Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone

Authors

DOI:

https://doi.org/10.26443/seismica.v2i3.502

Keywords:

Geodesy, Modeling

Abstract

On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems.

References

Aktug, B., Ozener, H., Dogru, A., Sabuncu, A., Turgut, B., Halicioglu, K., Yilmaz, O., and Havazli, E. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. Journal of Geodynamics, 94:1–12, 2016. doi:10.1016/j.jog.2016.01.001.13

Ambraseys, N. Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, 2009. doi:10.1017/CBO9781139195430.

Ambraseys, N. N. Some Characteristic Features of the North Anatolian Fault Zone.Tectonophysics, 9:143–165, 1970.

An, M., Zhang, F., Elsworth, D., Xu, Z., Chen, Z., and Zhang,L. Friction of Longmaxi shale gouges and implications for seismicity during hydraulic fracturing. Journal of Geophysi-cal Research: Solid Earth, 125(8):e2020JB019885, 2020. doi:10.1029/2020JB019885.

Armijo, R., Meyer, B., Hubert, A., and Barka, A. Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics.Geology, 27(3):267–270, 1999. doi:10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2.

Aster, R. C., Borchers, B., and Thurber, C. H. Parameter estimation and inverse problems. Academic Press, 2nd edition, 2012.

Bagnardi, M. and Hooper, A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach.Geochemistry, Geophysics, Geosystems, 19(7):2194–2211, 2018.

Barbot, S. Modulation of fault strength during the seismic cycle by grain-size evolution around contact junctions. Tectonophysics,765:129–145, 2019a. doi:10.1016/j.tecto.2019.05.004.

Barbot, S. Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault.Tectonophysics, 768:228171, 2019b. doi:10.1016/j.tecto.2019.228171.

Barbot, S. and Weiss, J. Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia. Geophys.J. Int., 226(1):422–445, 2021. doi:10.1093/gji/ggab078.

Barbot, S., Fialko, Y., and Sandwell, D. Effect of a Compliant Fault Zone on the Inferred Earthquake Slip Distribution. J. Geophys.Res., 113(B6), June 2008a. doi:10.1029/2007JB005256.

Barbot, S., Hamiel, Y., and Fialko, Y. Space geodetic investigation of the coseismic and postseismic deformation due to the 2003 Mw 7.2 Altai earthquake: Implications for the local lithospheric rheology. J. Geophys. Res., 113(B03403), 2008b. doi:10.1029/2007JB005063.

Barbot, S., Fialko, Y., and Bock, Y. Postseismic Deformation due to the Mw 6.0 2004 Parkfield Earthquake: Stress-Driven Creep on a Fault with Spatially Variable Rate-and-State Friction Parameters.J. Geophys. Res., 114(B07405), 2009a. doi:10.1029/2008JB005748.

Barbot, S., Fialko, Y., and Sandwell, D. Three-Dimensional Models of Elasto-Static Deformation in Heterogeneous Media, with Applications to the Eastern California Shear Zone. Geophys. J. Int.,179(1):500–520, 2009b. doi:10.1111/j.1365-246X.2009.04194.x.

Barbot, S., Lapusta, N., and Avouac, J. P. Under the Hood of the Earthquake Machine: Towards Predictive Modeling of the Seismic Cycle. Science, 336(6082):707–710, 2012. doi:10.1126/science.1218796.

Barbot, S., Agram, P., and De Michele, M. Change of Apparent Segmentation of the San Andreas Fault Around Parkfield from Space Geodetic Observations Across Multiple Periods.J. Geophys. Res., 118(12):6311–6327, 2013. doi:10.1002/2013JB010442.

Bilham, R., Ozener, H., Mencin, D., Dogru, A., Ergintav, S., Cakir, Z., Aytun, A., Aktug, B., Yilmaz, O., Johnson, W., et al. Surface creep on the North Anatolian fault at Ismetpasa, Turkey, 1944–2016. J. Geophys. Res., 121(10):7409–7431, 2016. doi:10.1002/2016JB013394.

