Dispersive Elastic Moduli and Frequency-Dependent Attenuation due to Wave-Induced Fluid Flow in Metapelite

Authors

  • Celine Fliedner Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, United States of America https://orcid.org/0000-0003-4773-7627
  • Melodie French Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, United States of America https://orcid.org/0000-0002-1466-6140

DOI:

https://doi.org/10.26443/seismica.v3i1.624

Abstract

Seismic waves are used to interpret geologic structure, composition, and environmental conditions in the Earth. However, rocks are not perfectly elastic and their viscoelasticity can dissipate energy during wave propagation. Wave-induced fluid flow mechanisms can cause viscoelasticity resulting in frequency-dependent attenuation, velocities, and elastic moduli (dispersion) in saturated rocks. Dispersion and attenuation are hypothesized to be important in subduction zones, where regions of high fluid content are interpreted below the seismogenic zone. However, this has not been well-tested because of a lack of measurements on relevant lithologies and under saturated conditions. We measured the Young's and shear moduli and the attenuation of a greenschist facies metapelite with the forced oscillation technique at frequencies between 2 x 10-5 and 30 Hz. The moduli and attenuation are frequency-dependent under saturated conditions and depend on the effective pressure. At relatively low effective pressure, the Young's and shear moduli increase by over 50 % between 2 x 10-5 and 30 Hz. We use Standard Linear Solid viscoelastic models to investigate the relationship between the attenuation and dispersion in the Orocopia schist. The models are consistent with the experimental data and demonstrate that viscoelasticity can cause significant dispersion and attenuation in subduction zones.

References

Aben, F. M., & Brantut, N. (2021). Dilatancy stabilises shear failure in rock [Journal Article]. Earth and Planetary Science Letters, 574. https://doi.org/10.1016/j.epsl.2021.117174

Abercrombie, R. E. (1998). A Summary of Attenuation Measurements from Borehole Recordings of Earthquakes: The 10 Hz Transition Problem [Journal Article]. Pure and Applied Geophysics, 153(4). https://doi.org/10.1007/s000240050204

Abers, G. A., Nakajima, J., van Keken, P. E., Kita, S., & Hacker, B. R. (2013). Thermal–petrological controls on the location of earthquakes within subducting plates [Journal Article]. Earth and Planetary Science Letters, 369–370, 178–187. https://doi.org/10.1016/j.epsl.2013.03.022

Adelinet, M., Fortin, J., & Guéguen, Y. (2011). Dispersion of elastic moduli in a porous-cracked rock: Theoretical predictions for squirt-flow [Journal Article]. Tectonophysics, 503(1–2), 173–181. https://doi.org/10.1016/j.tecto.2010.10.012

Adelinet, M., Fortin, J., Guéguen, Y., Schubnel, A., & Geoffroy, L. (2010). Frequency and fluid effects on elastic properties of basalt: Experimental investigations [Journal Article]. Geophysical Research Letters, 37(2), n/a-n/a. https://doi.org/10.1029/2009gl041660

Anderson, D. L., & Archambeau, C. (1964). The anelasticity of the earth [Journal Article]. Journal of Geophysical Research, 69(10), 2071–2084.

Angiboust, S., Kirsch, J., Oncken, O., Glodny, J., Monié, P., & Rybacki, E. (2015). Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface [Journal Article]. Geochemistry, Geophysics, Geosystems, 16(6), 1905–1922. https://doi.org/10.1002/2015gc005776

Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J., Wadley, H., & Gibson, L. (2000). Metal foams: a design guide [Book]. Elsevier.

Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing [Journal Article]. Nature, 457(7225), 76–78. https://doi.org/10.1038/nature07650

Audetat, A., & Keppler, H. (2004). Viscosity of fluids in subduction zones [Journal Article]. Science, 303(5657), 513–516. https://doi.org/10.1126/science.1092282

Ba, J., Xu, W., Fu, L.-Y., Carcione, J. M., & Zhang, L. (2017). Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation [Journal Article]. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2016jb013882

Batzle, M. L., Han, D.-H., & Hofmann, R. (2006). Fluid mobility and frequency-dependent seismic velocity — Direct measurements [Journal Article]. Geophysics, 71(1), N1–N9. https://doi.org/10.1190/1.2159053

Bernabé, Y., & Revil, A. (1995). Pore-scale heterogeneity, energy dissipation and the transport properties of rocks [Journal Article]. Geophysical Research Letters, 22(12), 1529–1532. https://doi.org/https://doi.org/10.1029/95GL01418

