Inferring rock strength and fault activation from high-resolution in situ Vp/Vs estimates surrounding induced earthquake clusters

Authors

  • Marco Pascal Roth Ruhr University Bochum
  • Alessandro Verdecchia Ruhr University Bochum
  • Rebecca M. Harrington Ruhr University Bochum
  • Yajing Liu McGill University

DOI:

https://doi.org/10.26443/seismica.v2i2.498

Abstract

Fluid injection/extraction activity related to hydraulic fracturing can induce earthquakes. Common mechanisms attributed to induced earthquakes include elevated pore pressure, poroelastic stress change, and fault loading through aseismic slip. However, their relative influence is still an open question. Estimating subsurface rock properties, such as pore pressure distribution, crack density, and fracture geometry can help quantify the causal relationship between fluid-rock interaction and fault activation. Inferring rock properties by means of indirect measurement may be a viable strategy to help identify weak structures susceptible to failure in regions where increased seismicity correlates with industrial activity, such as the Western Canada Sedimentary Basin. Here we present in situ estimates of Vp/Vs for 34 induced earthquake clusters in the Kiskatinaw area in northeast British Columbia. We estimate significant changes of up to ±4.5% for nine clusters generally associated with areas of high injection volume. Predominantly small spatiotemporal Vp/Vs variations suggest pore pressure increase plays a secondary role in initiating earthquakes. In contrast, computational rock mechanical models that invoke a decreasing fracture aspect ratio and increasing fluid content in a fluid-saturated porous medium that are consistent with the treatment pressure history better explain the observations.

References

Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R. M., Liu, Y., van der Baan, M., & Kao, H. (2016). Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters, 87(3), 631–647. https://doi.org/10.1785/0220150263 DOI: https://doi.org/10.1785/0220150263

Babaie Mahani, A., Kao, H., Atkinson, G. M., Assatourians, K., Addo, K., & Liu, Y. (2019). Ground‐Motion Characteristics of the 30 November 2018 Injection‐Induced Earthquake Sequence in Northeast British Columbia, Canada. Seismological Research Letters, 90(4), 1457–1467. https://doi.org/10.1785/0220190040 DOI: https://doi.org/10.1785/0220190040

Babaie Mahani, A., Schultz, R., Kao, H., Walker, D., Johnson, J., & Salas, C. (2017). Fluid injection and seismic activity in the northern Montney play, British Columbia, Canada, with special reference to the 17 August 2015 Mw 4.6 induced earthquake. Bulletin of the Seismological Society of America, 107(2), 542–552. https://doi.org/10.1785/0120160175 DOI: https://doi.org/10.1785/0120160175

BC-ER. (2023). Well Lookup and Reports.

Bell, J., & Grasby, S. (2012). The stress regime of the Western Canadian Sedimentary Basin. Geofluids, 12(2), 150–165. https://doi.org/10.1111/j.1468-8123.2011.00349.x DOI: https://doi.org/10.1111/j.1468-8123.2011.00349.x

Berger, Z., Boast, M., & Mushayandebvu, M. (2009). The contribution of integrated HRAM studies to exploration and exploitation of unconventional plays in North America. Canadian Society of Petroleum Geologists, Reservoir, 36, 40–45.

Berryman, J. G. (1980). Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions. The Journal of the Acoustical Society of America, 68(6), 1820–1831. https://doi.org/10.1121/1.385172 DOI: https://doi.org/10.1121/1.385172

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530

Bhattacharya, P., & Viesca, R. C. (2019). Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science, 364(6439), 464–468. https://doi.org/10.1126/science.aaw7354 DOI: https://doi.org/10.1126/science.aaw7354

Bohnhoff, M., Dresen, G., Ellsworth, W. L., & Ito, H. (2009). Passive Seismic Monitoring of Natural and Induced Earthquakes: Case Studies, Future Directions and Socio-Economic Relevance. In New Frontiers in Integrated Solid Earth Sciences (pp. 261–285). Springer Netherlands. https://doi.org/10.1007/978-90-481-2737-5_7 DOI: https://doi.org/10.1007/978-90-481-2737-5_7

Brantut, N., & David, E. C. (2019). Influence of fluids on V_p/V_s ratio: increase or decrease? Geophysical Journal International, 216(3), 2037–2043. https://doi.org/10.1093/gji/ggy518 DOI: https://doi.org/10.1093/gji/ggy518

