The rupture plane of the February 2022 Mw 6.2 Guatemala, intermediate depth earthquake
DOI:
https://doi.org/10.26443/seismica.v2i2.691Keywords:
intermediate depth earthquake, seismic hazard in Guatemala, earthquake relocationAbstract
An intermediate depth intraplate earthquake with Mw 6.2 was generated in the Guatemalan subduction zone on 16 February 2022 with epicenter to Southwest of the department of Escuintla. More than 275 aftershocks were registered, which were relocated with the HypoDD algorithm, being able to identify a fault with an area of ~350 km2, which is considerably higher than expected for an earthquake of that magnitude. The moment tensor at the centroid of the main earthquake and the estimation of other focal mechanisms of the largest aftershocks, allowed us to identify extension earthquakes, related to the fault plane, and compression earthquakes that were associated with seismicity on the upper part of the slab. The region of the sequence has presented high seismic activity in recent years. It is proposed that the mainshock nucleated in the lower seismicity layer (LSL) of the double seismicity zone proposed for the region, triggering seismic activity on a pre-existing active fault, also triggering seismic activity in the upper seismicity layer (USL). The separation between these seismicity layers was estimated to be 12.2±5.0 km.
References
Güendel, F., & Protti, M. (1998). Sismicidad y Sismotectónica de América Central. Física de la Tierra, 10, 19–51.
Alvarez, J. (2009). Tectónica Activa y Geodinámica en el Norte de Centro América. Universidad Compultense de Madrid, Tésis Doctoral, 121–123.
Guzmán-Speziale, M., & Zúñiga, R. (2016). Differences and similarities in the Cocos-North America andCocos-Caribbean convergence, as revealed by seismic momenttensors. Journal of South American Earth Sciences, 71, 296–308.
Guzmán-Speziale, M., & Molina, E. (2022). Seismicity and seismically active faulting of Guatemala: A review. Journal of South American Earth Sciences, 115, 103740.
Hayes, G., Moore, G., Portner, D., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61.
Ellis, A., DeMets, C., McCaffrey, R., Briole, P., Cosenza, B., Flores, O., Guzmán-Speziale, M., Hernández, D., Kostoglodov, V., LaFemina, P., Lord, N., Lasserre, C., Lyon-Caen, H., Rodriguez, M., Molina, E., Rivera, J., Rogers, R., Staller, A., & Tikoff, B. (2019). GPS constraints on deformation in northern Central America from1999 to 2017, Part 2: Block rotations and fault slip rates, fault lockingand distributed deformation. Geophysical Journal International, 218, 729–754.
Ambraseys, N., & Adams, R. (1996). Large-magnitude Central American earthquakes, 1898-1994. Geophysical Journal International, 127, 665–692.
White, R., Ligorría, J., & Cifuentes, I. (2004). Seismic history of the Middle America subduction zone alongEl Salvador, Guatemala, and Chiapas, Mexico: 1526–2000. Geological Society of America, Special Paper 375, 379–396.
Ye, L., Lay, T., & Kanamori, H. (2013). Large earthquake rupture process variations on the Middle Americamegathrust. Earth and Planetary Science Letters, 381, 147–155.
Ellis, A., DeMets, C., McCaffrey, R., Briole, P., Cosenza, B., Flores, O., Graham, S., Guzmán-Speziale, M., Hernández, D., Kostoglodov, V., LaFemina, P., Lord, N., Lasserre, C., Lyon-Caen, H., Rodriguez, M., McCaffrey, R., Molina, E., Rivera, J., Rogers, R., & Staller, A. (2018). GPS constraints on deformation in northern Central America from1999 to 2017, Part 1 – Time-dependent modelling of large regional earthquakes and their post-seismic effects. Geophysical Journal International, 214(214), 2177–2194.
Craig, J., Methley, P., & Sandiford, D. (2022). Imbalanced Moment Release Within Subducting Plates DuringInitial Bending and Unbending. Journal of Geophysical Research: Solid Earth, 127.