Biot, M. A. (1956). Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. II. Higher Frequency Range [Journal Article]. The Journal of the Acoustical Society of America, 28(2), 179–191. https://doi.org/10.1121/1.1908241

Borgomano, J. V. M., Gallagher, A., Sun, C., & Fortin, J. (2020). An apparatus to measure elastic dispersion and attenuation using hydrostatic- and axial-stress oscillations under undrained conditions [Journal Article]. Rev Sci Instrum, 91(3), 034502. https://doi.org/10.1063/1.5136329

Borgomano, J. V. M., Pimienta, L., Fortin, J., & Guéguen, Y. (2017). Dispersion and attenuation measurements of the elastic moduli of a dual-porosity limestone [Journal Article]. Journal of Geophysical Research: Solid Earth, 122(4), 2690–2711. https://doi.org/10.1002/2016jb013816

Borgomano, Jan V. M., Pimienta, L. X., Fortin, J., & Guéguen, Y. (2019). Seismic Dispersion and Attenuation in Fluid‐Saturated Carbonate Rocks: Effect of Microstructure and Pressure [Journal Article]. Journal of Geophysical Research: Solid Earth, 124(12), 12498–12522. https://doi.org/10.1029/2019jb018434

Bostock, M. G., Royer, A. A., Hearn, E. H., & Peacock, S. M. (2012). Low frequency earthquakes below southern Vancouver Island [Journal Article]. Geochemistry, Geophysics, Geosystems, 13(11). https://doi.org/10.1029/2012gc004391

Bostock, M. G., Thomas, A. M., Rubin, A. M., & Christensen, N. I. (2017). On corner frequencies, attenuation, and low‐frequency earthquakes [Journal Article]. Journal of Geophysical Research: Solid Earth, 122(1), 543–557. https://doi.org/10.1002/2016jb013405

Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L., & Rubin, A. M. (2015). Magnitudes and moment‐duration scaling of low‐frequency earthquakes beneath southern Vancouver Island [Journal Article]. Journal of Geophysical Research: Solid Earth, 120(9), 6329–6350. https://doi.org/10.1002/2015jb012195

Brace, W. F. (1977). Permeability from resistivity and pore shape [Journal Article]. Journal of Geophysical Research, 82(23), 3343–3349. https://doi.org/10.1029/JB082i023p03343

Brantut, N. (2021). Dilatancy Toughening of Shear Cracks and Implications for Slow Rupture Propagation [Journal Article]. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022239

Brennan, B. J., & Stacey, F. D. (1977). Frequency dependence of elasticity of rock—test of seismic velocity dispersion [Journal Article]. Nature, 268(5617), 220–222. https://doi.org/10.1038/268220a0

Brown, J. M., & Collins, M. D. (1998). Elasticity of an upper mantle clinopyroxene [Journal Article]. Physics and Chemistry of Minerals, 26(1), 7–13. https://doi.org/10.1007/s002690050156

Brown, R. J. S., & Korringa, J. (1975). On the Dependence of the Elastic Properties of a Porous Rock on the Compressibility of the Pore Fluid [Journal Article]. Geophysics, 40(4), 608–616. https://doi.org/10.1190/1.1440551

Calvert, A. J., Bostock, M. G., Savard, G., & Unsworth, M. J. (2020). Cascadia low frequency earthquakes at the base of an overpressured subduction shear zone [Journal Article]. Nat Commun, 11(1), 3874. https://doi.org/10.1038/s41467-020-17609-3

Calvert, Andrew J., Preston, L. A., & Farahbod, A. M. (2011). Sedimentary underplating at the Cascadia mantle-wedge corner revealed by seismic imaging [Journal Article]. Nature Geoscience, 4(8), 545–548. https://doi.org/10.1038/ngeo1195

Chapman, S., Tisato, N., Quintal, B., & Holliger, K. (2016). Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures [Journal Article]. Journal of Geophysical Research: Solid Earth, 121(3), 1664–1676. https://doi.org/10.1002/2015jb012575

Cheng, C. H., & Toksöz, M. N. (1979). Inversion of seismic velocities for the pore aspect ratio spectrum of a rock [Journal Article]. Journal of Geophysical Research: Solid Earth, 84(B13), 7533–7543. https://doi.org/10.1029/JB084iB13p07533

Chestler, S. R., & Creager, K. C. (2017). Evidence for a scale‐limited low‐frequency earthquake source process [Journal Article]. Journal of Geophysical Research: Solid Earth, 122(4), 3099–3114. https://doi.org/10.1002/2016jb013717