Chevrot, S., & van der Hilst, R. D. (2000). The Poisson ratio of the Australian crust: geological and geophysical implications. Earth and Planetary Science Letters, 183(1–2), 121–132. https://doi.org/10.1016/s0012-821x(00)00264-8 DOI: https://doi.org/10.1016/S0012-821X(00)00264-8

Christensen, N. I. (1984). Pore pressure and oceanic crustal seismic structure. Geophysical Journal International, 79(2), 411–423. https://doi.org/10.1111/j.1365-246x.1984.tb02232.x DOI: https://doi.org/10.1111/j.1365-246X.1984.tb02232.x

Cochran, E. S., Ross, Z. E., Harrington, R. M., Dougherty, S. L., & Rubinstein, J. L. (2018). Induced Earthquake Families Reveal Distinctive Evolutionary Patterns Near Disposal Wells. Journal of Geophysical Research: Solid Earth, 123(9), 8045–8055. https://doi.org/10.1029/2018jb016270 DOI: https://doi.org/10.1029/2018JB016270

Crameri, F. (2021). Scientific colour maps. Zenodo, 7.0.1. https://doi.org/10.5281/zenodo.1243862

Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154 DOI: https://doi.org/10.1785/gssrl.70.2.154

Davies, G. R., Watson, N., Moslow, T. F., & MacEachern, J. A. (2018). Regional subdivisions, sequences, correlations and facies relationships of the Lower Triassic Montney Formation, west-central Alberta to northeastern British Columbia, Canada — with emphasis on role of paleostructure. Bulletin of Canadian Petroleum Geology, 66(1), 23–92.

Dawson, P. B., Chouet, B. A., Okubo, P. G., Villaseñor, A., & Benz, H. M. (1999). Three-dimensional velocity structure of the Kilauea Caldera, Hawaii. Geophysical Research Letters, 26(18), 2805–2808. https://doi.org/10.1029/1999gl005379 DOI: https://doi.org/10.1029/1999GL005379

Deng, K., Liu, Y., & Harrington, R. M. (2016). Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophysical Research Letters, 43(16), 8482–8491. https://doi.org/10.1002/2016gl070421 DOI: https://doi.org/10.1002/2016GL070421

Eaton, D. W., van der Baan, M., Birkelo, B., & Tary, J.-B. (2014). Scaling relations and spectral characteristics of tensile microseisms: evidence for opening/closing cracks during hydraulic fracturing. Geophysical Journal International, 196(3), 1844–1857. https://doi.org/10.1093/gji/ggt498 DOI: https://doi.org/10.1093/gji/ggt498

Eyre, T. S., Eaton, D. W., Garagash, D. I., Zecevic, M., Venieri, M., Weir, R., & Lawton, D. C. (2019). The role of aseismic slip in hydraulic fracturing–induced seismicity. Science Advances, 5(8), eaav7172. https://doi.org/10.1126/sciadv.aav7172 DOI: https://doi.org/10.1126/sciadv.aav7172

Eyre, T. S., Samsonov, S., Feng, W., Kao, H., & Eaton, D. W. (2022). InSAR data reveal that the largest hydraulic fracturing-induced earthquake in Canada, to date, is a slow-slip event. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06129-3 DOI: https://doi.org/10.1038/s41598-022-06129-3

Goebel, Thomas H. W., & Brodsky, E. E. (2018). The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405), 899–904. https://doi.org/10.1126/science.aat5449 DOI: https://doi.org/10.1126/science.aat5449

Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., & Brodsky, E. E. (2017). The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 472, 50–61. https://doi.org/10.1016/j.epsl.2017.05.011 DOI: https://doi.org/10.1016/j.epsl.2017.05.011

Gosselin, J. M., Audet, P., Estève, C., McLellan, M., Mosher, S. G., & Schaeffer, A. J. (2020). Seismic evidence for megathrust fault-valve behavior during episodic tremor and slip. Science Advances, 6(4). https://doi.org/10.1126/sciadv.aay5174 DOI: https://doi.org/10.1126/sciadv.aay5174

Gregory, A. R. (1976). Fluid saturation effects on dynamic elastic properties of sedimentary rocks. GEOPHYSICS, 41(5), 895–921. https://doi.org/10.1190/1.1440671 DOI: https://doi.org/10.1190/1.1440671

Gritto, R., & Jarpe, S. P. (2014). Temporal variations of V_p/V_s-ratio at The Geysers geothermal field, USA. Geothermics, 52, 112–119. https://doi.org/10.1016/j.geothermics.2014.01.012 DOI: https://doi.org/10.1016/j.geothermics.2014.01.012

Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., & Elsworth, D. (2015). Seismicity triggered by fluid injection–induced aseismic slip. Science, 348(6240), 1224–1226. https://doi.org/10.1126/science.aab0476 DOI: https://doi.org/10.1126/science.aab0476

Han, D.-H., & Batzle, M. L. (2004). Gassmann’s equation and fluid-saturation effects on seismic velocities. GEOPHYSICS, 69(2), 398–405. https://doi.org/10.1190/1.1707059 DOI: https://doi.org/10.1190/1.1707059

Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127–140. https://doi.org/10.1016/0022-5096(63)90060-7 DOI: https://doi.org/10.1016/0022-5096(63)90060-7

Hsu, Y.-F., Huang, H.-H., Huang, M.-H., Tsai, V. C., Chuang, R. Y., Feng, K.-F., & Lin, S.-H. (2020). Evidence for Fluid Migration During the 2016 Meinong, Taiwan, Aftershock Sequence. Journal of Geophysical Research: Solid Earth, 125(9). https://doi.org/10.1029/2020jb019994 DOI: https://doi.org/10.1029/2020JB019994

Huber, P. J. (1973). Robust Regression: Asymptotics, Conjectures and Monte Carlo. The Annals of Statistics, 1(5), 799–821. http://www.jstor.org/stable/2958283 DOI: https://doi.org/10.1214/aos/1176342503

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55

Igonin, N., Verdon, J. P., Kendall, J.-M., & Eaton, D. W. (2021). Large-Scale Fracture Systems Are Permeable Pathways for Fault Activation During Hydraulic Fracturing. Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020jb020311 DOI: https://doi.org/10.1029/2020JB020311

Jarvis, A., Reuter, H., Nelson, A., & Guevara, E. (2008). Hole-Filled Seamless SRTM Data V4: International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org. http://srtm.csi.cgiar.org

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x DOI: https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Keranen, K. M., & Weingarten, M. (2018). Induced Seismicity. Annual Review of Earth and Planetary Sciences, 46(1), 149–174. https://doi.org/10.1146/annurev-earth-082517-010054 DOI: https://doi.org/10.1146/annurev-earth-082517-010054

Kettlety, T., Verdon, J. P., Werner, M. J., & Kendall, J. M. (2020). Stress Transfer From Opening Hydraulic Fractures Controls the Distribution of Induced Seismicity. Journal of Geophysical Research: Solid Earth, 125(1). https://doi.org/10.1029/2019jb018794 DOI: https://doi.org/10.1029/2019JB018794

Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismological Research Letters, 85(3), 715–726. https://doi.org/10.1785/0220130073 DOI: https://doi.org/10.1785/0220130073

Lin, G. (2020). Spatiotemporal variations of in situ V_p/V_s ratio within the Salton Sea Geothermal Field, southern California. Geothermics, 84, 101740. https://doi.org/10.1016/j.geothermics.2019.101740 DOI: https://doi.org/10.1016/j.geothermics.2019.101740

Lin, G., & Shearer, P. M. (2007). Estimating Local V_p/V_s Ratios within Similar Earthquake Clusters. Bulletin of the Seismological Society of America, 97(2), 379–388. https://doi.org/10.1785/0120060115 DOI: https://doi.org/10.1785/0120060115

Lin, G., & Shearer, P. M. (2021). Spatiotemporal Variations of Focal Mechanism and In Situ V_p/V_s Ratio During the 2018 Kı̄lauea Eruption. Geophysical Research Letters, 48(18). https://doi.org/10.1029/2021gl094636 DOI: https://doi.org/10.1029/2021GL094636

Liu, T., Gong, J., Fan, W., & Lin, G. (2023). In-situ Vp/Vₚ ratio reveals fault-zone material variation at the westernmost Gofar transform fault, East Pacific Rise. Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022jb025310 DOI: https://doi.org/10.1029/2022JB025310

McNutt, S. R. (2005). Volcanic Seismology. Annual Review of Earth and Planetary Sciences, 33(1), 461–491. https://doi.org/10.1146/annurev.earth.33.092203.122459 DOI: https://doi.org/10.1146/annurev.earth.33.092203.122459

Mesimeri, M., Ganas, A., & Pankow, K. L. (2022). Multisegment ruptures and V_p/V_s variations during the 2020–2021 seismic crisis in western Corinth Gulf, Greece. Geophysical Journal International, 230(1), 334–348. https://doi.org/10.1093/gji/ggac081 DOI: https://doi.org/10.1093/gji/ggac081

