Geocoding Applications for Social Science to Improve Earthquake Early Warning

Authors

DOI:

https://doi.org/10.26443/seismica.v2i2.527

Keywords:

earthquake early warning, geocoding, social science, ShakeAlert

Abstract

Geocoding is a spatial analysis method that uses address information (e.g., street address, intersection, census tract, zip code, etc.) to determine geographical coordinates (latitude and longitude). In recent decades, geocoding has gone beyond its primary use for census and demographic information to novel applications in disaster risk reduction, even to earthquake early warning. Here I demonstrate the usefulness of geocoding techniques to earthquake early warning systems as applied to case studies that relied on survey response data and crowd-sourced video footage. These datasets were initially collected to understand the efficacy of tests conducted on ShakeAlert®, the earthquake early warning system for the West Coast of the United States, and how people behave during earthquakes, respectively. Geocoding these data can improve our overall technical understanding of the system, demonstrate whether individuals take protective actions such as ‘Drop, Cover, and Hold On’, and spotlight community demographics that the system is reaching or unintentionally missing. The combination of these social science datasets with geocoding information deepens our knowledge of these fundamentally human-centered systems, including how to improve the distribution of alerts for people and individuals with access and functional needs. In the future, this work may help verify U.S. Geological Survey ‘Did You Feel It?’ responses and seismic intensity, especially in regions with sparse seismic networks.

References

Abbas, R., & Michael, K. (2022). Co-Designing Location-Based Services for Individuals Living With Dementia: An Overview of Present and Future Modes of Operation. IEEE Technology and Society Magazine, 41(2), 42–46. https://doi.org/10.1109/MTS.2022.3173353 DOI: https://doi.org/10.1109/MTS.2022.3173353

Adams, R. M., Tobin, J., Peek, L., Breeden, J., McBride, S., & R, G. (2022). The generational gap: Children, adults, and protective actions in response to earthquakes. Australas. J. Disaster Trauma Stud, 26, 2.

Ahmad, M. B., Abdullahi, A. A., Muhammad, A. S., Saleh, Y. B., & Usman, U. B. (2019). The Various Types of sensors used in the Security Alarm system. International Journal of New Computer Architectures and Their Applications, 9(2), 50–59. https://doi.org/10.17781/P002618 DOI: https://doi.org/10.17781/P002618

Alaska Earthquake Center. (2018). Anchorage M7.1: What We Know So Far. https://earthquake.alaska.edu/anchorage-m71-what-we-know-so-far.

Alikhani, M., & Renzetti, B. S. (2022). You’re on Camera: Data Collection in Food Retailing Markets. Yale Law & Policy Review. https://doi.org/10.2139/ssrn.4192775 DOI: https://doi.org/10.2139/ssrn.4192775

Allen, R. M., & Stogaitis, M. (2022). Global growth of earthquake early warning. Science, 375(6582), 717–718. https://doi.org/10.1126/science.abl5435 DOI: https://doi.org/10.1126/science.abl5435

Anchorage School District YouTube Channel. (2018). Earthquake Classroom Video. https://www.youtube.com/watch?v=NJZqREPc9k0.

Baldwin, D. (2022). ShakeAlert earthquake warnings can give people time to protect themselves – but so far, few have actually done so, The Conversation. https://theconversation.com/shakealert-earthquake-warnings-can-give-people-time-to-protect-themselves-but-so-far-few-have-actually-done-so-174685.

Becker, J. S., Potter, S. H., Vinnell, L. J., Nakayachi, K., McBride, S. K., & Johnston, D. M. (2020). Earthquake early warning in Aotearoa New Zealand: A survey of public perspectives to guide warning system development. Humanities and Social Sciences (Vol. 7, pp. 1–12). https://doi.org/10.1057/s41599-020-00613-9 DOI: https://doi.org/10.1057/s41599-020-00613-9

Bernd, J., Abu-Salma, R., & Frik, A. B. (2022). Privacy: The Perspectives of Nannies on Smart Home Surveillance. FOCI@ USENIX Security Symposium.

