Virtual Shake Robot: Simulating Dynamics of Precariously Balanced Rocks for Overturning and Large-displacement Processes
DOI:
https://doi.org/10.26443/seismica.v3i1.692Keywords:
Precariously balanced rocks, seismic hazard analysis, physics engine, robotics, rockfall, dynamics simulation, ground motions, fragile geological features, automated geoscienceAbstract
Understanding the dynamics of precariously balanced rocks (PBRs) is important for seismic hazard analysis and rockfall prediction. Utilizing a physics engine and robotic tools, we develop a virtual shake robot (VSR) to simulate the dynamics of PBRs during overturning and large-displacement processes. We present the background of physics engines and technical details of the VSR, including software architecture, mechanical structure, control system, and implementation procedures. Validation experiments show the median fragility contour from VSR simulation is within the 95% prediction intervals from previous physical experiments, when PGV/PGA is greater than 0.08 s. Using a physical mini shake robot, we validate the qualitative consistency of fragility anisotropy between the VSR and physical experiments. By overturning cuboids on flat terrain, the VSR reveals the relationship between fragility and geometric dimensions (e.g., aspect and scaling ratios). The ground motion orientation and lateral pedestal support affect PBR fragility. Large-displacement experiments estimate rock trajectories for different ground motions, which is useful for understanding the fate of toppled PBRs. Ground motions positively correlate with large displacement statistics such as mean trajectory length, mean largest velocity, and mean terminal distance. The overturning and large displacement processes of PBRs provide complementary methods of ground motion estimation.
References
Agliardi, F., & Crosta, G. B. (2003). High resolution three-dimensional numerical modelling of rockfalls. International Journal of Rock Mechanics and Mining Sciences, 40(4), 455–471. https://doi.org/10.1016/s1365-1609(03)00021-2
Alian, M., Ein-Mozaffari, F., & Upreti, S. R. (2015). Analysis of the mixing of solid particles in a plowshare mixer via discrete element method (DEM). Powder Technology, 274, 77–87. https://doi.org/10.1016/j.powtec.2015.01.012
Anderson, J. G., Biasi, G. P., & Brune, J. N. (2014). Chapter 14 - Precarious Rocks: Providing Upper Limits on Past Ground Shaking from Earthquakes. In J. F. Shroder & M. Wyss (Eds.), Earthquake Hazard, Risk and Disasters (pp. 377–403). Elsevier. https://doi.org/10.1016/b978-0-12-394848-9.00014-6
Anooshehpoor, A., Brune, J. N., & Zeng, Y. (2004). Methodology for obtaining constraints on ground motion from precariously balanced rocks. Bulletin of the Seismological Society of America, 94(1), 285–303.
Asaf, Z., Rubinstein, D., & Shmulevich, I. (2007). Determination of discrete element model parameters required for soil tillage. Soil and Tillage Research, 92(1–2), 227–242. https://doi.org/10.1016/j.still.2006.03.006
Azzoni, A., La Barbera, G., & Zaninetti, A. (1995). Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(7), 709–724. https://doi.org/10.1016/0148-9062(95)00018-c
Baker, J., Bradley, B., & Stafford, P. (2021). Seismic Hazard and Risk Analysis. Cambridge University Press. https://doi.org/10.1017/9781108425056
Bao, Y., & Konstantinidis, D. (2020). Dynamics of a sliding‐rocking block considering impact with an adjacent wall. Earthquake Engineering & Structural Dynamics, 49(5), 498–523. https://doi.org/10.1002/eqe.3250
Bell, J. W., Brune, J. N., Liu, T., Zreda, M., & Yount, J. C. (1998). Dating precariously balanced rocks in seismically active parts of California and Nevada. Geology, 26(6), 495. https://doi.org/10.1130/0091-7613(1998)026<0495:dpbris>2.3.co;2
Bender, J., Erleben, K., & Trinkle, J. (2013). Interactive Simulation of Rigid Body Dynamics in Computer Graphics. Computer Graphics Forum, 33(1), 246–270. https://doi.org/10.1111/cgf.12272
Beverloo, W. A., Leniger, H. A., & van de Velde, J. (1961). The flow of granular solids through orifices. Chemical Engineering Science, 15(3–4), 260–269. https://doi.org/10.1016/0009-2509(61)85030-6