Nanometrics Inc. (2020). BCER Kiskatinaw Seismic Monitoring and Mitigation Area Velocity Model developed by Nanometrics Inc. https://www.bc-er.ca/data-reports/data-centre/. https://www.bc-er.ca/data-reports/data-centre/

Natural Resources Canada. (2023). Earthquakes Canada, GSC, Earthquake Search (On-line Bulletin). https://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bulletin-en.php. https://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bulletin-en.php

Norgard, G. T. (1997). Structural inversion of the Middle Triassic Halfway Formation, Monias Field, northeast British Columbia. Bulletin of Canadian Petroleum Geology, 45(4), 614–623. https://doi.org/10.35767/gscpgbull.45.4.614

Omovie, S. J., & Castagna, J. P. (2020). Relationships between Dynamic Elastic Moduli in Shale Reservoirs. Energies, 13(22), 6001. https://doi.org/10.3390/en13226001 DOI: https://doi.org/10.3390/en13226001

Peña Castro, A. F., Roth, M. P., Verdecchia, A., Onwuemeka, J., Liu, Y., Harrington, R. M., Zhang, Y., & Kao, H. (2020). Stress Chatter via Fluid Flow and Fault Slip in a Hydraulic Fracturing-Induced Earthquake Sequence in the Montney Formation, British Columbia. Geophysical Research Letters, 47(14). https://doi.org/10.1029/2020gl087254 DOI: https://doi.org/10.1029/2020GL087254

Peterie, S. L., Miller, R. D., Intfen, J. W., & Gonzales, J. B. (2018). Earthquakes in Kansas Induced by Extremely Far-Field Pressure Diffusion. Geophysical Research Letters, 45(3), 1395–1401. https://doi.org/https://doi.org/10.1002/2017GL076334 DOI: https://doi.org/10.1002/2017GL076334

Pimienta, L., Schubnel, A., Violay, M., Fortin, J., Guéguen, Y., & Lyon-Caen, H. (2018). Anomalous Vp/Vₚ Ratios at Seismic Frequencies Might Evidence Highly Damaged Rocks in Subduction Zones. Geophysical Research Letters, 45(22), 12,210-12,217. https://doi.org/10.1029/2018gl080132 DOI: https://doi.org/10.1029/2018GL080132

QGIS Development Team. (2022). QGIS Geographic Information System 3.22.3. QGIS Association. https://www.qgis.org

Reuss, A. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech, 9, 49–58. DOI: https://doi.org/10.1002/zamm.19290090104

Roth, M. P., Kemna, K. B., Harrington, R. M., & Liu, Y. (2022). Source Properties of Hydraulic-Fracturing-Induced Earthquakes in the Kiskatinaw Area, British Columbia, Canada. Journal of Geophysical Research: Solid Earth, 127(3). https://doi.org/10.1029/2021jb022750 DOI: https://doi.org/10.1029/2021JB022750

Roth, Marco P., Verdecchia, A., Harrington, R. M., & Liu, Y. (2020). High-Resolution Imaging of Hydraulic-Fracturing-Induced Earthquake Clusters in the Dawson-Septimus Area, Northeast British Columbia, Canada. Seismological Research Letters, 91(5), 2744–2756. https://doi.org/10.1785/0220200086 DOI: https://doi.org/10.1785/0220200086

Salvage, R. O., & Eaton, D. W. (2021). Unprecedented quiescence in resource development area allows detection of long-lived latent seismicity. Solid Earth, 12(3), 765–783. https://doi.org/10.5194/se-12-765-2021 DOI: https://doi.org/10.5194/se-12-765-2021

Schmid, F., Petersen, G., Hooft, E., Paulatto, M., Chrapkiewicz, K., Hensch, M., & Dahm, T. (2022). Heralds of Future Volcanism: Swarms of Microseismicity Beneath the Submarine Kolumbo Volcano Indicate Opening of Near-Vertical Fractures Exploited by Ascending Melts. Geochemistry, Geophysics, Geosystems, 23(7). https://doi.org/10.1029/2022gc010420 DOI: https://doi.org/10.1029/2022GC010420

Schultz, R., Skoumal, R. J., Brudzinski, M. R., Eaton, D., Baptie, B., & Ellsworth, W. (2020). Hydraulic Fracturing-Induced Seismicity. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019rg000695 DOI: https://doi.org/10.1029/2019RG000695

