Geocoding Applications for Social Science to Improve Earthquake Early Warning




earthquake early warning, geocoding, social science, ShakeAlert


Geocoding is a spatial analysis method that uses address information (e.g., street address, intersection, census tract, zip code, etc.) to determine geographical coordinates (latitude and longitude). In recent decades, geocoding has gone beyond its primary use for census and demographic information to novel applications in disaster risk reduction, even to earthquake early warning. Here I demonstrate the usefulness of geocoding techniques to earthquake early warning systems as applied to case studies that relied on survey response data and crowd-sourced video footage. These datasets were initially collected to understand the efficacy of tests conducted on ShakeAlert®, the earthquake early warning system for the West Coast of the United States, and how people behave during earthquakes, respectively. Geocoding these data can improve our overall technical understanding of the system, demonstrate whether individuals take protective actions such as ‘Drop, Cover, and Hold On’, and spotlight community demographics that the system is reaching or unintentionally missing. The combination of these social science datasets with geocoding information deepens our knowledge of these fundamentally human-centered systems, including how to improve the distribution of alerts for people and individuals with access and functional needs. In the future, this work may help verify U.S. Geological Survey ‘Did You Feel It?’ responses and seismic intensity, especially in regions with sparse seismic networks.


Abbas, R., & Michael, K. (2022). Co-Designing Location-Based Services for Individuals Living With Dementia: An Overview of Present and Future Modes of Operation. IEEE Technology and Society Magazine, 41(2), 42–46. DOI:

Adams, R. M., Tobin, J., Peek, L., Breeden, J., McBride, S., & R, G. (2022). The generational gap: Children, adults, and protective actions in response to earthquakes. Australas. J. Disaster Trauma Stud, 26, 2.

Ahmad, M. B., Abdullahi, A. A., Muhammad, A. S., Saleh, Y. B., & Usman, U. B. (2019). The Various Types of sensors used in the Security Alarm system. International Journal of New Computer Architectures and Their Applications, 9(2), 50–59. DOI:

Alaska Earthquake Center. (2018). Anchorage M7.1: What We Know So Far.

Alikhani, M., & Renzetti, B. S. (2022). You’re on Camera: Data Collection in Food Retailing Markets. Yale Law & Policy Review. DOI:

Allen, R. M., & Stogaitis, M. (2022). Global growth of earthquake early warning. Science, 375(6582), 717–718. DOI:

Anchorage School District YouTube Channel. (2018). Earthquake Classroom Video.

Baldwin, D. (2022). ShakeAlert earthquake warnings can give people time to protect themselves – but so far, few have actually done so, The Conversation.

Becker, J. S., Potter, S. H., Vinnell, L. J., Nakayachi, K., McBride, S. K., & Johnston, D. M. (2020). Earthquake early warning in Aotearoa New Zealand: A survey of public perspectives to guide warning system development. Humanities and Social Sciences (Vol. 7, pp. 1–12). DOI:

Bernd, J., Abu-Salma, R., & Frik, A. B. (2022). Privacy: The Perspectives of Nannies on Smart Home Surveillance. FOCI@ USENIX Security Symposium.

Bopp, E., & Douvinet, J. (2020). Spatial performance of location-based alerts in France. Int. J. Disaster Risk Reduct, 50, 101909. DOI:

Bopp, E., & Douvinet, J. (2022). Alerting people prioritising territories over technologies. A design framework for local decision makers in France. Applied Geography, 146, 102769. DOI:

Bossu, R., Landès, M., Roussel, F., Steed, R., Mazet‐Roux, G., Martin, S. S., & Hough, S. (2017). Thumbnail‐based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes. Seismological Research Letters, 88(1), 72–81. DOI:

Bossu, R., Roussel, F., Fallou, L., Landès, M., Steed, R., Mazet-Roux, G., Dupont, A., Frobert, L., & Petersen, L. (2018). LastQuake: From rapid information to global seismic risk reduction. Int. J. Disaster Risk Reduct., 28, 32–42. DOI:

Bossu, R., Steed, R., Mazet-Roux, G., Roussel, F., & Etivant, C. (2015). The key role of eyewitnesses in rapid impact assessment of global earthquakes. In Earthquakes and their Impact on Society, S. D’Amico (Editor). Springer Natural Hazards, Springer. DOI:

Bostrom, A., McBride, S. K., Becker, J. S., Goltz, J. D., Groot, R.-M., Peek, L., Terbush, B., & Dixon, M. (2022). Great expectations for earthquake early warnings on the United States West Coast. Int. J. Disaster Risk Reduct., 82. DOI:

Bourrier, K., Anderson, H., Jarmula, S., Lapins, D., Macaulay, K., Peller, P., Reiche, I., Brosz, J., & Jacobson, D. (2021). Mapping Victorian Homes and Haunts: A Methodological Introduction. J. Victorian Culture, 26(2), 300–309. DOI:

Callejo, P., Gramaglia, M., Cuevas, R., & Cuevas, A. (2022). A deep dive into the accuracy of IP Geolocation Databases and its impact on online advertising. IEEE Transactions on Mobile Computing. DOI:

Chachra, G., Kong, Q., Huang, J., Korlakunta, S., Grannen, J., Robson, A., & Allen, R. M. (2022). Detecting damaged buildings using real-time crowdsourced images and transfer learning. Scientific (Vol. 12, p. 8968). DOI:

Chow, T. E., Dede-Bamfo, N., & Dahal, K. R. (2016). Geographic disparity of positional errors and matching rate of residential addresses among geocoding solutions. Annals of GIS, 22(1), 29–42. DOI:

Coburn, A. W., & Spence, R. J. S. (2002). Earthquake Protection (2nd ed.). John Wiley & Sons Ltd. DOI:

Cohen, S. E., Stookey, J., Anderson, N., Morris, D., Singzon, T., Dann, M., Burk, K., & Chen, C. C. (2022). Using Geocoding to Identify COVID-19 Outbreaks in Congregate Residential Settings: San Francisco’s Outbreak Response in Single-Room Occupancy Hotels. Public Health Reports. DOI:

Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). #Earthquake: Twitter as a distributed sensor system. Transactions in GIS, 17(1), 124–147. DOI:

de Groot, R. ‐M., Sumy, D. F., McBride, S. K., Jenkins, M. R., Lotto, G., Vinci, M., & Olds, S. (2022, June 27). ShakeAlert: A people‐focused earthquake early warning system. Proc. of the 12th National Conf. on Earthquake Engineering.

Dempsey, M. (2022). Reimaging take-up in challenging times: determining the predictive value of publicly available socio-demographic data for social assistance programs. Honors Theses.

Earle, P., Guy, M., Buckmaster, R., Ostrum, C., Horvath, S., & Vaughan, A. (2010). OMG earthquake! Can Twitter improve earthquake response? Seismol. Res. Lett, 81(2), 246–251. DOI:

Eaton, J. P. (1992). Determination of amplitude and duration magnitudes and site residuals from short-period seismographs in Northern California. Bull. Seismol. Soc. Amer, 82(2), 533–579. DOI:

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter, 200, 1–9. DOI:

Elalami, M. E., Elshafei, I. A., & Abdelkader, H. E. (2022). Location-Based Services Using Web-GIS By An Android Platform To Improve Students’ Navigation During Covid-19. J. Theor. Appl. Inf. Technol, 100(10), 3441–3456.

Fisher, D., Frey, N., & Hattie, J. (2020). The distance learning playbook, grades K-12: Teaching for engagement and impact in any setting. Corwin Press.

Fraser, S. A., Doyle, E. E. H., Wright, K. C., Potter, S. H., McClure, J., Johnston, D. M., Leonard, G. S., Coomer, M. A., Becker, J. S., & Johal, S. (2016). Tsunami response behaviour during and following two local-source earthquakes in Wellington. New Zealand, Int. J. Disaster Risk Reduct. DOI:

Gardere, L., Plyer, A., & Ross, D. (2020). How Data Became Part of New Orleans’ DNA during the Katrina Recovery. New England Journal of Public Policy, 32(1).