Bozzolo, D., & Pamini, R. (1986). Simulation of rock falls down a valley side. Acta Mechanica, 63(1–4), 113–130. https://doi.org/10.1007/bf01182543
Brune, J. N. (1996). Precariously balanced rocks and ground-motion maps for Southern California. Bulletin of the Seismological Society of America, 86(1A), 43–54. https://doi.org/10.1785/bssa08601a0043
Brune, J. N., Anooshehpoor, A., Purvance, M. D., & Brune, R. J. (2006). Band of precariously balanced rocks between the Elsinore and San Jacinto, California, fault zones: Constraints on ground motion for large earthquakes. Geology, 34(3), 137. https://doi.org/10.1130/g22127.1
Byerlee, J. (1978). Friction of Rocks. In Rock Friction and Earthquake Prediction (pp. 615–626). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7182-2_4
Çaktı, E., Saygılı, Ö., Lemos, J. V., & Oliveira, C. S. (2016). Discrete element modeling of a scaled masonry structure and its validation. Engineering Structures, 126, 224–236. https://doi.org/10.1016/j.engstruct.2016.07.044
Catanoso, D., Stucky, T., Case, J., & Rogg, A. (2020, March). Analysis of Sample Acquisition Dynamics Using Discrete Element Method. 2020 IEEE Aerospace Conference. https://doi.org/10.1109/aero47225.2020.9172431
Caviezel, A., Lu, G., Demmel, S., Ringenbach, A., Bühler, Y., Christen, M., & Bartelt, P. (2019). RAMMS:: ROCKFALL-a modern 3-dimensional simulation tool calibrated on real world data. 53rd US Rock Mechanics/Geomechanics Symposium.
Chen, Z. (2022). Automated Geoscience with Robotics and Machine Learning: A New Hammer of Rock Detection, Mapping, and Dynamics Analysis [PhD Dissertation]. Arizona State University.
Chen, Z. (2023). Virtual Shake Robot Software. Zenodo. https://doi.org/10.5281/ZENODO.8422820
Chen, Z., Arrowsmith, J. R., & Das, J. (2024, in prep). Target-oriented UAV Mapping of Precariously Balanced Rocks for Seismic Studies. Journal of Field Robotics.
Chen, Z., Keating, D., Shethwala, Y., Saravanakumaran, A. A. P., Arrowsmith, R., Madugo, C., Kottke, A., & Das, J. (2022). Shakebot: A Low-cost, Open-source Shake Table for Ground Motion Seismic Studies. ArXiv Preprint ArXiv:2212.10763.
Chiama, K., Chauvin, B., Plesch, A., Moss, R., & Shaw, J. H. (2023). Geomechanical Modeling of Ground Surface Deformation Associated with Thrust and Reverse-Fault Earthquakes: A Distinct Element Approach. Bulletin of the Seismological Society of America, 113(4), 1702–1723. https://doi.org/10.1785/0120220264
Chuhan, Z., Pekau, O. A., Feng, J., & Guanglun, W. (1997). Application of distinct element method in dynamic analysis of high rock slopes and blocky structures. Soil Dynamics and Earthquake Engineering, 16(6), 385–394. https://doi.org/10.1016/s0267-7261(97)00012-2
Cleary, P. W. (2015). A multiscale method for including fine particle effects in DEM models of grinding mills. Minerals Engineering, 84, 88–99. https://doi.org/10.1016/j.mineng.2015.10.008
Coetzee, C. J., & Lombard, S. G. (2011). Discrete element method modelling of a centrifugal fertiliser spreader. Biosystems Engineering, 109(4), 308–325. https://doi.org/10.1016/j.biosystemseng.2011.04.011
Coumans, E., & Bai, Y. (2016). PyBullet, a Python module for physics simulation for games, robotics and machine learning. http://pybullet.org. http://pybullet.org
Cundall, P. A. (1988). Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3), 107–116. https://doi.org/10.1016/0148-9062(88)92293-0
Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
Dorren, L. K. A. (2003). A review of rockfall mechanics and modelling approaches. Progress in Physical Geography: Earth and Environment, 27(1), 69–87. https://doi.org/10.1191/0309133303pp359ra
Drumwright, E., Hsu, J., Koenig, N., & Shell, D. (2010). Extending Open Dynamics Engine for Robotics Simulation. In Lecture Notes in Computer Science (pp. 38–50). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-17319-6_7
Erez, T., Tassa, Y., & Todorov, E. (2015, May). Simulation tools for model-based robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. 2015 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/icra.2015.7139807
Erleben, K., Sporring, J., Henriksen, K., & Dohlmann, H. (2005). Physics-based animation. Charles River Media Hingham.
