The First Network of Ocean Bottom Seismometers in the Red Sea to Investigate the Zabargad Fracture Zone

Authors

  • Laura Parisi King Abdullah University of Science and Technology https://orcid.org/0000-0002-9430-1351
  • Nico Augustin GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany https://orcid.org/0000-0003-1905-4773
  • Daniele Trippanera Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
  • Henning Kirk Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
  • Anke Dannowski GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; K.U.M.-Kiel GmbH, Kiel, Germany
  • Rémi Matrau PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia https://orcid.org/0000-0002-8850-7791
  • Margherita Fittipaldi PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Adriano Nobile PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia https://orcid.org/0000-0001-9528-7611
  • Olaf Zielke PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Eduardo Valero Cano PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Guus Hoogewerf PSE Division, King Abdullah University of Science and Technology
  • Theodoros Aspiotis PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia https://orcid.org/0000-0002-0247-7318
  • Sofia Manzo-Vega PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Armando Espindola Carmona PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Alejandra Barreto PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Marlin Juchem PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Cahli Suhendi PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia https://orcid.org/0000-0001-6572-2651
  • Mechita Schmidt-Aursch Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany https://orcid.org/0000-0002-2393-4514
  • P. Martin Mai PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Sigurjón Jónsson PSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia https://orcid.org/0000-0001-5378-7079

DOI:

https://doi.org/10.26443/seismica.v3i1.729

Keywords:

ocean bottom seismometer, Passive Seismology, Rift margins, Red Sea

Abstract

In the last decades, the slow-spreading Red Sea rift has been the objective of several geophysical investigations to study the extension of the oceanic crust, the thickness of the sedimentary cover, and the formation of transform faults. However, local seismology datasets are still lacking despite their potential to contribute to the understanding of the tectonic evolution of the Red Sea. The Zabargad Fracture Zone is located in the Northern Red Sea and significantly offsets the rift axis to the East. Thus, it is considered a key tectonic element to understand better the formation of the Red Sea rift. To fill the gap in the dataset availability, we deployed the first passive seismic network in the Red Sea, within the Zabargad Fracture Zone. This network included 12 Lobster OBSs from the DEPAS pool, 2 OBS developed and deployed by Fugro, and 4 portable seismic land stations deployed on islands and onshore on the Saudi Arabian coast. Our data-quality analysis confirms that the head-buoy cable free to strum, as well as other additional elements of the DEPAS OBSs, generate seismic noise at frequencies $>$ 10 Hz. However, the Fugro OBSs show high-frequency disturbances even if they lack vibrating elements. Comparison between land and OBS stations reveals that noise between 1 and 10 Hz is due to ocean-generated seismic noise, and not due to resonance of the OBS elements. We also found that waveforms of teleseismic earthquakes recorded by the Fugro OBSs, islands, and onshore stations have comparable signal-to-noise ratios. Instead, differences in signal-to-noise ratio for local earthquakes are affected more by site and path effects than instrument settings.

References

Abdelwahed, M. F., Alqahtani, F. A., El-Masry, N. N., & El-Hady, S. M. (2023). Insights into the relationship between the Red Sea rift-related structures and the seismo-volcanic activity in Harrat Lunayyir, Saudi Arabia: A seismic tomography study. Journal of Asian Earth Sciences, 241, 105484. https://doi.org/10.1016/j.jseaes.2022.105484

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung et al., . (2017). DEPAS (Deutscher Geräte-Pool für amphibische Seismologie): German Instrument Pool for Amphibian Seismology. Journal of Large-Scale Research Facilities, 3(A122). https://doi.org/10.17815/jlsrf-3-165

Almalki, K. A., Betts, P. G., & Ailleres, L. (2015). The Red Sea – 50years of geological and geophysical research. Earth-Science Reviews, 147, 109–140. https://doi.org/10.1016/j.earscirev.2015.05.002

Ardhuin, F. (2018). Large-Scale Forces Under Surface Gravity Waves at a Wavy Bottom: A Mechanism for the Generation of Primary Microseisms. Geophysical Research Letters, 45(16), 8173–8181. https://doi.org/10.1029/2018GL078855