Blanpied, M. L., Lockner, D. A., and Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res., 100(B7):13045–13064, 1995. doi:10.1029/95JB00862.

Bletery, Q., Cavalié, O., Nocquet, J.-M., and Ragon, T. Distribution of interseismic coupling along the North and East Anatolian Faults inferred from InSAR and GPS data. Geophys. Res. Lett., 47(16):e2020GL087775, 2020. doi:10.1029/2020GL087775.

Bohnhoff, M., Martínez-Garzón, P., Bulut, F., Stierle, E., and Ben-Zion, Y. Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics, 674:147–165, 2016. doi:10.1016/j.tecto.2016.02.028.

Boulton, C., Moore, D. E., Lockner, D. A., Toy, V. G., Townend, J., and Sutherland, R. Frictional properties of exhumed fault gouges in DFDP-1 cores, Alpine Fault, New Zealand.Geophys. Res. Lett., 41(2):356–362, 2014. doi:10.1002/2013GL058236.

Bozkurt, E. Neotectonics of Turkey – a synthesis. Geodinamica acta,14(1-3):3–30, 2001. doi:10.1080/09853111.2001.11432432.

Bulut, F., Bohnhoff, M., Eken, T., Janssen, C., Kılıç, T., and Dresen, G. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precisee arthquake locations.J. Geophys. Res., 117(B7), 2012. doi:10.1029/2011JB008966.

Cavalié, O. and Jónsson, S. Block-like plate movements in eastern Anatolia observed by InSAR.Geophys. Res. Lett., 41(1):26–31,2014. doi:10.1002/2013GL058170.

Cetin, E., Cakir, Z., Meghraoui, M., Ergintav, S., and Akoglu, A. M. Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry, Geophysics, Geosystems, 15(7):2883–2894,2014. doi:10.1002/2014GC005307.

Chen, C. and Zebker, H. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans. Geosci. Rem. Sens., 40(8):1709–1719, 2002.

Chen, K., Avouac, J.-P., Aati, S., Milliner, C., Zheng, F., and Shi, C. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone.Nature communications, 11(1):1–8, 2020. doi:10.1038/s41467-019-13750-w.

Cochran, Y., Li, Y.-G., Shearer, P., Barbot, S., Fialko, Y., and Vidale, J. Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones. Geology, 37(4):315–318, Apr. 2009. doi:10.1130/G25306A.1.

Dal Zilio, L. and Ampuero, J. Earthquake doublet in Turkey and Syria.Comm. Earth Environ, 4(71), 2023. doi:10.1038/s43247-023-00747-z.

den Hartog, S., Thomas, M. Y., and Faulkner, D. How do laboratory friction parameters compare with observed fault slipand geodetically derived friction parameters? Insights from the Longitudinal Valley Fault, Taiwan. J. Geophys. Res., 126(10):e2021JB022390, 2021. doi:10.1029/2021JB022390.

Di Toro, G., Han, R., Hirose, T., Paola, N. D., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T. Fault lubrication during earthquakes. Nature, 471:494–498, 2011. doi:10.1038/na-ture09838.

Duman, T. Y. and Emre, Ö. The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society, London, Special Publications, 372(1):495–529, 2013. doi:10.1144/SP372.1.

Emre, O., Duman, T., Özalp, S., Şaroğlu, F., Olgun, c., Elmaci,H. ,and Can, T. Active fault database of Turkey. Bulletin of EarthquakeEngineering, 16:3229–3275, 07 2018. doi:10.1007/s10518-016-0041-2.

Faccenna, C. and Becker, T. W. Shaping mobile belts by small-scale convection. Nature, 465(7298):602–605, 2010. doi:10.1038/nature09064.14

Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P.,Capitanio, F. A., Funiciello, F., Horvàth, F., Jolivet, L., et al. Mantle dynamics in the Mediterranean. Reviews of Geophysics, 52(3):283–332, 2014. doi:10.1002/2013RG000444.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., et al. The shuttle radar topography mission. Reviews of geophysics, 45(2), 2007.doi: 10.1029/2005RG000183.