Given, D. D., Allen, R. M., Baltay, A. S., Bodin, P., Cochran, E. S., Creager, K., Groot, R. M., Gee, L. S., Hauksson, E., Heaton, T. H., Hellweg, M., Murray, J. R., Thomas, V. I., Toomey, D., & Yelin, T. S. (2018). Revised technical implementation plan for the ShakeAlert system—An earthquake early warning system for the West Coast of the United States: U.S [[Supersedes USGS Open-File Report 2014–1097.]]. Geological Survey Open-File Report, 42. DOI:

Goltz, D. J., Park, H., Nakano, G., & Yamori, K. (2020). Earthquake ground motion and human behavior: Using DYFI data to assess behavioral response to earthquakes. Earthquake Spectra, 36(3), 1231–1253. DOI:

Goltz, J. D., D.J., W., SK, M., R, G., JK, B., & A, B. (2022). Development of a companion questionnaire for “Did You Feel It?”: Assessing response in earthquakes where an earthquake early warning may have been received. Earthquake Spectra. DOI:

Grady, C. (2015). Institutional review boards. Purpose And, 148(5), 1148–1155. DOI:

Hirshorn, B., Lindh, A., & Allen, R. (1987). Real time signal duration magnitudes from low-gain short period seismometers, U.S. Geol. Surv. Open-File Rep, 87–630.

Huang, H. (2022). Location Based Services. In W. Kresse & D. Danko (Eds.), Springer Handbook of Geographic Information. Springer Handbooks. Springer. DOI:

Johnson, S. L., Bottiani, J., Waasdorp, T. E., & Bradshaw, C. P. (2018). Surveillance or safekeeping? How school security officer and camera presence influence students’ perceptions of safety, equity, and support. J. Adolesc. Health, 63(6), 732–738. DOI:

Jon, I., Lindell, M. K., Prater, C. S., Huang, S. K., Wu, H. C., Johnston, D. M., & Lambie, E. (2016). Behavioral response in the immediate aftermath of shaking: Earthquakes in Christchurch and Wellington, New Zealand, and Hitachi. Japan. International Journal of Environmental Research and Public, 13(11), 1137. DOI:

Kankanamge, N., Yigitcanlar, T., Goonetilleke, A., & Kamruzzaman, M. (2019). Can volunteer crowdsourcing reduce disaster risk? A systematic review of the literature. Int. JReduct, Disaster Risk. DOI:

Kelman, I., & Glantz, M. H. (2014). Early warning systems defined. Reducing disaster: Early warning systems for climate change. 89–108. DOI:

Kilic, B., & Gülgen, F. (2020). Accuracy and similarity aspects in online geocoding services: A comparative evaluation for Google and Bing maps. Int. J. Eng. and Geosci, 5(2), 109–119. DOI:

King, S., & Bracy, N. L. (2019). School security in the post-Columbine era: Trends, consequences, and future directions. J. Contemp. Crim. Justice, 35(3), 274–295. DOI:

Kiyimba, N., & O’Reilly, M. (2016). The risk of secondary traumatic stress in the qualitative transcription process: a research note. Qual. Res, 16(4), 468–476. DOI:

Kong, Q., Allen, R. M., Allen, S., Bair, T., Meja, A., Patel, S., Strauss, J., & Thompson, S. (2023). Crowdsourcing Felt Reports Using the MyShake Smartphone App. Seismological Research Letters. DOI:

Kumar Shukla, A. (2022). Site Response Studies Application in Seismic Hazard Microzonation and Ground Characterization. In Theory and Practice in Earthquake Engineering and Technology (pp. 55–97). Springer Nature Singapore. DOI:

LeClerc, J., & Joslyn, S. (2015). The cry wolf effect and weather-related decision making. Risk Analysis, 35(3), 385–395. DOI:

Lee, W. H. K., Bennet, R., & Meagher, K. (1972). A method of estimating magnitude of local earthquakes from signal duration. U.S. Geol. Surv. Open-File Rept. DOI:

Li, H., Chen, X., Chen, H., Wang, B., Li, W., Liu, S., Peng, L., Qi, Z., He, Z., & Zhao, X. (2022). Simulation of smartphone-based public participation in earthquake structural response emergency monitoring using a virtual experiment and AI. Buildings, 12(4), 492. DOI:

Lin, G. (2022). GIS in Building Public Health Infrastructure. In New Thinking in GIScience (pp. 367–373). Springer Nature Singapore. DOI:

Ma, Z., Hu, X., Zhang, S., Li, N., Liu, F., Zhou, Q., Wang, H., Hu, G., & Dong, Q. (2023). SubvectorS_Geo: A Neural-Network-Based IPv6 Geolocation Algorithm. Appl. Sci, 13(2), 754. DOI:

Martin-Jones, E. (2022). Social media posts reveal human responses to deadly Tongan eruption. Eos, 103. DOI:

McBride, S. K., Bellizzi, J., Gin, S., Henry, G., Sumy, D. F., Baldwin, D., & Fischer, E. (2022). 2018 M7.1 Anchorage and 2021 M7.2 Nippes, Haiti earthquake case studies for Virtual Earthquake Reconnaissance Team (VERT) activation protocols, policies, and procedures to gather CCTV and earthquake response videos. Proceedings of the 12th National Conference on Earthquake Engineering.