Garcia, F. E., & Bray, J. D. (2018). Distinct element simulations of earthquake fault rupture through materials of varying density. Soils and Foundations, 58(4), 986–1000. https://doi.org/10.1016/j.sandf.2018.05.009
Garcia, F. E., & Bray, J. D. (2022). Discrete element analysis of earthquake surface fault rupture through layered media. Soil Dynamics and Earthquake Engineering, 152, 107021. https://doi.org/10.1016/j.soildyn.2021.107021
Garcia-Hernandez, A., Wan, L., Dopazo-Hilario, S., Chiarelli, A., & Dawson, A. (2021). Generation of virtual asphalt concrete in a physics engine. Construction and Building Materials, 286, 122972. https://doi.org/10.1016/j.conbuildmat.2021.122972
Gascuel, J.-D., Cani-Gascuel, M.-P., Desbrun, M., Leroi, E., & Mirgon, C. (1999). Simulating Landslides for Natural Disaster Prevention. In Computer Animation and Simulation ’98 (pp. 1–12). Springer Vienna. https://doi.org/10.1007/978-3-7091-6375-7_1
Guzzetti, F., Crosta, G., Detti, R., & Agliardi, F. (2002). STONE: a computer program for the three-dimensional simulation of rock-falls. Computers & Geosciences, 28(9), 1079–1093. https://doi.org/10.1016/s0098-3004(02)00025-0
Haddad, D. E., Zielke, O., Arrowsmith, J. R., Purvance, M. D., Haddad, A. G., & Landgraf, A. (2012). Estimating two-dimensional static stabilities and geomorphic settings of precariously balanced rocks from unconstrained digital photographs. Geosphere, 8(5), 1042–1053.
Hao, W., Jian, H., Xiang, H., Jingqing, Y., Zicheng, H., & Ying, H. (2021). A New Rockfall Simulation Tool based on Unity 3D. IOP Conference Series: Earth and Environmental Science, 861(3), 32059. https://doi.org/10.1088/1755-1315/861/3/032059
Haron, A., & Ismail, K. A. (2012). Coefficient of restitution of sports balls: A normal drop test. IOP Conference Series: Materials Science and Engineering, 36, 12038. https://doi.org/10.1088/1757-899x/36/1/012038
He, H., Zheng, J., Chen, Y., & Ning, Y. (2021). Physics engine based simulation of shear behavior of granular soils using hard and soft contact models. Journal of Computational Science, 56, 101504. https://doi.org/10.1016/j.jocs.2021.101504
He, H., Zheng, J., & Li, Z. (2020, February). Comparing Realistic Particle Simulation Using Discrete Element Method and Physics Engine. Geo-Congress 2020. https://doi.org/10.1061/9780784482803.050
Housner, G. W. (1963). The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 53(2), 403–417. https://doi.org/10.1785/bssa0530020403
Ishiyama, Y. (1982). Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthquake Engineering & Structural Dynamics, 10(5), 635–650. https://doi.org/10.1002/eqe.4290100502
Itasca Consulting Group, Inc. (2020). 3DEC — Three-Dimensional Distinct Element Code. https://www.itascacg.com/software/3dec. https://www.itascacg.com/software/3dec
Izadi, E., & Bezuijen, A. (2014). Simulation of granular soil behaviour using the Bullet physics library. In Geomechanics from Micro to Macro (pp. 1565–1570). CRC Press. https://doi.org/10.1201/b17395-285
Kim, J.-C., Jung, H., Kim, S., & Chung, K. (2015). Slope Based Intelligent 3D Disaster Simulation Using Physics Engine. Wireless Personal Communications, 86(1), 183–199. https://doi.org/10.1007/s11277-015-2788-1
Kirkpatrick, P. (1927). Seismic measurements by the overthrow of columns. Bulletin of the Seismological Society of America, 17(2), 95–109. https://doi.org/10.1785/bssa0170020095
Kobayashi, Y., Harp, E. L., & Kagawa, T. (1990). Simulation of rockfalls triggered by earthquakes. Rock Mechanics and Rock Engineering, 23(1), 1–20. https://doi.org/10.1007/bf01020418
Koenig, N., & Howard, A. (n.d.). Design and use paradigms for gazebo, an open-source multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). https://doi.org/10.1109/iros.2004.1389727
Komaragiri, S., Gigliotti, A., & Bhasin, A. (2021). Calibration and extended validation of a virtual asphalt mixture compaction model using bullet physics engine. Construction and Building Materials, 311, 125257. https://doi.org/10.1016/j.conbuildmat.2021.125257
Konstantinidis, D. A. (2008). Experimental and analytical studies on the seismic response of freestanding and anchored building contents [PhD Dissertation]. University of California, Berkeley.