Bopp, E., & Douvinet, J. (2020). Spatial performance of location-based alerts in France. Int. J. Disaster Risk Reduct, 50, 101909. https://doi.org/10.1016/j.ijdrr.2020.101909 DOI: https://doi.org/10.1016/j.ijdrr.2020.101909

Bopp, E., & Douvinet, J. (2022). Alerting people prioritising territories over technologies. A design framework for local decision makers in France. Applied Geography, 146, 102769. https://doi.org/10.1016/j.apgeog.2022.102769 DOI: https://doi.org/10.1016/j.apgeog.2022.102769

Bossu, R., Landès, M., Roussel, F., Steed, R., Mazet‐Roux, G., Martin, S. S., & Hough, S. (2017). Thumbnail‐based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes. Seismological Research Letters, 88(1), 72–81. https://doi.org/10.1785/0220160120 DOI: https://doi.org/10.1785/0220160120

Bossu, R., Roussel, F., Fallou, L., Landès, M., Steed, R., Mazet-Roux, G., Dupont, A., Frobert, L., & Petersen, L. (2018). LastQuake: From rapid information to global seismic risk reduction. Int. J. Disaster Risk Reduct., 28, 32–42. https://doi.org/10.1016/j.ijdrr.2018.02.024 DOI: https://doi.org/10.1016/j.ijdrr.2018.02.024

Bossu, R., Steed, R., Mazet-Roux, G., Roussel, F., & Etivant, C. (2015). The key role of eyewitnesses in rapid impact assessment of global earthquakes. In Earthquakes and their Impact on Society, S. D’Amico (Editor). Springer Natural Hazards, Springer. https://doi.org/10.1007/978-3-319-21753-6_25 DOI: https://doi.org/10.1007/978-3-319-21753-6_25

Bostrom, A., McBride, S. K., Becker, J. S., Goltz, J. D., Groot, R.-M., Peek, L., Terbush, B., & Dixon, M. (2022). Great expectations for earthquake early warnings on the United States West Coast. Int. J. Disaster Risk Reduct., 82. https://doi.org/10.1016/j.ijdrr.2022.103296 DOI: https://doi.org/10.1016/j.ijdrr.2022.103296

Bourrier, K., Anderson, H., Jarmula, S., Lapins, D., Macaulay, K., Peller, P., Reiche, I., Brosz, J., & Jacobson, D. (2021). Mapping Victorian Homes and Haunts: A Methodological Introduction. J. Victorian Culture, 26(2), 300–309. https://doi.org/10.1093/jvcult/vcab003 DOI: https://doi.org/10.1093/jvcult/vcab003

Callejo, P., Gramaglia, M., Cuevas, R., & Cuevas, A. (2022). A deep dive into the accuracy of IP Geolocation Databases and its impact on online advertising. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2022.3166785 DOI: https://doi.org/10.1109/TMC.2022.3166785

Chachra, G., Kong, Q., Huang, J., Korlakunta, S., Grannen, J., Robson, A., & Allen, R. M. (2022). Detecting damaged buildings using real-time crowdsourced images and transfer learning. Scientific (Vol. 12, p. 8968). https://doi.org/10.1038/s41598-022-12965-0 DOI: https://doi.org/10.1038/s41598-022-12965-0

Chow, T. E., Dede-Bamfo, N., & Dahal, K. R. (2016). Geographic disparity of positional errors and matching rate of residential addresses among geocoding solutions. Annals of GIS, 22(1), 29–42. https://doi.org/10.1080/19475683.2015.1085437 DOI: https://doi.org/10.1080/19475683.2015.1085437

Coburn, A. W., & Spence, R. J. S. (2002). Earthquake Protection (2nd ed.). John Wiley & Sons Ltd. https://doi.org/10.1002/0470855185 DOI: https://doi.org/10.1002/0470855185

Cohen, S. E., Stookey, J., Anderson, N., Morris, D., Singzon, T., Dann, M., Burk, K., & Chen, C. C. (2022). Using Geocoding to Identify COVID-19 Outbreaks in Congregate Residential Settings: San Francisco’s Outbreak Response in Single-Room Occupancy Hotels. Public Health Reports. https://doi.org/10.1177/00333549221128301 DOI: https://doi.org/10.1177/00333549221128301

Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). #Earthquake: Twitter as a distributed sensor system. Transactions in GIS, 17(1), 124–147. https://doi.org/10.1111/j.1467-9671.2012.01359.x DOI: https://doi.org/10.1111/j.1467-9671.2012.01359.x

de Groot, R. ‐M., Sumy, D. F., McBride, S. K., Jenkins, M. R., Lotto, G., Vinci, M., & Olds, S. (2022, June 27). ShakeAlert: A people‐focused earthquake early warning system. Proc. of the 12th National Conf. on Earthquake Engineering.