Ardhuin, F., Rawat, A., & Aucan, J. (2014). A numerical model for free infragravity waves: Definition and validation at regional and global scales. Ocean Modelling, 77, 20–32. https://doi.org/10.1016/j.ocemod.2014.02.006

Augustin, N., van der Zwan, F. M., Devey, C. W., & Brandsdóttir, B. (2021). 13 million years of seafloor spreading throughout the Red Sea Basin [Article]. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22586-2

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Blanck, H., Jousset, P., Hersir, G. P., Ágústsson, K., & Flóvenz, Ó. G. (2020). Analysis of 2014–2015 on- and off-shore passive seismic data on the Reykjanes Peninsula, SW Iceland. Journal of Volcanology and Geothermal Research, 391, 106548. https://doi.org/10.1016/j.jvolgeores.2019.02.001

Braunmiller, J., Nabelek, J., & Ghods, A. (2020). Sensor Orientation of Iranian Broadband Seismic Stations from P‐Wave Particle Motion. Seismological Research Letters, 91(3), 1660–1671. https://doi.org/10.1785/0220200019

Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005a). Mid-ocean microseisms. Geochemistry, Geophysics, Geosystems, 6(4). https://doi.org/10.1029/2004GC000768

Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005b). Mid-ocean microseisms. Geochemistry, Geophysics, Geosystems, 6(4). https://doi.org/10.1029/2004GC000768

Calderoni, G., Di Giovambattista, R., Pezzo, G., Albano, M., Atzori, S., Tolomei, C., & Ventura, G. (2019). Seismic and Geodetic Evidences of a Hydrothermal Source in the Md 4.0, 2017, Ischia Earthquake (Italy). Journal of Geophysical Research: Solid Earth, 124(5), 5014–5029. https://doi.org/10.1029/2018JB016431

Carchedi, C. J. W., Gaherty, J. B., Webb, S. C., & Shillington, D. J. (2022). Investigating Short‐Period Lake‐Generated Microseisms Using a Broadband Array of Onshore and Lake‐Bottom Seismometers. Seismological Research Letters, 93(3), 1585–1600. https://doi.org/10.1785/0220210155

Chouet, B. A. (1996). Long-period volcano seismicity: Its source and use in eruption forecasting. Nature, 380(6572), 309–316. https://doi.org/10.1038/380309a0

Coleman, R. G., & McGuire, A. V. (1988). Magma systems related to the Red Sea opening. Tectonophysics, 150(1), 77–100. https://doi.org/10.1016/0040-1951(88)90296-X

Corela, C., Loureiro, A., Duarte, J. L., Matias, L., Rebelo, T., & Bartolomeu, T. (2022). The OBS noise due to deep ocean currents. Natural Hazards and Earth System Sciences Discussions, 2022, 1–21. https://doi.org/10.5194/nhess-2022-196

Costa, M., Fumagalli, M., & Cesario, A. (2019). Review of Cetaceans in the Red Sea. In N. M. A. Rasul & I. C. F. Stewart (Eds.), Oceanographic and Biological Aspects of the Red Sea (pp. 281–303). Springer International Publishing. https://doi.org/10.1007/978-3-319-99417-8_16

Crane, K., & Bonatti, E. (1987). The role of fracture zones during early Red Sea rifting: structural analysis using Space Shuttle radar and LANDSAT imagery. [Article]. Journal - Geological Society (London), 144(3), 407–420. https://doi.org/10.1144/gsjgs.144.3.0407

Crawford, W. C., & Webb, S. C. (2000). Identifying and Removing Tilt Noise from Low-Frequency (<0.1 Hz) Seafloor Vertical Seismic Data. Bulletin of the Seismological Society of America, 90(4), 952–963. https://doi.org/10.1785/0119990121

D’Alessandro, A., Mangano, G., D’Anna, G., & Luzio, D. (2013). Waveforms clustering and single-station location of microearthquake multiplets recorded in the northern sicilian offshore region [Article]. Geophysical Journal International, 194(3), 1789–1809. https://doi.org/10.1093/gji/ggt192

Delaunay, A., Baby, G., Fedorik, J., Afifi, A. M., Tapponnier, P., & Dyment, J. (2023). Structure and morphology of the Red Sea, from the mid-ocean ridge to the ocean-continent boundary. Tectonophysics, 849, 229728. https://doi.org/10.1016/j.tecto.2023.229728

