/10.1007/s10950-014-9444-1 DOI: https://doi.org/10.1007/s10950-014-9444-1



How to Cite

Grigoratos, I., Poggi, V., Danciu, L., & Monteiro, R. (2023). Homogenizing instrumental earthquake catalogs – a case study around the Dead Sea Transform Fault Zone. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.402