Ranero, C., Villaseñor, A., Phipps Morgan, J., & Weinrebe, W. (2005). Relationship between bend-faulting at trenches andintermediate-depth seismicity. Geochemistry, Geophysics and Geosystems, 6(12).
Brudzinski, M., Thurber, C., Hacker, B., & Engdahl, R. (2007). Global Prevalence of DoubleBenioff Zones. Science, 316, 1472–1474.
Marot, M., Monfret, T., Pardo, M., Ranalli, G., & Nolet, G. (2012). An intermediate-depth tensional earthquake (Mw 5.7) and its aftershocks within the Nazca slab, central Chile: A reactivated outer rise fault?. Earth and Planetary Science Letters, 327-328, 9–16.
Cabrera, L., Ruiz, S., Poli, P., Contreras-Reyes, E., Osses, A., & Mancini, R. (2021). Northern Chile Intermediate-Depth Earthquakes Controlled by Plate Hydration. Geophysical Journal International, 226, 78–90.
Florez, M., & Prieto, G. (2019). Controlling Factors of Seismicity and Geometryin Double Seismic Zones. Geophysical Research Letters, 46.
Nishikawa, T., & Ide, S. (2014). Earthquake size distribution in subduction zoneslinked to slab buoyancy. Nature Geoscience, 7, 904–908.
Kanamori, H., & Rivera, L. (2008). Source inversion of Wphase: speeding up seismic tsunami warning. Geophysical Journal International, 175, 222–238.
Duputel, Z., Rivera, L., Kanamori, H., & Hayes, G. (2012). W phase source inversion for moderate to large earthquakes (1990–2010). Geophysical Journal International, 189, 1125–1147.
Newman, R., Clark, A., Trabant, C., Karstens, R., Hutko, A., Casey, R., & Ahern, T. (2013). Wilber 3: A Python-Django Web Application For Acquiring Large-scale Event-oriented Seismic Data. Incorporated Research Institutions for Seismology.
Dziewonski, A., Chou, T., & Woodhouse, J. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophyisical Research, 86, 2825–2852.
Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201, 1–9.
Havskov, J., & Ottemoller, L. (1999). SeisAn Earthquake Analysis Software. Seismological Research Letters, 70(5), 532–534.
Snoke, A. (2003). FOCMEC: FOCal MEChanism Determinations. Virgina Tech.
Reasenberg, P., & Oppenheimer, D. (1985). Fpfit, fpplot, and fppage: Fortran computer programs for calculating and displaying earthquake fault plane solutions. Technical report, USGS.
Waldhauser, F., & Ellsworth, W. (2000). A Double-Difference Earthquake Location Algorithm: Method andApplication to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368.
Waldhauser, F. (2001). hypoDD – A Program to Compute Double-Difference Hypocenter Locations. Open File Report USGS.
Twardzik, C., & Ji, C. (2015). The Mw 7.9 2014 intraplate intermediate-depth Rat Islands earthquakeand its relation to regional tectonics. Earth and Planetary Science Letters, 431, 26–35.
Peyrat, S., Campos, J., Chabalier, J., Perez, A., Bonvalot, S., Bouin, M., Legrand, D., Nercessian, A., Charade, O., Patau, G., Clévédé, E., Kausel, E., Bernard, P., & Vilotte, J. (2006). Tarapacá intermediate-depth earthquake (Mw 7.7, 2005, norther Chile): A slab-pull event with horizontal fault plane constrained from seismologic and geodetic observations. Geophysical Research Letters, 33.
Delouis, B., & Legrand, D. (2007). Mw 7.8 Tarapaca intermediate depth earthquake of 13 June 2005 (northern Chile): Fault plane identification and slip distribution by waveform inversion. Geophysical Research Letters, 34.
Ide, S., & Takeo, M. (1996). The dynamic rupture process of the 1993 Kushiro-oki earthquake. Journal of Geophysical Research, 101(B3), 5661–5675.