Fialko, Y. Probing the mechanical properties of seismically active crust with space geodesy: Study of the co-seismic deformation due to the 1992 Mw7.3 Landers (Southern California) earthquake. J. Geophys. Res., 109(B03307), 2004.

Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., and Minster, B. Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science, 297:1858–1862, 2002. doi:10.1126/science.1074671.

Fialko, Y., Sandwell, D., Simons, M., and Rosen, P. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435:295–299, May2005.

ForM@Ter. ForMTer - EOST (2023): Terrain displacement from the Turkiye-Syria earthquakes of February 6,2023 obtained with the GDM-OPT-ETQ service applied on Sentinel-2 optical imagery, 2023.

Garfunkel, Z., Zak, I., and Freund, R. Active faulting in the Dead Sea rift. Tectonophysics, 80(1-4):1–26, 1981. doi:10.1016/0040-1951(81)90139-6.

Güvercin, S.E., Karabulut, H., Konca, A.Ö., Doğan, U., and Ergintav,S. Active seismotectonics of the East Anatolian Fault. Geophys.J. Int., 230(1):50–69, 2022. doi:10.1093/gji/ggac045.

Hamiel, Y. and Fialko, Y. Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake. J. Geophys. Res., 112(B07412), 2007. doi:10.1029/2006JB004777.

Hamiel, Y. and Piatibratova, O. Spatial variations of slip and creep rates along the southern and central Dead Sea Fault and the Carmel–Gilboa Fault System. J. Geophys. Res., 126(9):e2020JB021585, 2021. doi:10.1029/2020JB021585.

Hartleb, R. D., Dolan, J. F., Akyüz, H. S., and Yerli, B. A 2000-year-long paleoseismologic record of earthquakes along the central North Anatolian Fault, from trenches at Alayurt, Turkey. Bull. Seism. Soc. Am., 93(5):1935–1954, 2003. doi:10.1785/0120010271.

Herring, T., King, R., Floyd, M., and McCluskey, S. Introduction to GAMIT/GLOBK. Massachusetts Institute of Technology, Cam-bridge, Massachusetts, page 54, 2018.

Hubert-Ferrari, A., Armijo, R., King, G., Meyer, B., and Barka, A. Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. J. Geophys. Res., 107(B10):ETG–9, 2002. doi:10.1029/2001JB000393.

Hubert-Ferrari, A., Lamair, L., Hage, S., Schmidt, S., Çağatay, M. N.,and Avşar, U. A 3800 yr paleoseismic record (Lake Hazar sediments, eastern Turkey): Implications for the East Anatolian Fault seismic cycle. Earth Planet. Sci. Lett., 538:116152, 2020.doi: 10.1016/j.epsl.2020.116152.

Huiskamp, G. Difference formulas for the surface Laplacian on atriangulated surface. J. Comp. Physics, 95(2):477–496, 1991. doi:10.1016/0021-9991(91)90286-T.

Jackson, J. and McKenzie, D. Active tectonics of the Alpine–Himalayan belt between western Turkey and Pakistan. Geophys. J. Int., 77(1):185–264, 1984. doi:10.1111/j.1365-246X.1984.tb01931.x.

Javed, M. T., Barbot, S., Javed, F., Ali, A., and Braitenberg, C. Co-seismic folding during ramp failure at the front of the Sulaimanfold-and-thrust belt.Geophys. Res. Lett., page e2022GL099953,2022. doi:10.1029/2022GL099953.

Jiang, J. and Lapusta, N. Deeper penetration of large earthquakes on seismically quiescent faults. Science, 352(6291):1293–1297,2016.

Jiang, J., Erickson, B. A., Lambert, V. R., Ampuero, J.-P., Ando, R., Barbot, S. D., Cattania, C., Zilio, L. D., Duan, B., Dunham, E. M., et al. Community-driven code comparisons for three-dimensional dynamic modeling of sequences of earthquakes and aseismic slip.J. Geophys. Res., 127(3):e2021JB023519,2022. doi:10.1029/2021JB023519.

Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet,L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J.-P., et al. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597:1–33, 2013. doi:10.1016/j.tecto.2012.06.011.

Jónsson, S., Zebker, H., Segall, P., and Amelung, F. Fault slip distribution of the 1999 M w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seism. Soc. Am., 92(4):1377–1389, 2002. doi:10.1785/0120000922.

Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X., and Furuya, M. Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate-and-state friction properties. J. Geophys. Res., 118(1):316–331, 2013. doi:10.1029/2012JB009661.

Konca, A. Ö., Karabulut, H., Güvercin, S. E., Eskiköy, F., Özarpacı,S., Özdemir, A., Floyd, M., Ergintav, S., and Doğan, U. From interseismic deformation with near-repeating earthquakes to co-seismic rupture: A unified view of the 2020 Mw 6. 8 Sivrice(Elazığ) Eastern Turkey earthquake.J. Geophys. Res., 126(10):e2021JB021830, 2021. doi:10.1029/2021JB021830.

Lazecky, M., Spaans, K., González, P., Maghsoudi, Y., Morishita, Y., Albino, F., Elliott, J., Greenall, N., Hatton, E., Hooper, A., Juncu,D., McDougall, A., Walters, R., Watson, C., Weiss, J., and Wright,T. LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity.Remote Sensing, 12(15):2430,2020. doi:10.3390/rs12152430.

Le Pichon, X. and Kreemer, C. The Miocene-to-Present KinematicEvolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annual Review of Earth and Plane-tary Sciences, 38(1):323–351, 2010. doi:10.1146/annurev-earth-040809-152419.

Le Pichon, X., Şengör, A. C., Kende, J., İmren, C., Henry, P., Grall,C., and Karabulut, H. Propagation of a strike-slip plate boundary within an extensional environment: the westward propagation of the North Anatolian Fault. Canadian Journal of Earth Sci-nces, 53(11):1416–1439, 2016. doi:10.1139/cjes-2015-0129.

Leprince, S., Barbot, S., Ayoub, F., and Avouac, J. P. Automatic, Precise, Ortho-rectification and Coregistration for satellite Image Correlation, Application to Ground Deformation Measurement. IEEE Trans. Geosc. Rem. Sens., 45(6):1529–1558, 2007. doi:10.1109/TGRS.2006.888937.

Liang, C., Agram, P., Simons, M., and Fielding, E. J. Ionospheric correction of InSAR time series analysis of C-band Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 57(9):6755–6773, 2019. doi:10.1109/TGRS.2019.2908494.

Liu, Y. and He, C. Friction properties of hornblende and implications for slow-slip events in subduction zones.Tectonophysics,796:228644, 2020. doi:10.1016/j.tecto.2020.228644.

Lomax, A. Precise, NLL-SSST-coherence hypocenter catalog for the2023 Mw 7.8 and Mw 7.6 SE Turkey earthquake sequence, March 2023.

Lu, Z. and He, C. Frictional behavior of simulated biotite faultgouge under hydrothermal conditions. Tectonophysics, 622:62–80, 2014. doi:10.1016/j.tecto.2014.03.002.

Lu, Z. and He, C. Friction of foliated fault gouge with a biotite inter-layer at hydrothermal conditions. Tectonophysics, 740:72–92,2018. doi:10.1016/j.tecto.2018.05.003.

Malinverno, A. and Ryan, W. B. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere.Tectonics, 5(2):227–245, 1986. doi:10.1029/TC005i002p00227.

Masuti, S., Barbot, S., Karato, S., Feng, L., and Banerjee, P. Upper mantle water stratification inferred from the 2012 Mw 8.6 Indian Ocean earthquake.Nature, 538:373–377, 2016. doi:10.1038/na-ture19783.

Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahra-man, M., Tsironi, V., Yolsal-Çevikbil, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., and Altuntaş, C. Sub- and super-shear ruptures during the 2023 Mw 7.8 an dMw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3), 2023. doi:10.26443/seismica.v2i3.387.