Dempsey, M. (2022). Reimaging take-up in challenging times: determining the predictive value of publicly available socio-demographic data for social assistance programs. Honors Theses. https://scholar.utc.edu/honors-theses/367

Earle, P., Guy, M., Buckmaster, R., Ostrum, C., Horvath, S., & Vaughan, A. (2010). OMG earthquake! Can Twitter improve earthquake response? Seismol. Res. Lett, 81(2), 246–251. https://doi.org/10.1785/gssrl.81.2.246 DOI: https://doi.org/10.1785/gssrl.81.2.246

Eaton, J. P. (1992). Determination of amplitude and duration magnitudes and site residuals from short-period seismographs in Northern California. Bull. Seismol. Soc. Amer, 82(2), 533–579. https://doi.org/10.1785/BSSA0820020533 DOI: https://doi.org/10.1785/BSSA0820020533

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter, 200, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002 DOI: https://doi.org/10.1016/j.pepi.2012.04.002

Elalami, M. E., Elshafei, I. A., & Abdelkader, H. E. (2022). Location-Based Services Using Web-GIS By An Android Platform To Improve Students’ Navigation During Covid-19. J. Theor. Appl. Inf. Technol, 100(10), 3441–3456.

Fisher, D., Frey, N., & Hattie, J. (2020). The distance learning playbook, grades K-12: Teaching for engagement and impact in any setting. Corwin Press.

Fraser, S. A., Doyle, E. E. H., Wright, K. C., Potter, S. H., McClure, J., Johnston, D. M., Leonard, G. S., Coomer, M. A., Becker, J. S., & Johal, S. (2016). Tsunami response behaviour during and following two local-source earthquakes in Wellington. New Zealand, Int. J. Disaster Risk Reduct. https://doi.org/10.1016/j.ijdrr.2016.02.008 DOI: https://doi.org/10.1016/j.ijdrr.2016.02.008

Gardere, L., Plyer, A., & Ross, D. (2020). How Data Became Part of New Orleans’ DNA during the Katrina Recovery. New England Journal of Public Policy, 32(1).

Given, D. D., Allen, R. M., Baltay, A. S., Bodin, P., Cochran, E. S., Creager, K., Groot, R. M., Gee, L. S., Hauksson, E., Heaton, T. H., Hellweg, M., Murray, J. R., Thomas, V. I., Toomey, D., & Yelin, T. S. (2018). Revised technical implementation plan for the ShakeAlert system—An earthquake early warning system for the West Coast of the United States: U.S [[Supersedes USGS Open-File Report 2014–1097.]]. Geological Survey Open-File Report, 42. https://doi.org/10.3133/ofr20181155 DOI: https://doi.org/10.3133/ofr20181155

Goltz, D. J., Park, H., Nakano, G., & Yamori, K. (2020). Earthquake ground motion and human behavior: Using DYFI data to assess behavioral response to earthquakes. Earthquake Spectra, 36(3), 1231–1253. https://doi.org/10.1177/8755293019899958 DOI: https://doi.org/10.1177/8755293019899958

Goltz, J. D., D.J., W., SK, M., R, G., JK, B., & A, B. (2022). Development of a companion questionnaire for “Did You Feel It?”: Assessing response in earthquakes where an earthquake early warning may have been received. Earthquake Spectra. https://doi.org/10.1177/87552930221116133 DOI: https://doi.org/10.1177/87552930221116133

Grady, C. (2015). Institutional review boards. Purpose And, 148(5), 1148–1155. https://doi.org/10.1378/chest.15-0706 DOI: https://doi.org/10.1378/chest.15-0706

Hirshorn, B., Lindh, A., & Allen, R. (1987). Real time signal duration magnitudes from low-gain short period seismometers, U.S. Geol. Surv. Open-File Rep, 87–630.