Lan, H., Derek Martin, C., & Lim, C. H. (2007). RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers & Geosciences, 33(2), 262–279. https://doi.org/10.1016/j.cageo.2006.05.013
Leine, R. I., Schweizer, A., Christen, M., Glover, J., Bartelt, P., & Gerber, W. (2013). Simulation of rockfall trajectories with consideration of rock shape. Multibody System Dynamics, 32(2), 241–271. https://doi.org/10.1007/s11044-013-9393-4
Lozos, J. C., Harris, R. A., Murray, J. R., & Lienkaemper, J. J. (2015). Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California. Geophysical Research Letters, 42(11), 4343–4349. https://doi.org/10.1002/2015gl063802
Lu, G., Third, J. R., & Müller, C. R. (2015). Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chemical Engineering Science, 127, 425–465. https://doi.org/10.1016/j.ces.2014.11.050
Ma, Q. T., Parshttam, S., & Montalla, M. (2018, June 25). Modelling rocking behaviour using physics engine simulation. Eleventh U.S. National Conference on Earthquake Engineering.
Martin, C. L., Bouvard, D., & Shima, S. (2003). Study of particle rearrangement during powder compaction by the Discrete Element Method. Journal of the Mechanics and Physics of Solids, 51(4), 667–693. https://doi.org/10.1016/s0022-5096(02)00101-1
Mehrotra, A., & DeJong, M. (2017). The Performance of Slender Monuments during the 2015 Gorkha, Nepal, Earthquake. Earthquake Spectra, 33, 321–343. https://doi.org/10.1193/120616eqs223m
Millington, I. (2007). Game Physics Engine Development. CRC Press. https://doi.org/10.1201/9781482267327
Milne, J., & Omori, F. (1893). On the overturning and fracturing of Brick and other Columns by horizontally applied Motion. Seismological Journal of Japan, 17(2), 95–109.
Mirtich, B., & Canny, J. (1995). Impulse-based simulation of rigid bodies. Proceedings of the 1995 Symposium on Interactive 3D Graphics - SI3D ’95. https://doi.org/10.1145/199404.199436
Papantonopoulos, C., Psycharis, I. N., Papastamatiou, D. Y., Lemos, J. V., & Mouzakis, H. P. (2002). Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthquake Engineering & Structural Dynamics, 31(9), 1699–1717. https://doi.org/10.1002/eqe.185
Pezo, L., Jovanović, A., Pezo, M., Čolović, R., & Lončar, B. (2015). Modified screw conveyor-mixers – Discrete element modeling approach. Advanced Powder Technology, 26(5), 1391–1399. https://doi.org/10.1016/j.apt.2015.07.016
Pompei, A., Scalia, A., & Sumbatyan, M. A. (1998). Dynamics of Rigid Block due to Horizontal Ground Motion. Journal of Engineering Mechanics, 124(7), 713–717. https://doi.org/10.1061/(asce)0733-9399(1998)124:7(713)
Purvance, M. D. (2005). Overturning of slender blocks: Numerical investigation and application to precariously balanced rocks in southern California [PhD Dissertation]. University of Nevada, Reno.
Purvance, M. D., Anooshehpoor, A., & Brune, J. N. (2008). Freestanding block overturning fragilities: Numerical simulation and experimental validation. Earthquake Engineering & Structural Dynamics, 37(5), 791–808. https://doi.org/10.1002/eqe.789
Purvance, M. D., Anooshehpoor, A., & Brune, J. N. (2012). Fragilities for Precarious Rocks at Yucca Mountain (p. PEER Report 2012-06) [Techreport]. Pacific Earthquake Engineering Research Center.
Pytlos, M., Gilbert, M., & Smith, C. C. (2015). Modelling granular soil behaviour using a physics engine. Géotechnique Letters, 5(4), 243–249. https://doi.org/10.1680/jgele.15.00067
Rood, A. H., Rood, D. H., Stirling, M. W., Madugo, C. M., Abrahamson, N. A., Wilcken, K. M., Gonzalez, T., Kottke, A., Whittaker, A. C., Page, W. D., & Stafford, P. J. (2020). Earthquake Hazard Uncertainties Improved Using Precariously Balanced Rocks. AGU Advances, 1(4). https://doi.org/10.1029/2020av000182
Rood, Anna H., Rood, D. H., Balco, G., Stafford, P. J., Ludwig, L. G., Kendrick, K. J., & Wilcken, K. M. (2022). Validation of earthquake ground-motion models in southern California, USA, using precariously balanced rocks. GSA Bulletin. https://doi.org/10.1130/b36484.1
Saifullah, M. K., & Wittich, C. E. (2021). Seismic Response of Two Freestanding Statue-Pedestal Systems during the 2014 South Napa Earthquake. Journal of Earthquake Engineering, 26(10), 5086–5108. https://doi.org/10.1080/13632469.2020.1859004
Saifullah, M., & Wittich, C. (2022). Fragility of Precariously Balanced Rocks: Shake Table Testing and Numerical Modeling for a Sample Granitic Rock. 12th National Conference on Earthquake Engineering.