Takei, Y. (2002). Effect of pore geometry on Vp/Vₚ: From equilibrium geometry to crack. Journal of Geophysical Research, 107(B2). https://doi.org/10.1029/2001jb000522 DOI: https://doi.org/10.1029/2001JB000522

Verdecchia, A., Cochran, E. S., & Harrington, R. M. (2021). Fluid-Earthquake and Earthquake-Earthquake Interactions in Southern Kansas, USA. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB020384. https://doi.org/https://doi.org/10.1029/2020JB020384 DOI: https://doi.org/10.1029/2020JB020384

Voigt, W. (1910). Lehrbuch der Kristallphysik:(mit Ausschluss der Kristalloptik) (Vol. 34). BG Teubner.

Wang, B., Harrington, R. M., Liu, Y., Kao, H., & Yu, H. (2020). A Study on the Largest Hydraulic-Fracturing-Induced Earthquake in Canada: Observations and Static Stress-Drop Estimation. Bulletin of the Seismological Society of America, 110(5), 2283–2294. https://doi.org/10.1785/0120190261 DOI: https://doi.org/10.1785/0120190261

Wang, B., Verdecchia, A., Kao, H., Harrington, R. M., Liu, Y., & Yu, H. (2021). A Study on the Largest Hydraulic Fracturing Induced Earthquake in Canada: Numerical Modeling and Triggering Mechanism. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120200251 DOI: https://doi.org/10.1785/0120200251

Wang, W., Savage, M. K., Yates, A., Zal, H. J., Webb, S., Boulton, C., Warren-Smith, E., Madley, M., Stern, T., Fry, B., Mochizuki, K., & Wallace, L. (2022). Temporal velocity variations in the northern Hikurangi margin and the relation to slow slip. Earth and Planetary Science Letters, 584, 117443. https://doi.org/10.1016/j.epsl.2022.117443 DOI: https://doi.org/10.1016/j.epsl.2022.117443

Weber, B., Becker, J., Hanka, W., Heinloo, A., Hoffmann, M., Kraft, T., Pahlke, D., Reinhardt, J., Saul, J., & Thoms, H. (2007). SeisComP3 - Automatic and Interactive Real Time Data Processing. Geophysical Research Abstracts.

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515 DOI: https://doi.org/10.1029/2019GC008515

Winkler, K. W., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional-sliding. GEOPHYSICS, 47(1), 1–15. https://doi.org/10.1190/1.1441276 DOI: https://doi.org/10.1190/1.1441276

Worthington, M. H., & Hudson, J. A. (2000). Fault properties from seismic Q. Geophysical Journal International, 143(3), 937–944. https://doi.org/10.1046/j.1365-246x.2000.00315.x DOI: https://doi.org/10.1046/j.1365-246X.2000.00315.x

Yu, H., Harrington, R. M., Kao, H., Liu, Y., Abercrombie, R. E., & Wang, B. (2020). Well Proximity Governing Stress Drop Variation and Seismic Attenuation Associated With Hydraulic Fracturing Induced Earthquakes. Journal of Geophysical Research: Solid Earth, 125(9). https://doi.org/10.1029/2020jb020103 DOI: https://doi.org/10.1029/2020JB020103

Yu, H., Harrington, R. M., Kao, H., Liu, Y., & Wang, B. (2021). Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-26961-x DOI: https://doi.org/10.1038/s41467-021-26961-x

Yu, H., Harrington, R. M., Liu, Y., & Wang, B. (2019). Induced Seismicity Driven by Fluid Diffusion Revealed by a Near‐Field Hydraulic Stimulation Monitoring Array in the Montney Basin, British Columbia. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2018JB017039 DOI: https://doi.org/10.1029/2018JB017039

Zhao, D., Kanamori, H., Negishi, H., & Wiens, D. (1996). Tomography of the Source Area of the 1995 Kobe Earthquake: Evidence for Fluids at the Hypocenter? Science, 274(5294), 1891–1894. https://doi.org/10.1126/science.274.5294.1891 DOI: https://doi.org/10.1126/science.274.5294.1891

Published

2023-11-16

How to Cite

Roth, M. P., Verdecchia, A., Harrington, R., & Liu, Y. (2023). Inferring rock strength and fault activation from high-resolution in situ Vp/Vs estimates surrounding induced earthquake clusters. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.498

Issue

Section

Articles

Funding data