Huang, H. (2022). Location Based Services. In W. Kresse & D. Danko (Eds.), Springer Handbook of Geographic Information. Springer Handbooks. Springer. https://doi.org/10.1007/978-3-030-53125-6_22 DOI: https://doi.org/10.1007/978-3-030-53125-6_22

Johnson, S. L., Bottiani, J., Waasdorp, T. E., & Bradshaw, C. P. (2018). Surveillance or safekeeping? How school security officer and camera presence influence students’ perceptions of safety, equity, and support. J. Adolesc. Health, 63(6), 732–738. https://doi.org/10.1016/j.jadohealth.2018.06.008 DOI: https://doi.org/10.1016/j.jadohealth.2018.06.008

Jon, I., Lindell, M. K., Prater, C. S., Huang, S. K., Wu, H. C., Johnston, D. M., & Lambie, E. (2016). Behavioral response in the immediate aftermath of shaking: Earthquakes in Christchurch and Wellington, New Zealand, and Hitachi. Japan. International Journal of Environmental Research and Public, 13(11), 1137. https://doi.org/10.3390/ijerph13111137 DOI: https://doi.org/10.3390/ijerph13111137

Kankanamge, N., Yigitcanlar, T., Goonetilleke, A., & Kamruzzaman, M. (2019). Can volunteer crowdsourcing reduce disaster risk? A systematic review of the literature. Int. JReduct, Disaster Risk. https://doi.org/10.1016/j.ijdrr.2019.101097 DOI: https://doi.org/10.1016/j.ijdrr.2019.101097

Kelman, I., & Glantz, M. H. (2014). Early warning systems defined. Reducing disaster: Early warning systems for climate change. 89–108. https://doi.org/10.1007/978-94-017-8598-3_5 DOI: https://doi.org/10.1007/978-94-017-8598-3_5

Kilic, B., & Gülgen, F. (2020). Accuracy and similarity aspects in online geocoding services: A comparative evaluation for Google and Bing maps. Int. J. Eng. and Geosci, 5(2), 109–119. https://doi.org/10.26833/ijeg.629381 DOI: https://doi.org/10.26833/ijeg.629381

King, S., & Bracy, N. L. (2019). School security in the post-Columbine era: Trends, consequences, and future directions. J. Contemp. Crim. Justice, 35(3), 274–295. https://doi.org/10.1177/1043986219840188 DOI: https://doi.org/10.1177/1043986219840188

Kiyimba, N., & O’Reilly, M. (2016). The risk of secondary traumatic stress in the qualitative transcription process: a research note. Qual. Res, 16(4), 468–476. https://doi.org/10.1177/1468794115577013 DOI: https://doi.org/10.1177/1468794115577013

Kong, Q., Allen, R. M., Allen, S., Bair, T., Meja, A., Patel, S., Strauss, J., & Thompson, S. (2023). Crowdsourcing Felt Reports Using the MyShake Smartphone App. Seismological Research Letters. https://doi.org/10.1785/0220230027 DOI: https://doi.org/10.1785/0220230027

Kumar Shukla, A. (2022). Site Response Studies Application in Seismic Hazard Microzonation and Ground Characterization. In Theory and Practice in Earthquake Engineering and Technology (pp. 55–97). Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-2324-1_2

LeClerc, J., & Joslyn, S. (2015). The cry wolf effect and weather-related decision making. Risk Analysis, 35(3), 385–395. https://doi.org/10.1111/risa.12336 DOI: https://doi.org/10.1111/risa.12336

Lee, W. H. K., Bennet, R., & Meagher, K. (1972). A method of estimating magnitude of local earthquakes from signal duration. U.S. Geol. Surv. Open-File Rept. DOI: https://doi.org/10.3133/ofr72223

Li, H., Chen, X., Chen, H., Wang, B., Li, W., Liu, S., Peng, L., Qi, Z., He, Z., & Zhao, X. (2022). Simulation of smartphone-based public participation in earthquake structural response emergency monitoring using a virtual experiment and AI. Buildings, 12(4), 492. https://doi.org/10.3390/buildings12040492 DOI: https://doi.org/10.3390/buildings12040492

Lin, G. (2022). GIS in Building Public Health Infrastructure. In New Thinking in GIScience (pp. 367–373). Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-3816-0_39