Christensen, N. I. (1984). Pore pressure and oceanic crustal seismic structure [Journal Article]. Geophysical Journal International, 79(2), 411–423. https://doi.org/10.1111/j.1365-246X.1984.tb02232.x

Christensen, Nikolas I. (1979). Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones [Journal Article]. Journal of Geophysical Research: Solid Earth, 84(B12), 6849–6857. https://doi.org/10.1029/JB084iB12p06849

Cleary, M. P. (1978). Elastic and dynamic response regimes of fluid-impregnated solids with diverse microstructures [Journal Article]. International Journal of Solids and Structures, 14(10), 795–819. https://doi.org/10.1016/0020-7683(78)90072-0

Condit, C. B., & French, M. E. (2022). Geologic Evidence of Lithostatic Pore Fluid Pressures at the Base of the Subduction Seismogenic Zone [Journal Article]. Geophysical Research Letters, 49(12). https://doi.org/10.1029/2022gl098862

Condit, Cailey B., French, M. E., Hayles, J. A., Yeung, L. Y., Chin, E. J., & Lee, C. A. (2022). Rheology of Metasedimentary Rocks at the Base of the Subduction Seismogenic Zone [Journal Article]. Geochemistry, Geophysics, Geosystems, 23(2). https://doi.org/10.1029/2021gc010194

Condit, Cailey B., Guevara, V. E., Delph, J. R., & French, M. E. (2020). Slab dehydration in warm subduction zones at depths of episodic slip and tremor [Journal Article]. Earth and Planetary Science Letters, 552. https://doi.org/10.1016/j.epsl.2020.116601

David, E. C., & Zimmerman, R. W. (2012). Pore structure model for elastic wave velocities in fluid-saturated sandstones [Journal Article]. Journal of Geophysical Research: Solid Earth, 117(B7), n/a-n/a. https://doi.org/10.1029/2012jb009195

David, Emmanuel C., Brantut, N., Hansen, L. N., & Jackson, I. (2019). Low‐Frequency Measurements of Seismic Moduli and Attenuation in Antigorite Serpentinite [Journal Article]. Geophysical Research Letters, 46(4), 1993–2002. https://doi.org/10.1029/2018gl081271

Delle Piane, C., Sarout, J., Madonna, C., Saenger, E. H., Dewhurst, D. N., & Raven, M. (2014). Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis [Journal Article]. Geophysical Journal International, 198(1), 504–515. https://doi.org/10.1093/gji/ggu148

Delph, J. R., Levander, A., & Niu, F. (2018). Fluid Controls on the Heterogeneous Seismic Characteristics of the Cascadia Margin [Journal Article]. Geophysical Research Letters, 45(20). https://doi.org/10.1029/2018gl079518

Duffy, W. (2002). Acoustic quality factor of aluminium and selected aluminium alloys from 50 mK to 300 K [Journal Article]. Cryogenics, 42(3–4), 245–251. https://doi.org/10.1016/s0011-2275(02)00021-8

Dunn, K. (1986). Acoustic attenuation in fluid‐saturated porous cylinders at low frequencies [Journal Article]. The Journal of the Acoustical Society of America, 79(6), 1709–1721. https://doi.org/10.1121/1.393232

Dvorkin, J., Nolen‐Hoeksema, R., & Nur, A. (1994). The squirt‐flow mechanism: Macroscopic description [Journal Article]. Geophysics, 59(3), 428–438. https://doi.org/10.1190/1.1443605

Escartín, J., Hirth, G., & Evans, B. (1997). Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults [Journal Article]. Journal of Geophysical Research: Solid Earth, 102(B2), 2897–2913. https://doi.org/10.1029/96jb02792

Farge, G., Shapiro, N. M., & Frank, W. B. (2020). Moment‐Duration Scaling of Low‐Frequency Earthquakes in Guerrero, Mexico [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2019jb019099

Fliedner, C., & French, M. E. (2021). Pore and Mineral Fabrics Control the Elastic Wave Velocities of Metapelite With Implications for Subduction Zone Tomography [Journal Article]. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022361

Fliedner, C., & French, M. E. (2023). Measurements of wave-induced attenuation in saturated metapelite and the band-limitation of low-frequency earthquakes [Journal Article]. AGU Advances, 4(2). https://doi.org/10.1029/2022AV000837

Fliedner, Celine, & French, M. (2023a). Forced Oscillations On Aluminum (1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7545133

Fliedner, Celine, & French, M. (2023b). Forced Oscillations On Aluminum (2) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7545181

Fliedner, Celine, & French, M. (2023c). Forced Oscillations On PMMA (1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7545104