Dixon, T. H., Stern, R. J., & Hussein, I. M. (1987). Control of Red Sea rift geometry by Precambrian structures [Article]. Tectonics, 6(5), 551–571. https://doi.org/10.1029/TC006i005p00551

Doran, A. K., & Laske, G. (2017). Ocean‐Bottom Seismometer Instrument Orientations via Automated Rayleigh‐Wave Arrival‐Angle Measurements. Bulletin of the Seismological Society of America, 107(2), 691–708. https://doi.org/10.1785/0120160165

El Khrepy, S., Koulakov, I., Gerya, T., Al-Arifi, N., Alajmi, M. S., & Qadrouh, A. N. (2021). Transition from continental rifting to oceanic spreading in the northern Red Sea area [Article]. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84952-w

El-Isa, Z. H. (2015). Seismicity and seismotectonics of the Red Sea Region [Article]. Arabian Journal of Geosciences, 8(10), 8505–8525. https://doi.org/10.1007/s12517-015-1819-2

Essing, D., Schlindwein, V., Schmidt‐Aursch, M. C., Hadziioannou, C., & Stähler, S. C. (2021a). Characteristics of Current‐Induced Harmonic Tremor Signals in Ocean‐Bottom Seismometer Records. Seismological Research Letters, 92(5), 3100–3112. https://doi.org/10.1785/0220200397

Essing, D., Schlindwein, V., Schmidt‐Aursch, M. C., Hadziioannou, C., & Stähler, S. C. (2021b). Characteristics of Current‐Induced Harmonic Tremor Signals in Ocean‐Bottom Seismometer Records. Seismological Research Letters, 92(5), 3100–3112. https://doi.org/10.1785/0220200397

Ewing, M., & Vine, A. (1938). Deep-sea measurements without wires or cables. Eos, Transactions American Geophysical Union, 19(1), 248–251.

Fittipaldi, M., Trippanera, D., Augustin, N., van der Zwan, F. M., Petrovic, A., Metz, D., & Jónsson, S. (2022). Geomorphology of the Mabahiss Deep area, Northern Red Sea: New insights from high-resolution multibeam bathymetric mapping. EGU General Assembly 2022, Vienna.

Fittipaldi, M., Trippanera, D., Augustin, N., van der Zwan, L., Parisi, & Jónsson, S. (2024). Mabahiss Deep in the Northern Red Sea: New geomorphological insights from high-resolution bathymetric mapping . Submitted to Geomorphology.

Geissler, W. H., Matias, L., Stich, D., Carrilho, F., Jokat, W., Monna, S., IbenBrahim, A., Mancilla, F., Gutscher, M.-A., Sallarès, V., & Zitellini, N. (2010). Focal mechanisms for sub-crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment. Geophysical Research Letters, 37(18). https://doi.org/10.1029/2010GL044289

Gualtieri, L., Stutzmann, E., Capdeville, Y., Ardhuin, F., Schimmel, M., Mangeney, A., & Morelli, A. (2013). Modelling secondary microseismic noise by normal mode summation. Geophysical Journal International, 193(3), 1732–1745. https://doi.org/10.1093/gji/ggt090

Guo, Z., Huang, Y., & Aydin, A. (2021). Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation. Journal of Earth Science, 32(5), 1190–1201. https://doi.org/10.1007/s12583-021-1426-y

Hamieh, A., Rowaihy, F., Al-Juaied, M., Abo-Khatwa, A. N., Afifi, A. M., & Hoteit, H. (2022). Quantification and analysis of CO2 footprint from industrial facilities in Saudi Arabia. Energy Conversion and Management: X, 16, 100299. https://doi.org/10.1016/j.ecmx.2022.100299

Hannemann, K., Krüger, F., Dahm, T., & Lange, D. (2016). Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor. Geophysical Journal International, 207(3), 1796–1817. https://doi.org/10.1093/gji/ggw342

Harrington, R. M., & Brodsky, E. E. (2007). Volcanic hybrid earthquakes that are brittle-failure events. Geophysical Research Letters, 34(6). https://doi.org/10.1029/2006GL028714