Scalia, A., & Sumbatyan, M. A. (1996). Slide Rotation of Rigid Bodies Subjected to a Horizontal Ground Motion. Earthquake Engineering & Structural Dynamics, 25(10), 1139–1149. https://doi.org/10.1002/(sici)1096-9845(199610)25:10<1139::aid-eqe606>3.0.co;2-s
SCEC researchers. (2022). SCEC Precariously Balanced Rocks Project: PBR Data Archive. https://www.scec.org/project/pbr
Shenton, I., & Harry, W. (1996). Criteria for Initiation of Slide, Rock, and Slide-Rock Rigid-Body Modes. Journal of Engineering Mechanics, 122(7), 690–693. https://doi.org/10.1061/(asce)0733-9399(1996)122:7(690)
Shi, B., Anooshehpoor, A., Zeng, Y., & Brune, J. N. (1996). Rocking and overturning of precariously balanced rocks by earthquakes. Bulletin of the Seismological Society of America, 86(5), 1364–1371. https://doi.org/10.1785/bssa0860051364
Stanford Artificial Intelligence Laboratory. (2018). Robotic Operating System (ROS Melodic Morenia) [Computer software]. https://www.ros.org
Sun, C., Nakashima, H., Shimizu, H., Miyasaka, J., & Ohdoi, K. (2019). Physics engine application to overturning dynamics analysis on banks and uniform slopes for an agricultural tractor with a rollover protective structure. Biosystems Engineering, 185, 150–160. https://doi.org/10.1016/j.biosystemseng.2018.06.005
Toson, P., & Khinast, J. G. (2017). Impulse-based dynamics for studying quasi-static granular flows: Application to hopper emptying of non-spherical particles. Powder Technology, 313, 353–360. https://doi.org/10.1016/j.powtec.2017.03.016
van den Bergen, G. (2003). Collision Detection in Interactive 3D Environments. CRC Press. https://doi.org/10.1201/9781482297997
Veeraraghavan, S. (2015). Toppling analysis of precariously balanced rocks [PhD Dissertation]. California Institute of Technology.
Veeraraghavan, Swetha, Hall, J. F., & Krishnan, S. (2020). Modeling the Rocking and Sliding of Free-Standing Objects Using Rigid Body Dynamics. Journal of Engineering Mechanics, 146(6). https://doi.org/10.1061/(asce)em.1943-7889.0001739
Veeraraghavan, Swetha, Hudnut, K. W., & Krishnan, S. (2016). Toppling Analysis of the Echo Cliffs Precariously Balanced Rock. Bulletin of the Seismological Society of America, 107(1), 72–84. https://doi.org/10.1785/0120160169
Williams, J., Lu, Y., & Trinkle, J. C. (2014, August). A Complementarity Based Contact Model for Geometrically Accurate Treatment of Polytopes in Simulation. Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. https://doi.org/10.1115/detc2014-35231
Wittich, C. E., & Hutchinson, T. C. (2017). Rocking bodies with arbitrary interface defects: Analytical development and experimental verification. Earthquake Engineering & Structural Dynamics, 47(1), 69–85. https://doi.org/10.1002/eqe.2937
Xu, Z., Lu, X., Guan, H., Han, B., & Ren, A. (2013). Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine. Natural Hazards, 71(3), 1679–1693. https://doi.org/10.1007/s11069-013-0972-8
Yim, C., Chopra, A. K., & Penzien, J. (1980). Rocking response of rigid blocks to earthquakes. Earthquake Engineering & Structural Dynamics, 8(6), 565–587. https://doi.org/10.1002/eqe.4290080606
Zhu, F., & Zhao, J. (2019). Modeling continuous grain crushing in granular media: A hybrid peridynamics and physics engine approach. Computer Methods in Applied Mechanics and Engineering, 348, 334–355. https://doi.org/10.1016/j.cma.2019.01.017
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zhiang Chen, Ramón Arrowsmith, Jnaneshwar Das, Christine Wittich, Chris Madugo, Albert Kottke
This work is licensed under a Creative Commons Attribution 4.0 International License.