Fliedner, Celine, & French, M. (2023d). Forced Oscillations On PMMA (2) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7545137

Fliedner, Celine, & French, M. (2023e). Forced Oscillations On The Orocopia Schist Under Dry Conditions [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7528910

Fliedner, Celine, & French, M. (2023f). Forced Oscillations On The Orocopia Schist Under Saturated Conditions (Effective Stress 2 MPa) (1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7529120

Fliedner, Celine, & French, M. (2023g). Forced Oscillations On The Orocopia Schist Under Saturated Conditions (Effective Stress 2 MPa) (2) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7529179

Fliedner, Celine, & French, M. (2023h). Forced Oscillations On The Orocopia Schist Under Saturated Conditions (Effective Stress 9 MPa) (1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7529047

Fliedner, Celine, & French, M. (2023i). Forced Oscillations On The Orocopia Schist Under Saturated Conditions (Effective Stress 9 MPa) (2) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7529147

Frank, W. B., & Brodsky, E. E. (2019). Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling [Journal Article]. Sci Adv, 5(10), eaaw9386. https://doi.org/10.1126/sciadv.aaw9386

French, M. E., & Condit, C. B. (2019). Slip partitioning along an idealized subduction plate boundary at deep slow slip conditions [Journal Article]. Earth and Planetary Science Letters, 528. https://doi.org/10.1016/j.epsl.2019.115828

French, M. E., & Zhu, W. (2017). Slow fault propagation in serpentinite under conditions of high pore fluid pressure [Journal Article]. Earth and Planetary Science Letters, 473, 131–140. https://doi.org/10.1016/j.epsl.2017.06.009

Gassmann, F. (1951). Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich [Journal Article]. GEOPHYSICS, 96, 1–23.

Godfrey, N. J., Christensen, N. I., & Okaya, D. A. (2000). Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations [Journal Article]. Journal of Geophysical Research: Solid Earth, 105(B12), 27991–28007. https://doi.org/10.1029/2000jb900286

Gomberg, J., Agnew, D. C., & Schwartz, S. Y. (2016). Alternative source models of very low frequency events [Journal Article]. Journal of Geophysical Research: Solid Earth, 121(9), 6722–6740. https://doi.org/10.1002/2016jb013001

Gomberg, J., Creager, K., Sweet, J., Vidale, J., Ghosh, A., & Hotovec, A. (2012). Earthquake spectra and near-source attenuation in the Cascadia subduction zone [Journal Article]. Journal of Geophysical Research: Solid Earth, 117(B5), n/a-n/a. https://doi.org/10.1029/2011jb009055

Hadley, K. (1976). Comparison of calculated and observed crack densities and seismic velocities in westerly granite [Journal Article]. Journal of Geophysical Research, 81(20), 3484–3494. https://doi.org/10.1029/JB081i020p03484

Hyndman, R. D. (1988). Dipping Seismic Reflectors, Electrically Conductive Zones, and Trapped Water in the Crust Over a Subducting Plate [Journal Article]. Journal of Geophysical Research: Solid Earth, 93(B11), 13391–13405. https://doi.org/10.1029/JB093iB11p13391

Ide, S., Beroza, G. C., Shelly, D. R., & Uchide, T. (2007). A scaling law for slow earthquakes [Journal Article]. Nature, 447(7140), 76–79. https://doi.org/10.1038/nature05780

Ito, Y., Obara, K., Shiomi, K., Sekine, S., & Hirose, H. (2007). Slow earthquakes coincident with episodic tremors and slow slip events [Journal Article]. Science, 315(5811), 503–506. https://doi.org/10.1126/science.1134454

Jackson, I., & Paterson, M. S. (1987). Shear modulus and internal friction of calcite rocks at seismic frequencies: pressure, frequency and grain size dependence [Journal Article]. Physics of the Earth and Planetary Interiors, 45(4), 349–367. https://doi.org/10.1016/0031-9201(87)90042-2

Jacobson, C. E., & Dawson, M. R. (1995). Structural and metamorphic evolution of the Orocopia Schist and related rocks, southern California: Evidence for late movement on the Orocopia fault [Journal Article]. Tectonics, 14(4), 933–944. https://doi.org/10.1029/95tc01446

Jacobson, C. E., Grove, M., Vućić, A., Pedrick, J. N., & Ebert, K. A. (2007). Exhumation of the Orocopia Schist and associated rocks of southeastern California: Relative roles of erosion, synsubduction tectonic denudation, and middle Cenozoic extension [Book Section]. In Cloos, M., Carlson, W.D., Gilbert, M.C., Liou, J.G., and Sorensen, S.S., eds., Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst (Vol. 419, pp. 1–37). Geological Society of America. https://doi.org/10.1130/2007.2419(01)