Ma, Z., Hu, X., Zhang, S., Li, N., Liu, F., Zhou, Q., Wang, H., Hu, G., & Dong, Q. (2023). SubvectorS_Geo: A Neural-Network-Based IPv6 Geolocation Algorithm. Appl. Sci, 13(2), 754. https://doi.org/10.3390/app13020754 DOI: https://doi.org/10.3390/app13020754

Martin-Jones, E. (2022). Social media posts reveal human responses to deadly Tongan eruption. Eos, 103. https://doi.org/10.1029/2022EO220553 DOI: https://doi.org/10.1029/2022EO220553

McBride, S. K., Bellizzi, J., Gin, S., Henry, G., Sumy, D. F., Baldwin, D., & Fischer, E. (2022). 2018 M7.1 Anchorage and 2021 M7.2 Nippes, Haiti earthquake case studies for Virtual Earthquake Reconnaissance Team (VERT) activation protocols, policies, and procedures to gather CCTV and earthquake response videos. Proceedings of the 12th National Conference on Earthquake Engineering.

McBride, S. K., Smith, H., Morgoch, M., Sumy, D., Jenkins, M., Peek, L., Bostrom, A., Baldwin, D., Reddy, E., Groot, R., Becker, J., Johnston, D., & Wood, M. (2022). Evidence-based guidelines for protective actions and earthquake early warning systems. Geophysics, 87(1), 77–102. https://doi.org/10.1190/geo2021-0222.1 DOI: https://doi.org/10.1190/geo2021-0222.1

McBride, S. K., Sumy, D. F., Llenos, A. L., Parker, G. A., McGuire, J., Saunders, J. K., Meier, M.-A., Schuback, P., Given, D., & Groot, R. (2023). Latency and geofence testing of wireless emergency alerts intended for the ShakeAlert® earthquake early warning system for the West Coast of the United States of America. Saf. Sci, 157, 105898. https://doi.org/10.1016/j.ssci.2022.105898 DOI: https://doi.org/10.1016/j.ssci.2022.105898

Nakayachi, K., Becker, J. S., Potter, S. H., & Dixon, M. (2019). Residents’ reactions to earthquake early warnings in Japan. Risk Analysis, 39(8 (pp. 1723–1740). https://doi.org/10.1111/risa.13306 DOI: https://doi.org/10.1111/risa.13306

Natural Hazards Center. (2021). New CONVERGE Training Module: Broader Ethical Considerations for Hazards and Disaster Researchers. https://hazards.colorado.edu/news/center-news/new-converge-training-module-broader-ethical-considerations-forhazards-and-disaster-researchers

Ofli, F., Qazi, U., Imran, M., Roch, J., Pennington, C., Banks, V., & Bossu, R. (July 5–8, 2022). A real-time system for detecting landslide reports on social media using artificial intelligence. Web Engineering: 22nd International Conference, ICWE 2022, 49–65. https://doi.org/10.1007/978-3-031-09917-5_4 DOI: https://doi.org/10.1007/978-3-031-09917-5_4

Pandya, S., Ghayvat, H., Kotecha, K., Awais, M., Akbarzadeh, S., Gope, P., Mukhopadhyay, S. C., & Chen, W. (2018). Smart home anti-theft system: a novel approach for near real-time monitoring and smart home security for wellness protocol. Appl. Syst. Innov, 1(4), 42. https://doi.org/10.3390/asi1040042 DOI: https://doi.org/10.3390/asi1040042

Pilz, M., Abakanov, T., Abdrakhmatov, K., Bindi, D., Boxberger, T., Moldobekov, B., Orunbaev, S., Silacheva, N., Ullah, S. U., S., Y., P., & Parolai, S. (2015). An overview on the seismic microzonation and site effect studies in Central Asia. Ann. Geophys, 58(1). https://doi.org/10.4401/ag-6662 DOI: https://doi.org/10.4401/ag-6662

Poese, I., Uhlig, S., Kaafar, M. A., Donnet, B., & Gueye, B. (2011). IP geolocation databases: Unreliable? Comput. Commun. Rev, 41(2), 53–56. https://doi.org/10.1145/1971162.1971171 DOI: https://doi.org/10.1145/1971162.1971171