Heleno, S. I. N., Faria, B. V. E., Bandomo, Z., & Fonseca, J. F. B. D. (2006). Observations of high-frequency harmonic tremor in Fogo, Cape Verde Islands. Journal of Volcanology and Geothermal Research, 158(3), 361–379. https://doi.org/10.1016/j.jvolgeores.2006.06.018

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47

Hilmo, R., & Wilcock, W. S. D. (2020). Physical Sources of High-Frequency Seismic Noise on Cascadia Initiative Ocean Bottom Seismometers. Geochemistry, Geophysics, Geosystems, 21(10), e2020GC009085. https://doi.org/10.1029/2020GC009085

Hsu, S.-K., Wang, S.-Y., Liao, Y.-C., Yang, T. F., Jan, S., Lin, J.-Y., & Chen, S.-C. (2013). Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters, 369–370, 98–107. https://doi.org/10.1016/j.epsl.2013.03.013

Janiszewski, H. A., Eilon, Z., Russell, J. B., Brunsvik, B., Gaherty, J. B., Mosher, S. G., Hawley, W. B., & Coats, S. (2022). Broad-band ocean bottom seismometer noise properties. Geophysical Journal International, 233(1), 297–315. https://doi.org/10.1093/gji/ggac450

Janiszewski, H. A., Gaherty, J. B., Abers, G. A., Gao, H., & Eilon, Z. C. (2019). Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone. Geophysical Journal International, 217(3), 1929–1948. https://doi.org/10.1093/gji/ggz051

Kennet, B. L. N. (1991). IASPEI 1991 SEISMOLOGICAL TABLES. Terra Nova, 3(2), 122–122. https://doi.org/10.1111/j.1365-3121.1991.tb00863.x

Kim, T., Park, J., Ko, J., Oh, S., Witek, M., Chang, S., Lee, S., Kim, Y., Utada, H., Kawakatsu, H., Shiobara, H., Isse, T., Takeuchi, N., & Sugioka, H. (2023). Characteristics of Background Noise in the Oldest‐1 Array Deployed on the Oldest Part of the Pacific Plate. Bulletin of the Seismological Society of America, 113(4), 1772–1793. https://doi.org/10.1785/0120220215

Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. USGS, Open-File Report 2002-171.

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003

Lazzaro, G., Longo, M., Caruso, C., S., Sciré Scappuzzo, Semprebello, A., Manganello, P., Traina, D., & Italiano, F. (2023). The acoustic signature of shallow hydrothermal brine of Panarea: source mechanism recognition and behaviour changes over mid-term observations. EGU General Assembly 2023, Vienna.

Leva, C., Rümpker, G., & Wölbern, I. (2022). Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde. Solid Earth, 13(8), 1243–1258. https://doi.org/10.5194/se-13-1243-2022

Ligi, M., Bonatti, E., Bosworth, W., Cai, Y., Cipriani, A., Palmiotto, C., Ronca, S., & Seyler, M. (2018). Birth of an ocean in the Red Sea: Oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Research, 54, 150–160. https://doi.org/10.1016/j.gr.2017.11.002

Marshak, S., Bonatti, E., Brueckner, H., & Paulsen, T. (1992). Fracture-zone tectonics at Zabargad Island, Red Sea (Egypt). Tectonophysics, 216(3), 379–385. https://doi.org/10.1016/0040-1951(92)90407-W

McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001

Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310

Mitchell, N. C., Ligi, M., Ferrante, V., Bonatti, E., & Rutter, E. (2010). Submarine salt flows in the central Red Sea. GSA Bulletin, 122(5–6), 701–713. https://doi.org/10.1130/B26518.1

Molnar, N., Cruden, A., & Betts, P. (2020). The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments. Earth and Planetary Science Letters, 544, 116377. https://doi.org/10.1016/j.epsl.2020.116377

Naranjo, D., Parisi, L., Jónsson, S., Jousset, P., Werthmüller, D., & Weemstra, C. (2024). Ocean Bottom Seismometer Clock Correction using Ambient Seismic Noise. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.367

Neuberg, J., Luckett, R., Baptie, B., & Olsen, K. (2000). Models of tremor and low-frequency earthquake swarms on Montserrat. Journal of Volcanology and Geothermal Research, 101(1), 83–104. https://doi.org/10.1016/S0377-0273(00)00169-4