Johnson, G. R. (1983). Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities (Report No. 2331–1258). USGS. https://doi.org/10.3133/ofr83736

Kaneko, L., Ide, S., & Nakano, M. (2018). Slow Earthquakes in the Microseism Frequency Band (0.1-1.0 Hz) off Kii Peninsula, Japan [Journal Article]. Geophysical Research Letters, 45(6), 2618–2624. https://doi.org/10.1002/2017gl076773

Karato, S. (1993). Importance of anelasticity in the interpretation of seismic tomography [Journal Article]. Geophysical Research Letters, 20(15), 1623–1626.

Katayama, I., Terada, T., Okazaki, K., & Tanikawa, W. (2012). Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho [Journal Article]. Nature Geoscience, 5(10), 731–734. https://doi.org/10.1038/ngeo1559

Kjartansson, E. (1979). Constant Q-wave propagation and attenuation [Journal Article]. Journal of Geophysical Research, 84(B9). https://doi.org/10.1029/JB084iB09p04737

Kotowski, A. J., & Behr, W. M. (2019). Length scales and types of heterogeneities along the deep subduction interface: Insights from exhumed rocks on Syros Island, Greece [Journal Article]. Geosphere, 15(4), 1038–1065. https://doi.org/10.1130/ges02037.1

Kranz, R. L. (1983). Microcracks in rocks: A review [Journal Article]. Tectonophysics, 100(1–3), 449–480. https://doi.org/10.1016/0040-1951(83)90198-1

Lakes, R. (2009). Viscoelastic Materials [Book]. Cambridge University Press. https://doi.org/10.1017/CBO9780511626722

Lee, T., Lakes, R. S., & Lal, A. (2000). Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy [Journal Article]. Review of Scientific Instruments, 71(7), 2855–2861. https://doi.org/10.1063/1.1150703

Lengliné, O., Lamourette, L., Vivin, L., Cuenot, N., & Schmittbuhl, J. (2014). Fluid-induced earthquakes with variable stress drop [Journal Article]. Journal of Geophysical Research: Solid Earth, 119(12), 8900–8913. https://doi.org/10.1002/2014jb011282

Lin, Y.-Y., Ma, K.-F., Kanamori, H., Song, T.-R. A., Lapusta, N., & Tsai, V. C. (2016). Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array [Journal Article]. Geophysical Journal International, 206(2), 757–773. https://doi.org/10.1093/gji/ggw172

Littel, G. F., Thomas, A. M., & Baltay, A. S. (2018). Using Tectonic Tremor to Constrain Seismic Wave Attenuation in Cascadia [Journal Article]. Geophysical Research Letters, 45(18), 9579–9587. https://doi.org/10.1029/2018gl079344

Liu, H. P., Anderson, D. L., & Kanamori, H. (1976). Velocity dispersion due to anelasticity; implications for seismology and mantle composition [Journal Article]. Geophysical Journal International, 47(1), 41–58. https://doi.org/10.1111/j.1365-246X.1976.tb01261.x

Madonna, C., & Tisato, N. (2013). A new Seismic Wave Attenuation Module to experimentally measure low-frequency attenuation in extensional mode [Journal Article]. Geophysical Prospecting, 61(2), 302–314. https://doi.org/10.1111/1365-2478.12015

Mao, Z., Jiang, F., & Duffy, T. S. (2007). Single-crystal elasticity of zoisite Ca2Al3Si3O12 (OH) by Brillouin scattering [Journal Article]. American Mineralogist, 92(4), 570–576. https://doi.org/10.2138/am.2007.2329

Mavko, G. M., & Nur, A. (1978). The effect of nonelliptical cracks on the compressibility of rocks [Journal Article]. Journal of Geophysical Research, 83(B9). https://doi.org/10.1029/JB083iB09p04459

Mavko, Gary, Mukerji, T., & Dvorkin, J. (2020). The Rock Physics Handbook (3rd Edition, pp. 165–167) [Book]. Cambridge University Press. https://doi.org/10.1017/9781108333016

Mavko, Gerald, & Nur, A. (1975). Melt squirt in the asthenosphere [Journal Article]. Journal of Geophysical Research, 80(11), 1444–1448. https://doi.org/10.1029/JB080i011p01444

McKavanagh, B., & Stacey, F. D. (1974). Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies [Journal Article]. Physics of the Earth and Planetary Interiors, 8(3), 246–250. https://doi.org/10.1016/0031-9201(74)90091-0