Mitchell, E., Fialko, Y., and Brown, K. Velocity-weakening behavior of Westerly granite at temperature up to 600◦C.J. Geophys. Res.,121(9):6932–6946, 2016. doi:10.1002/2016JB013081.

Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., and Hooper, A. LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sensing, 12(3):424, 2020. doi:10.3390/rs12030424.

Nanjundiah, P., Barbot, S., and Wei, S. Static source proper-ties of slow and fast earthquakes. J. Geophys. Res., 125(12):e2019JB019028, 2020. doi:10.1029/2019JB019028.

Nazareth, J. J. and Hauksson, E. The seismogenic thickness of thesouthern California crust. Bull. Seism. Soc. Am., 94(3):940–960,2004. doi:10.1785/0120020129.

Nocquet, J.-M. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results.Tectonophysics, 579:220–242, 2012. doi:10.1016/j.tecto.2012.03.037.

Noda, H. and Lapusta, N. Stable creeping fault segments can be-come destructive as a result of dynamic weakening. Nature, 493(7433):518–521, 2013. doi:10.1038/nature11703.

Okada, Y. Internal Deformation Due to Shear and Tensile Faults in a Half-Space.Bull. Seism. Soc. Am., 82:1018–1040, April 1992.

Pousse-Beltran, L., Nissen, E., Bergman, E. A., Cambaz, M. D., Gau-dreau, É., Karasözen, E., and Tan, F. The 2020 M w 6.8 Elazığ (Turkey) earthquake reveals rupture behavior of the East Anatolian Fault.Geophys. Res. Lett., 47(13):e2020GL088136, 2020a.doi: 10.1029/2020GL088136.

Pousse-Beltran, L., Socquet, A., Benedetti, L., Doin, M.-P., Rizza, M.,and d’Agostino, N. Localized afterslip at geometrical complexities revealed by InSAR after the 2016 Central Italy seismic sequence. J. Geophys. Res., 125(11):e2019JB019065, 2020b. doi:10.1029/2019JB019065.

Provost, F., Michéa, D., Malet, J.-P., Boissier, E., Pointal, E., Stumpf,A., Pacini, F., Doin, M.-P., Lacroix, P., Proy, C., et al. Terrain deformation measurements from optical satellite imagery: The MPIC-OPT processing services for geohazards monitoring.Remote Sensing of Environment, 274:112949, 2022. doi:10.1016/j.rse.2022.112949.

Qiu, Q., Hill, E. M., Barbot, S., Hubbard, J., Feng, W., Lindsey,E. O., Feng, L., Dai, K., Samsonov, S. V., and Tapponnier, P. The mechanism of partial rupture of a locked megathrust: The role of fault morphology. Geology, 44(10):875–878, 2016. doi:10.1130/G38178.1.

Qiu, Q., Barbot, S., Wang, T., and Wei, S. Slip complementarity and triggering between the foreshock, mainshock, and afterslip ofthe 2019 Ridgecrest rupture sequence. Bull. Seism. Soc. Am., 110(4):1701–1715, 2020. doi:10.1785/0120200037.

Rabinowitz, H., Savage, H., Skarbek, R., Ikari, M. J., Carpenter, B. M., and Collettini, C. Frictional behavior of input sediments to the Hikurangi Trench, New Zealand.Geochemistry, Geophysics, Geosystems, 19(9):2973–2990, 2018. doi:10.1029/2018GC007633.

Ragon, T., Simons, M., Bletery, Q., Cavalié, O., and Fielding,E. A stochastic view of the 2020 Elazığ Mw 6.8 earthquake(Turkey). Geophys. Res. Lett., 48(3):e2020GL090704, 2021. doi:10.1029/2020GL090704.

Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S.,Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R.,Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A.,Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E.,Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., and Karam,G. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res., 111(B5),2006. doi:10.1029/2005JB004051.