Quitoriano, V., & Wald, D. J. (2020). USGS “Did You Feel It?”—Science and Lessons From 20 Years of Citizen Science-Based Macroseismology, Front. Earth Sci, 8(120). https://doi.org/10.3389/feart.2020.00120 DOI: https://doi.org/10.3389/feart.2020.00120

Rastogi, B. K., Mohan, K., Sairam, B., Singh, A. P., & Pancholi, V. (2023). Geotechnical, Geological and Geophysical Investigations for Seismic Microzonation and Site-Specific Earthquake Hazard Analysis in Gujarat. In T. G. Sitharam, R. S. Jakka, & S. Kolathayar (Eds.), Advances in Earthquake Geotechnics. Springer Tracts in Civil Engineering. Springer. https://doi.org/10.1007/978-981-19-3330-1_4 DOI: https://doi.org/10.1007/978-981-19-3330-1_4

Roongpiboonsopit, D., & Karimi, H. A. (2010). Quality Assessment of Online Street and Rooftop Geocoding Services, Cartogr. Geogr. Inf. Sci, 37(4), 301–318. https://doi.org/10.1559/152304010793454318 DOI: https://doi.org/10.1559/152304010793454318

Sackett, D. L. (1979). Bias in analytic research. J. Chron. Dis, 32(1/2), 51–63. DOI: https://doi.org/10.1016/0021-9681(79)90012-2

Salkind, N. J. (2010). Encyclopedia of Research Design. SAGE Publications, Inc., Thousand Oaks. https://doi.org/10.4135/9781412961288 DOI: https://doi.org/10.4135/9781412961288

Shaheen, A. W., Ciesco, E., Johnson, K., Kuhnen, G., Paolini, C., & Gartner, G. (2021). Interactive, on-line visualization tools to measure and drive equity in COVID-19 vaccine administrations. J. Am. Med. Inf. Assoc, 28(11), 2451–2455. https://doi.org/10.1093/jamia/ocab180 DOI: https://doi.org/10.1093/jamia/ocab180

Shan, W., Feng, J., Chang, J., Yang, F., & Li, Z. (2012). Collecting earthquake disaster area information using smart phone. International Conference on System Science and Engineering, 310–314. https://doi.org/10.1109/ICSSE.2012.6257197 DOI: https://doi.org/10.1109/ICSSE.2012.6257197

Smith, C. C., & White, M. S., Jr. (1971). Geocoding techniques developed by the census use study. In International Workshop on Managing Requirements Knowledge, Las Vegas. https://doi.org/10.1109/AFIPS.1971.97 DOI: https://doi.org/10.1145/1479064.1479171

Stefanidis, A., Crooks, A., & Radzikowski, J. (2013). Harvesting ambient geospatial information from social media feeds. GeoJournal, 78, 319–338. https://doi.org/10.1007/s10708-011-9438-2 DOI: https://doi.org/10.1007/s10708-011-9438-2

Stover, C. W., & Coffman, J. L. (1527). Seismicity of the United States, 1568-1989 (Revised. U.S. Geological Survey Professional Paper, 417.

Sumy, D. F., Jenkins, M. R., Crayne, J., Olds, S. E., Anderson, M. L., Johnson, J., Magura, B., Pridmore, C. L., & Groot, R. ‐M. (2022). Education Initiatives to Support Earthquake Early Warning: A Retrospective and a Roadmap. Seismol. Res. Letts, 93(6), 3498–3513. https://doi.org/10.1785/0220220159 DOI: https://doi.org/10.1785/0220220159

Sumy, D. F., Jenkins, M. R., McBride, S. K., & Groot, R.-M. (2022). Typology development of earthquake displays in free-choice learning environments, to inform earthquake early warning education in the United States. Int. J Disaster Risk Reduct, 73. https://doi.org/10.1016/j.ijdrr.2022.102802 DOI: https://doi.org/10.1016/j.ijdrr.2022.102802

Sumy, D. F., McBride, S. K., Hillebrandt-Andrade, C., Kohler, M. D., Orcutt, J., Kodaira, S., Moran, K., McNamara, D., Hori, T., Vanacore, E., Pirenne, B., & Collins, J. (2021). Long-term ocean observing for international capacity development around tsunami early warning (E. S. Kappel, S. K. Juniper, S. Seeyave, E. Smith, M. Visbeck, & eds, Eds.; Vol. 34, pp. 70–77). https://doi.org/10.5670/oceanog.2021.supplement.02-27 DOI: https://doi.org/10.5670/oceanog.2021.supplement.02-27