Michel, S., Gualandi, A., & Avouac, J. P. (2019). Similar scaling laws for earthquakes and Cascadia slow-slip events [Journal Article]. Nature, 574(7779), 522–526. https://doi.org/10.1038/s41586-019-1673-6

Mikhaltsevitch, V., Lebedev, M., Pervukhina, M., & Gurevich, B. (2020). Seismic dispersion and attenuation in Mancos shale – laboratory measurements [Journal Article]. Geophysical Prospecting, 69(3), 568–585. https://doi.org/10.1111/1365-2478.13056

Montgomery‐Brown, E. K., & Syracuse, E. M. (2015). Tremor‐genic slow slip regions may be deeper and warmer and may slip slower than non‐tremor‐genic regions [Journal Article]. Geochemistry, Geophysics, Geosystems, 16(10), 3593–3606. https://doi.org/10.1002/2015gc005895

Muñoz-Montecinos, J., Angiboust, S., & Garcia-Casco, A. (2021). Blueschist-facies paleo-earthquakes in a serpentinite channel (Zagros suture, Iran) enlighten seismogenesis in Mariana-type subduction margins [Journal Article]. Earth and Planetary Science Letters, 573. https://doi.org/10.1016/j.epsl.2021.117135

Nakai, J. S., Sheehan, A. F., Abercrombie, R. E., & Eberhart‐Phillips, D. (2021). Near Trench 3D Seismic Attenuation Offshore Northern Hikurangi Subduction Margin, North Island, New Zealand [Journal Article]. Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020jb020810

Nakano, M., Hori, T., Araki, E., Kodaira, S., & Ide, S. (2018). Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone [Journal Article]. Nature Communications, 9(1), 984. https://doi.org/10.1038/s41467-018-03431-5

Nowick, A. S., & Berry, B. S. (1972). Anelastic Relaxation in Crystalline Solids [Book]. Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-522650-9.50005-7

Nur, A., & Simmons, G. (1969). The effect of saturation on velocity in low porosity rocks [Journal Article]. Earth and Planetary Science Letters, 7(2), 183–193. https://doi.org/10.1016/0012-821x(69)90035-1

Obana, K., & Kodaira, S. (2009). Low-frequency tremors associated with reverse faults in a shallow accretionary prism [Journal Article]. Earth and Planetary Science Letters, 287(1–2), 168–174. https://doi.org/10.1016/j.epsl.2009.08.005

Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan [Journal Article]. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes [Journal Article]. Science, 353(6296), 253–257. https://doi.org/10.1126/science.aaf1512

Oberg, E., & McCauley, C. J. (2020). Machinery’s Handbook: Toolbox (31st Edition) [Book]. Industrial Press, Inc.

O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids [Journal Article]. Journal of Geophysical Research, 79(35), 5412–5426. https://doi.org/10.1029/JB079i035p05412

O’Connell, R. J., & Budiansky, B. (1977). Viscoelastic properties of fluid-saturated cracked solids [Journal Article]. Journal of Geophysical Research, 82(36), 5719–5735. https://doi.org/10.1029/JB082i036p05719

Peacock, S. M. (1987). Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones [Journal Article]. Contributions to Mineralogy and Petrology, 95(1), 55–70. https://doi.org/10.1007/bf00518030

Philippot, P., & Selverstone, J. (1991). Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction [Journal Article]. Contributions to Mineralogy and Petrology, 106(4), 417–430. https://doi.org/10.1007/bf00321985

Pimienta, L., Borgomano, J. V. M., Fortin, J., & Guéguen, Y. (2016). Modelling the drained/undrained transition: effect of the measuring method and the boundary conditions [Journal Article]. Geophysical Prospecting, 64(4), 1098–1111. https://doi.org/10.1111/1365-2478.12390

Pimienta, Lucas, Borgomano, J. V. M., Fortin, J., & Guéguen, Y. (2017). Elastic Dispersion and Attenuation in Fully Saturated Sandstones: Role of Mineral Content, Porosity, and Pressures [Journal Article]. Journal of Geophysical Research: Solid Earth, 122(12), 9950–9965. https://doi.org/10.1002/2017jb014645

Pimienta, Lucas, Fortin, J., & Guéguen, Y. (2015). Experimental study of Young’s modulus dispersion and attenuation in fully saturated sandstones [Journal Article]. Geophysics, 80(5), L57–L72. https://doi.org/10.1190/geo2014-0532.1