SSN (2017). Sismo de Tehuantepec (2017-09-07 23:49 Mw 8.2). Servicio Sismológic Nacional, UNAM, Reporte Especial.
Ortega, R., Carciumaru, D., Quintanar, L., Huésca-Pérez, E., & Gutiérrez-Reyes, E. (2019). A Study of Ground Motion Excitation Based on the Earthquake of September 8, 2017: Evidence that Normal Faults Influence the Stress Parameter. Pure and Applied Geophysics, 176, 1359-–1377.
Benito, M., Lindholm, C., Camacho, E., Climent, A., Marroquín, G., Molina, E., Rojas, W., Escobar, J., Talavera, E., Alvarado, G., & Torres, Y. (2012). A New Evaluation of Seismic Hazard for the Central America Region. Bulletin of the Seismological Society of America, 102(2), 504–523.
Wells, D., & Coppersmith, K. (1994). New Empirical Relationships among Magnitude, Rupture Length, RuptureWidth, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.
Fréchet, J. (1985). Sismogenèse et doublets sismiques. Thèse d’Etat, Université Scientifique et Médicale de Grenoble.
Got, J., Fréchet, J., & Klein, F. (1994). Deep fault plane geometry inferred from multiplet relative location beneath the south flank of Kilauea. Journal of Geophysical Research, 99(B8), 15375-15386.
Chu, S., & Beroza, G. (2022). Aftershock productivity of intermediate-depth earthquakes in Japan. Geophysical Journal International, 230(1), 448-463.
Kiser, E., Ishii, M., Langmuir, C., Shearer, P., & Hirose, H. (2011). Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases. Journal of Geophysical Research: Solid Earth, 116(B6).
Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556-5564.
Ranero, C., Phipps Morgan, J., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367-373.
Gerardo Suárez, Miguel A. Santoyo, Vala Hjorleifsdottir, Arturo Iglesias, Carlos Villafuerte, & Victor M. Cruz-Atienza (2019). Large scale lithospheric detachment of the downgoing Cocos plate: The 8 September 2017 earthquake (Mw 8.2). Earth and Planetary Science Letters, 509, 9-14.
Pasten-Araya, F., Salazar, P., Ruiz, S., Rivera, E., Potin, B., Maksymowicz, A., Torres, E., Villarroel, J., Cruz, E., Valenzuela, J., Jaldín, D., González, G., Bloch, W., Wigger, P., & Shapiro, S. (2018). Fluids Along the Plate Interface Influencing the Frictional Regime of the Chilean Subduction Zone, Northern Chile. Geophysical Research Letters, 45(19), 10,378-10,388.
INSIVUMEH (1976). percaseRed Sismológica Nacional. International Federation of Digital Seismograph Networks.
SSN (2022). Servicio Sismológico Nacional, Instituto de Geofísica, Universidad Nacional Autónoma de México, México.
SNET (2004). Servicio Nacional de Estudios Territoriales (SNET), El Salvador.
INSIVUMEH (1988). Boletín Sismológico 1983. Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología.
Storchak, D., Di Giacomo, D., Bondár, I., Engdahl, E., Harris, J., Lee, W., Villaseñor, A., & Bormann, P. (2013). Public Release of the ISC–GEM Global Instrumental Earthquake Catalogue (1900–2009). Seismological Research Letters, 84(5), 810-815.
D.A. Storchak, D. Di Giacomo, E.R. Engdahl, J. Harris, I. Bondár, W.H.K. Lee, P. Bormann, & A. Villaseñor (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction. Physics of the Earth and Planetary Interiors, 239, 48-63.
Di Giacomo, D., Engdahl, E., & Storchak, D. (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project. Earth System Science Data, 10(4), 1877–1899.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Robin Yani-Quiyuch, Ludwing Asturias, Diego Castro
This work is licensed under a Creative Commons Attribution 4.0 International License.