McBride, S. K., Smith, H., Morgoch, M., Sumy, D., Jenkins, M., Peek, L., Bostrom, A., Baldwin, D., Reddy, E., Groot, R., Becker, J., Johnston, D., & Wood, M. (2022). Evidence-based guidelines for protective actions and earthquake early warning systems. Geophysics, 87(1), 77–102. DOI:

McBride, S. K., Sumy, D. F., Llenos, A. L., Parker, G. A., McGuire, J., Saunders, J. K., Meier, M.-A., Schuback, P., Given, D., & Groot, R. (2023). Latency and geofence testing of wireless emergency alerts intended for the ShakeAlert® earthquake early warning system for the West Coast of the United States of America. Saf. Sci, 157, 105898. DOI:

Nakayachi, K., Becker, J. S., Potter, S. H., & Dixon, M. (2019). Residents’ reactions to earthquake early warnings in Japan. Risk Analysis, 39(8 (pp. 1723–1740). DOI:

Natural Hazards Center. (2021). New CONVERGE Training Module: Broader Ethical Considerations for Hazards and Disaster Researchers.

Ofli, F., Qazi, U., Imran, M., Roch, J., Pennington, C., Banks, V., & Bossu, R. (July 5–8, 2022). A real-time system for detecting landslide reports on social media using artificial intelligence. Web Engineering: 22nd International Conference, ICWE 2022, 49–65. DOI:

Pandya, S., Ghayvat, H., Kotecha, K., Awais, M., Akbarzadeh, S., Gope, P., Mukhopadhyay, S. C., & Chen, W. (2018). Smart home anti-theft system: a novel approach for near real-time monitoring and smart home security for wellness protocol. Appl. Syst. Innov, 1(4), 42. DOI:

Pilz, M., Abakanov, T., Abdrakhmatov, K., Bindi, D., Boxberger, T., Moldobekov, B., Orunbaev, S., Silacheva, N., Ullah, S. U., S., Y., P., & Parolai, S. (2015). An overview on the seismic microzonation and site effect studies in Central Asia. Ann. Geophys, 58(1). DOI:

Poese, I., Uhlig, S., Kaafar, M. A., Donnet, B., & Gueye, B. (2011). IP geolocation databases: Unreliable? Comput. Commun. Rev, 41(2), 53–56. DOI:

Quitoriano, V., & Wald, D. J. (2020). USGS “Did You Feel It?”—Science and Lessons From 20 Years of Citizen Science-Based Macroseismology, Front. Earth Sci, 8(120). DOI:

Rastogi, B. K., Mohan, K., Sairam, B., Singh, A. P., & Pancholi, V. (2023). Geotechnical, Geological and Geophysical Investigations for Seismic Microzonation and Site-Specific Earthquake Hazard Analysis in Gujarat. In T. G. Sitharam, R. S. Jakka, & S. Kolathayar (Eds.), Advances in Earthquake Geotechnics. Springer Tracts in Civil Engineering. Springer. DOI:

Roongpiboonsopit, D., & Karimi, H. A. (2010). Quality Assessment of Online Street and Rooftop Geocoding Services, Cartogr. Geogr. Inf. Sci, 37(4), 301–318. DOI:

Sackett, D. L. (1979). Bias in analytic research. J. Chron. Dis, 32(1/2), 51–63. DOI:

Salkind, N. J. (2010). Encyclopedia of Research Design. SAGE Publications, Inc., Thousand Oaks. DOI:

Shaheen, A. W., Ciesco, E., Johnson, K., Kuhnen, G., Paolini, C., & Gartner, G. (2021). Interactive, on-line visualization tools to measure and drive equity in COVID-19 vaccine administrations. J. Am. Med. Inf. Assoc, 28(11), 2451–2455. DOI:

Shan, W., Feng, J., Chang, J., Yang, F., & Li, Z. (2012). Collecting earthquake disaster area information using smart phone. International Conference on System Science and Engineering, 310–314. DOI:

Smith, C. C., & White, M. S., Jr. (1971). Geocoding techniques developed by the census use study. In International Workshop on Managing Requirements Knowledge, Las Vegas. DOI:

Stefanidis, A., Crooks, A., & Radzikowski, J. (2013). Harvesting ambient geospatial information from social media feeds. GeoJournal, 78, 319–338. DOI:

Stover, C. W., & Coffman, J. L. (1527). Seismicity of the United States, 1568-1989 (Revised. U.S. Geological Survey Professional Paper, 417.