Pimienta, Lucas, Fortin, J., & Guéguen, Y. (2016). Effect of fluids and frequencies on Poisson’s ratio of sandstone samples [Journal Article]. Geophysics, 81(2), D183–D195. https://doi.org/10.1190/GEO2015-0310.1

Pimienta, Lucas, Quintal, B., & Caspari, E. (2021). Hydro-mechanical coupling in porous rocks: hidden dependences to the microstructure? [Journal Article]. Geophysical Journal International, 224(2), 973–984. https://doi.org/10.1093/gji/ggaa497

Platt, J. P., Xia, H., & Schmidt, W. L. (2018). Rheology and stress in subduction zones around the aseismic/seismic transition [Journal Article]. Progress in Earth and Planetary Science, 5(1). https://doi.org/10.1186/s40645-018-0183-8

Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). Seismic attenuation due to wave-induced flow [Journal Article]. Journal of Geophysical Research: Solid Earth, 109(B1). https://doi.org/10.1029/2003jb002639

Rogers, G., & Dragert, H. (2003). Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip [Journal Article]. Science, 300(5627), 1942–1943. https://doi.org/doi:10.1126/science.1084783

Rorheim, S. (2022). On Frequency-Dependent Rock Experiments: A Comparative Review [Journal Article]. ArXiv. https://doi.org/https://doi.org/10.48550/arXiv.2208.03795

Saltiel, S., Selvadurai, P. A., Bonner, B. P., Glaser, S. D., & Ajo-Franklin, J. B. (2017). Experimental development of low-frequency shear modulus and attenuation measurements in mated rock fractures: Shear mechanics due to asperity contact area changes with normal stress [Journal Article]. Geophysics, 82(2), M19–M36. https://doi.org/10.1190/geo2016-0199.1

Sammis, C. G., & Bostock, M. G. (2021). A Granular Jamming Model for Low‐Frequency Earthquakes [Journal Article]. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2021jb021963

Schmitt, L., Forsans, T., & Santarelli, F. J. (1994). Shale testing and capillary phenomena [Journal Article]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(5), 411–427. https://doi.org/10.1016/0148-9062(94)90145-7

Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum-Pacific subduction zones [Journal Article]. Reviews of Geophysics, 45(3). https://doi.org/https://doi.org/10.1029/2006RG000208

Shapiro, N. M., Campillo, M., Kaminski, E., Vilotte, J., & Jaupart, C. (2018). Low‐Frequency Earthquakes and Pore Pressure Transients in Subduction Zones [Journal Article]. Geophysical Research Letters, 45(20). https://doi.org/10.1029/2018gl079893

Shearer, P. M. (2009). Introduction to Seismology (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511841552

Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms [Journal Article]. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666

Shelly, D. R., Beroza, G. C., Ide, S., & Nakamula, S. (2006). Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip [Journal Article]. Nature, 442(7099), 188–191. https://doi.org/10.1038/nature04931

Spencer, J. W. (1981). Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion [Journal Article]. Journal of Geophysical Research, 86(B3). https://doi.org/10.1029/JB086iB03p01803

Subramaniyan, S., Quintal, B., Madonna, C., & Saenger, E. H. (2015). Laboratory-based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow [Journal Article]. Journal of Geophysical Research: Solid Earth, 120(11), 7526–7535. https://doi.org/10.1002/2015jb012290

Subramaniyan, S., Quintal, B., Tisato, N., Saenger, E. H., & Madonna, C. (2014). An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks [Journal Article]. Geophysical Prospecting, 62(6), 1211–1223. https://doi.org/10.1111/1365-2478.12171

Sun, C., Tang, G., Fortin, J., Borgomano, J. V. M., & Wang, S. (2020). Dispersion and Attenuation of Elastic Wave Velocities: Impact of Microstructure Heterogeneity and Local Measurements [Journal Article]. Journal of Geophysical Research: Solid Earth, 125(12). https://doi.org/10.1029/2020jb020132

Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., & Obara, K. (2020). Self-similarity of low-frequency earthquakes [Journal Article]. Sci Rep, 10(1), 6523. https://doi.org/10.1038/s41598-020-63584-6

Suzuki, T., Tsubono, K., & Hirakawa, H. (1978). Quality factor of vibration of aluminum alloy disks [Journal Article]. Physics Letters A, 67(1), 2–4. https://doi.org/10.1016/0375-9601(78)90549-2

Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks [Journal Article]. International Journal of Rock Mechanics and Mining Sciences, 46(2), 229–238. https://doi.org/10.1016/j.ijrmms.2008.03.004

Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice [Book]. Wiley. https://books.google.com/books?id=XjH6DwAAQBAJ