Reitman, N. G., Briggs, R. W., Barnhart, W. D., Jobe, J. A. T., DuRoss,C. B., Hatem, A. E., Gold, R. D., Mejstrik, J. D., and Akçiz, S. Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye Earthquakes, 2023. doi: 10.5066/P985I7U2

Rice, J. R. and Ruina, A. L. Stability of steady frictional slipping. J.Appl. Mech., 50:343–349, 1983. doi:10.1115/1.3167042.

Rollins, C., Barbot, S., and Avouac, J.-P. Postseismic deformation following the 2010 M=7.2 El Mayor-Cucapah earthquake: Observations, kinematic inversions, and dynamic models. Pure Appl.Geophys., 172(5):1305–1358, 2015. doi:10.1007/s00024-014-1005-6.

Rollins, C., Avouac, J.-P., Landry, W., Argus, D. F., and Barbot, S. Interseismic strain accumulation on faults beneath Los Angeles, California. J. Geophys. Res., 123(8):7126–7150, 2018. doi:10.1029/2017JB015387.

Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H. The InSAR scientific computing environment. InEUSAR 2012; 9th Euro-pean conference on synthetic aperture radar, pages 730–733.VDE, 2012.

Rosu, A.-M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., and Klinger, Y. Measurement of ground displacement from opticalsatellite image correlation using the free open-source software MicMac. ISPRS Journal of Photogrammetry and Remote Sensing,100:48–59, 2015. doi:10.1016/j.isprsjprs.2014.03.002.

Rousset, B., Barbot, S., Avouac, J. P., and Hsu, Y.-J. Postseismic Deformation Following the 1999 Chi-Chi Earthquake, Taiwan: Implication for Lower-Crust Rheology.J. Geophys. Res., 117(B12405):16, 2012. doi:10.1029/2012JB009571.

Rubin, A. M. and Ampuero, J.-P. Earthquake nucleation on (aging)rate and state faults. J. Geophys. Res., 110(B11312):24 PP., 2005.doi: 10.1029/2005JB003686.

Ruina, A. Slip instability and state variable friction laws. J.Geophys.Res., 88:10,359–10,370, 1983. doi:10.1029/JB088iB12p10359.

Rupnik, E., Pierrot-Deseilligny, M., and Delorme, A. 3D reconstruction from multi-view VHR-satellite images in MicMac. ISPRS Journal of Photogrammetry and Remote Sensing, 139:201–211,2018. doi:10.1016/j.isprsjprs.2018.03.016.

Ryan, W. B., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A.,Nitsche, F., et al. Global multi-resolution topography synthesis.Geochemistry, Geophysics, Geosystems, 10(3), 2009. doi:10.1029/2008GC002332.

Salman, R., Hill, E. M., Feng, L., Lindsey, E. O., Mele Veedu, D., Bar-bot, S., Banerjee, P., Hermawan, I., and Natawidjaja, D. H. Piece-meal rupture of the Mentawai patch, Sumatra: The 2008 Mw 7.2 North Pagai earthquake sequence.J. Geophys. Res., 122(11):9404–9419, 2017. doi:10.1002/2017JB014341.

Sathiakumar, S. and Barbot, S. The stop-start control of seismicity by fault bends along the Main Himalayan Thrust. Communications Earth & Environment, 2(1):1–11, 2021. doi:10.1038/s43247-021-00153-3.

Sathiakumar, S., Barbot, S. D., and Agram, P. Extending resolution of fault slip with geodetic networks through optimal network design. J. Geophys. Res., 122(12), 2017. doi:10.1002/2017JB014326.

Sawai, M., Niemeijer, A. R., Plümper, O., Hirose, T., and Spiers, C. J. Nucleation of frictional instability caused by fluid pressurization in subducted blueschist. Geophys. Res. Lett., 43(6):2543–2551,2016. doi:10.1002/2015GL0675.

Shearer, P., Hauksson, E., and Lin, G. Southern California hypocenter relocation with waveform cross-correlation, Part 2: Results using source-specific station terms and cluster analysis. Bull.Seism. Soc. Am., 95(3):904–915, 2005.