Sumy, D. F., Jenkins, M. R., Crayne, J., Olds, S. E., Anderson, M. L., Johnson, J., Magura, B., Pridmore, C. L., & Groot, R. ‐M. (2022). Education Initiatives to Support Earthquake Early Warning: A Retrospective and a Roadmap. Seismol. Res. Letts, 93(6), 3498–3513. DOI:

Sumy, D. F., Jenkins, M. R., McBride, S. K., & Groot, R.-M. (2022). Typology development of earthquake displays in free-choice learning environments, to inform earthquake early warning education in the United States. Int. J Disaster Risk Reduct, 73. DOI:

Sumy, D. F., McBride, S. K., Hillebrandt-Andrade, C., Kohler, M. D., Orcutt, J., Kodaira, S., Moran, K., McNamara, D., Hori, T., Vanacore, E., Pirenne, B., & Collins, J. (2021). Long-term ocean observing for international capacity development around tsunami early warning (E. S. Kappel, S. K. Juniper, S. Seeyave, E. Smith, M. Visbeck, & eds, Eds.; Vol. 34, pp. 70–77). DOI:

Sumy, D. F., Welti, R., & Hubenthal, M. (2020). Applications and evaluation of the IRIS earthquake browser: A web‐based tool that enables multidimensional earthquake visualization. Seismol. Res. Lett, 91(5), 2922–2935. DOI:

Ur, B., Jung, J., & Schechter, S. (2014). Intruders versus intrusiveness: teens’ and parents’ perspectives on home-entryway surveillance. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 129–139. DOI:

U.S. Geological Survey. (2019). Safeguarding the Nation: From the Destructive Loma Prieta earthquake to an Earthquake Early Warning System.

U.S. Geological Survey. (2021). Alert Thresholds for ShakeAlert.

U.S. Geological Survey. (2023). M7.1 – 1 km SE of Point MacKenzie.

VERT. (2023). Virtual Earthquake Reconnaissance Team, EERI Learning from Earthquakes.

Vinnell, L. J., Inch, P., Johnston, D. M., & N, H. (2022). Behavioral responses to earthquake shaking: Video footage analysis of the 2016 Kaikōura earthquake in Wellington. Aotearoa New Zealand. Earthquake Spectra, 38(3), 1636–1660. DOI:

Wald, D. J., Quitoriano, V., Worden, B., Hopper, M., & Dewey, J. W. (2011). USGS ‘“Did You Feel It?”’ Internet-based macroseismic intensity maps. Ann. Geophys, 54, 688–707. DOI:

Wald, D. J., Worden, C. B., Quitoriano, V., & Pankow, K. L. (2006). ShakeMap Manual, Technical Manual, Users Guide, and Software Guide. DOI:

Wong, W. K., Liew, J. T. Y., Loo, C. K., & Wong, W. K. (2009). Omnidirectional surveillance system for digital home security. 2009 International Conference on Signal Acquisition and Processing, 8–12. DOI:

Worden, C. B., Wald, D. J., Allen, T. I., Lin, K., Garcia, D., & Cua, G. (2010). A Revised Ground-Motion and Intensity Interpolation Scheme for ShakeMap. Bull. Seismol. Soc. Amer, 100(6), 3083–3096. DOI:

Yang, D. H., Bilaver, L. M., Hayes, O., & Goerge, R. (2004). Improving geocoding practices: evaluation of geocoding tools. J. Med. Syst, 28(4), 361–370. DOI:

Zhang, X., Feng, Y., Angeloudis, P., & Demiris, Y. (2022). Monocular visual traffic surveillance: a review. IEEE Transactions on Intelligent Transportation Systems, 23, 14148–14165. DOI:

Additional Files



How to Cite

Sumy, D. (2023). Geocoding Applications for Social Science to Improve Earthquake Early Warning. Seismica, 2(2).