Sumy, D. F., Welti, R., & Hubenthal, M. (2020). Applications and evaluation of the IRIS earthquake browser: A web‐based tool that enables multidimensional earthquake visualization. Seismol. Res. Lett, 91(5), 2922–2935. https://doi.org/10.1785/0220190386 DOI: https://doi.org/10.1785/0220190386

Ur, B., Jung, J., & Schechter, S. (2014). Intruders versus intrusiveness: teens’ and parents’ perspectives on home-entryway surveillance. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 129–139. https://doi.org/10.1145/2632048.2632107 DOI: https://doi.org/10.1145/2632048.2632107

U.S. Geological Survey. (2019). Safeguarding the Nation: From the Destructive Loma Prieta earthquake to an Earthquake Early Warning System. https://www.usgs.gov/news/featured-story/usgs-shakealert-earthquake-early-warning-system

U.S. Geological Survey. (2021). Alert Thresholds for ShakeAlert. https://www.usgs.gov/media/images/alert-thresholds-shakealert.

U.S. Geological Survey. (2023). M7.1 – 1 km SE of Point MacKenzie. https://earthquake.usgs.gov/earthquakes/eventpage/ak20419010/pager.

VERT. (2023). Virtual Earthquake Reconnaissance Team, EERI Learning from Earthquakes. https://www.learningfromearthquakes.org/activities/vert

Vinnell, L. J., Inch, P., Johnston, D. M., & N, H. (2022). Behavioral responses to earthquake shaking: Video footage analysis of the 2016 Kaikōura earthquake in Wellington. Aotearoa New Zealand. Earthquake Spectra, 38(3), 1636–1660. https://doi.org/10.1177/87552930221086303 DOI: https://doi.org/10.1177/87552930221086303

Wald, D. J., Quitoriano, V., Worden, B., Hopper, M., & Dewey, J. W. (2011). USGS ‘“Did You Feel It?”’ Internet-based macroseismic intensity maps. Ann. Geophys, 54, 688–707. https://doi.org/10.4401/ag-5354 DOI: https://doi.org/10.4401/ag-5354

Wald, D. J., Worden, C. B., Quitoriano, V., & Pankow, K. L. (2006). ShakeMap Manual, Technical Manual, Users Guide, and Software Guide. http://pubs.usgs.gov/tm/2005/12A01/pdf/508TM12-A1.pdf DOI: https://doi.org/10.3133/tm12A1

Wong, W. K., Liew, J. T. Y., Loo, C. K., & Wong, W. K. (2009). Omnidirectional surveillance system for digital home security. 2009 International Conference on Signal Acquisition and Processing, 8–12. https://doi.org/10.1109/ICSAP.2009.13 DOI: https://doi.org/10.1109/ICSAP.2009.13

Worden, C. B., Wald, D. J., Allen, T. I., Lin, K., Garcia, D., & Cua, G. (2010). A Revised Ground-Motion and Intensity Interpolation Scheme for ShakeMap. Bull. Seismol. Soc. Amer, 100(6), 3083–3096. https://doi.org/10.1785/0120100101 DOI: https://doi.org/10.1785/0120100101

Yang, D. H., Bilaver, L. M., Hayes, O., & Goerge, R. (2004). Improving geocoding practices: evaluation of geocoding tools. J. Med. Syst, 28(4), 361–370. https://doi.org/10.1023/b:joms.0000032851.76239.e3 DOI: https://doi.org/10.1023/B:JOMS.0000032851.76239.e3

Zhang, X., Feng, Y., Angeloudis, P., & Demiris, Y. (2022). Monocular visual traffic surveillance: a review. IEEE Transactions on Intelligent Transportation Systems, 23, 14148–14165. https://doi.org/10.1109/TITS.2022.3147770 DOI: https://doi.org/10.1109/TITS.2022.3147770

Additional Files

Published

2023-09-25

How to Cite

Sumy, D. (2023). Geocoding Applications for Social Science to Improve Earthquake Early Warning. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.527

Issue

Section

Articles