Takahashi, M., Uehara, S.-I., Mizoguchi, K., Shimizu, I., Okazaki, K.,and Masuda, K. On the transient response of serpentine (antigorite) gouge to stepwise changes in slip velocity under high-temperature conditions. J. Geophys. Res., 116(B10), 2011. doi:10.1029/2010JB008062.

Talebian, M. and Jackson, J. Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia–Eurasia collision zone. Geophys. J. Int., 150(2):422–439, 2002. doi:10.1046/j.1365-246X.2002.01711.x.

Tang, C.-H., Barbot, S., Hsu, Y.-J., and Wu, Y.-M. Heterogeneous power-law flow with transient creep in southern California following the 2010 El Mayor-Cucapah earthquake. J. Geophys. Res.,125(9):e2020JB019740, 2020. doi:10.1029/2020JB019740.

Taymaz, T., Jackson, J., and McKenzie, D. Active tectonics of the north and central Aegean Sea. Geophys. J. Int., 106(2):433–490,1991. doi:10.1111/j.1365-246X.1991.tb03906.x.

Tian, P. and He, C. Velocity weakening of simulated augite gougeat hydrothermal conditions: Implications for frictional slip ofpyroxene-bearing mafic lower crust. J. Geophys. Res., 124(7):6428–6451, 2019. doi:10.1029/2018JB016456.

Valdez II, R., Kitajima, H., and Saffer, D. Effects of temperature on the frictional behavior of material from the Alpine Fault Zone, New Zealand.Tectonophysics, 762:17–27, 2019. doi:10.1016/j.tecto.2019.04.022.

Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C.,Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R.,et al. Present-day crustal deformation and plate kinematics inthe Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int., 157(1):381–398, 2004. doi:10.1111/j.1365-246X.2004.02222.x.

Wang, B. and Barbot, S. Pulse-like ruptures, seismic swarms, and tremorgenic slow-slip events with thermally activated friction.Earth Planet. Sci. Lett., 603:117983, 2023. doi:10.1016/j.epsl.2022.117983.

Wang, L. and Barbot, S. Excitation of San Andreas tremors by thermal instabilities below the seismogeniczone. Science Advances,6(36):eabb2057, 2020. doi:10.1126/sciadv.abb2057.

Wang, T., Jónsson, S., and Hanssen, R. F. Improved SAR imagecoregistration using pixel-offset series.IEEE geoscience and re-mote sensing letters, 11(9):1465–1469, 2014. doi:10.1109/L-GRS.2013.2295429.

Wang, T., Shi, Q., Nikkhoo, M., Wei, S., Barbot, S., Dreger, D.,Bürgmann, R., Motagh, M., and Chen, Q.F. The rise, collapse,and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test. Science, page eaar7230, 2018. doi:10.1126/science.aar7230.

Wei, S., Helmberger, D., and Avouac, J.-P. Modeling the 2012 Wharton basin earthquakes off-Sumatra: Complete lithospheric failure. J. Geophys. Res., 118(7):3592–3609, 2013.

Wei, S., Barbot, S., Graves, R., Lienkaemper, J. J., Wang, T., Hud-nut, K., Fu, Y., and Helmberger, D. The 2014 Mw 6.1 SouthNapa earthquake: A unilateral rupture with shallow asperityand rapid afterslip. Seism. Res. Lett., 86(2A):344–354, 2015. doi:10.1785/0220140249.

Wesnousky, S. G. Seismological and structural evolution ofstrike-slip faults.Nature, 335(6188):340–343, 1988.doi:10.1038/335340a0.

Yu, C., Li, Z., and Penna, N. T. Interferometric synthetic apertureradar atmospheric correction using a GPS-based iterative tro-pospheric decomposition model.Remote Sensing of Environ-ment, 204:109–121, 2018a. doi:10.1016/j.rse.2017.10.038.

Yu, C., Li, Z., Penna, N. T., and Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar ob-servations.J. Geophys. Res., 123(10):9202–9222, 2018b. doi:10.1029/2017JB015305.

Additional Files

Published

2023-04-20

How to Cite

Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.502