Tewksbury-Christle, C. M., Behr, W. M., & Helper, M. A. (2021). Tracking Deep Sediment Underplating in a Fossil Subduction Margin: Implications for Interface Rheology and Mass and Volatile Recycling [Journal Article]. Geochem Geophys Geosyst, 22(3), e2020GC009463. https://doi.org/10.1029/2020GC009463

Thomas, A. M., Beroza, G. C., & Shelly, D. R. (2016). Constraints on the source parameters of low‐frequency earthquakes on the San Andreas Fault [Journal Article]. Geophysical Research Letters, 43(4), 1464–1471. https://doi.org/10.1002/2015gl067173

Tisato, N., & Madonna, C. (2012). Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus [Journal Article]. Journal of Applied Geophysics, 86, 44–53. https://doi.org/10.1016/j.jappgeo.2012.07.008

Tisato, N., Quintal, B., Chapman, S., Podladchikov, Y., & Burg, J. (2015). Bubbles attenuate elastic waves at seismic frequencies: First experimental evidence [Journal Article]. Geophysical Research Letters, 42(10), 3880–3887. https://doi.org/10.1002/2015gl063538

Todd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rocks [Journal Article]. Journal of Geophysical Research, 77(20), 3731–3743. https://doi.org/10.1029/JB077i020p03731

Toksöz, M. N., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements [Journal Article]. Geophysics, 44(4), 681–690. https://doi.org/10.1190/1.1440969

Wallace, L. M., Webb, S. C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., Schwartz, S. Y., & Sheehan, A. F. (2016). Slow slip near the trench at the Hikurangi subduction zone, New Zealand [Journal Article]. Science, 352(6286), 701–704. https://doi.org/10.1126/science.aaf2349

Walsh, J. B. (1965). The effect of cracks on the compressibility of rock [Journal Article]. Journal of Geophysical Research, 70(2), 381–389. https://doi.org/10.1029/JZ070i002p00381

Wang, Z., Schmitt, D. R., & Wang, R. (2017). Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale [Journal Article]. Journal of Geophysical Research: Solid Earth, 122(8), 6067–6086. https://doi.org/10.1002/2017jb013979

Wei, X., Xu, J., Liu, Y., & Chen, X. (2021). The slow self-arresting nature of low-frequency earthquakes [Journal Article]. Nat Commun, 12(1), 5464. https://doi.org/10.1038/s41467-021-25823-w

White, J. E. (1975). Computed Seismic Speeds and Attenuation in Rocks with Partial Gas Saturation [Journal Article]. Geophysics, 40(2), 224–232. https://doi.org/10.1190/1.1440520

Whittington, A. G., Hofmeister, A. M., & Nabelek, P. I. (2009). Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism [Journal Article]. Nature, 458(7236), 319–321. https://doi.org/10.1038/nature07818

Williams, R. T., & Kirkpatrick, J. D. (2022). Are Low‐Frequency Earthquake Moments Area‐ or Slip‐Limited? A Rock Record Examination [Journal Article]. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021gl095759

Winkler, K., & Nur, A. (1979). Pore fluids and seismic attenuation in rocks [Journal Article]. Geophysical Research Letters, 6(1), 1–4. https://doi.org/10.1029/GL006i001p00001

Wolff, R. G. (1982). Physical properties of rocks; porosity, permeability, distribution coefficients, and dispersivity (Report No. 2331–1258). USGS. https://doi.org/10.3133/ofr82166

Yin, H., Borgomano, J. V. M., Wang, S., Tiennot, M., Fortin, J., & Guéguen, Y. (2019). Fluid Substitution and Shear Weakening in Clay‐Bearing Sandstone at Seismic Frequencies [Journal Article]. Journal of Geophysical Research: Solid Earth, 124(2), 1254–1272. https://doi.org/10.1029/2018jb016241

Zener, C. M., & Siegel, S. (1949). Elasticity and Anelasticity of Metals [Journal Article]. The Journal of Physical and Colloid Chemistry, 53(9), 1468–1468. https://doi.org/10.1021/j150474a017

Zoback, M. D., & Byerlee, J. D. (1975). The effect of microcrack dilatancy on the permeability of westerly granite [Journal Article]. Journal of Geophysical Research, 80(5), 752–755. https://doi.org/10.1029/JB080i005p00752

Additional Files

Published

2024-01-29

How to Cite

Fliedner, C., & French, M. (2024). Dispersive Elastic Moduli and Frequency-Dependent Attenuation due to Wave-Induced Fluid Flow in Metapelite. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.624

Issue

Section

Articles