Neuberg, J. W., Tuffen, H., Collier, L., Green, D., Powell, T., & Dingwell, D. (2006). The trigger mechanism of low-frequency earthquakes on Montserrat. Journal of Volcanology and Geothermal Research, 153(1), 37–50. https://doi.org/10.1016/j.jvolgeores.2005.08.008

Núñez-Cornú, F. J., Córdoba Barba, D., Bandy, W., Dañobeitia, J. J., Alarcón Salazar, J. E., Núñez, D., & Suárez Plascencia, C. (2021). The TsuJal Amphibious Seismic Network: A Passive-Source Seismic Experiment in Western Mexico [Article]. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.738515

Okal, E. A. (2008). The generation of T waves by earthquakes (R. Dmowska, Ed.; Vol. 49, pp. 1–65). Elsevier. https://doi.org/10.1016/S0065-2687(07)49001-X

Parisi, L., Stanistreet, I., Njau, J., Schick, K., Toth, N., & Mai, P. M. (2020). Seismological Investigations in the Olduvai Basin and Ngorongoro Volcanic Highlands (Western Flank of the North Tanzanian Divergence). Seismological Research Letters, 91(6), 3286–3303. https://doi.org/10.1785/0220200111

Peterson, J. (1993). Observations and Modeling of Seismic Background Noise. U.S. Geological Survey Open-File Report , Albuquerque, N.M, 93–3222. https://doi.org/10.1016/j.ocemod.2014.02.006

Podolskiy, E. A., Murai, Y., Kanna, N., & Sugiyama, S. (2021a). Ocean-bottom and surface seismometers reveal continuous glacial tremor and slip. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24142-4

Podolskiy, E. A., Murai, Y., Kanna, N., & Sugiyama, S. (2021b). Ocean-bottom and surface seismometers reveal continuous glacial tremor and slip [Article]. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24142-4

Ramakrushana Reddy, T., Dewangan, P., Arya, L., Singha, P., & Kamesh Raju, K. A. (2020). Tidal Triggering of the Harmonic Noise in Ocean‐Bottom Seismometers. Seismological Research Letters, 91(2A), 803–813. https://doi.org/10.1785/0220190080

Rehman, F., Alamri, A. M., El-Hady, S. M., Harbi, H. M., & Atef, A. H. (2017). Seismic hazard assessment and rheological implications: a case study selected for cities of Saudi Arabia along the eastern coast of Red Sea [Article]. Arabian Journal of Geosciences, 10(24). https://doi.org/10.1007/s12517-017-3325-1

Schettino, A., Macchiavelli, C., Pierantoni, P. P., Zanoni, D., & Rasul, N. (2016). Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophysical Journal International, 207(1), 457–480. https://doi.org/10.1093/gji/ggw280

Schlaphorst, D., Rychert, C. A., Harmon, N., Hicks, S. P., Bogiatzis, P., Kendall, J.-M., & Abercrombie, R. E. (2023). Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations. Geophysical Journal International. https://doi.org/10.1093/gji/ggad124

Schlindwein, V., Krüger, F., & Schmidt-Aursch, M. (2018). Project KNIPAS: DEPAS ocean-bottom seismometer operations in the Greenland Sea in 2016-2017 [Data set]. PANGAEA. https://doi.org/10.1594/PANGAEA.896635

Schmidt-Aursch, M. C., & Crawford, W. C. (2021). Ocean-Bottom Seismometer. In M. Beer, I. A. Kougioumtzoglou, E. Patelli, & I. S.-K. Au (Eds.), Encyclopedia of Earthquake Engineering (pp. 1–16). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_173-1

Sgroi, T., Polonia, A., Beranzoli, L., Billi, A., Bosman, A., Costanza, A., Cuffaro, M., D’Anna, G., De Caro, M., Di Nezza, M., Fertitta, G., Frugoni, F., Gasperini, L., Monna, S., Montuori, C., Petracchini, L., Petricca, P., Pinzi, S., Ursino, A., & Doglioni, C. (2021). One Year of Seismicity Recorded Through Ocean Bottom Seismometers Illuminates Active Tectonic Structures in the Ionian Sea (Central Mediterranean) [Article]. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.661311

Shanmugam, G. (2021). Chapter 8 - Bottom currents. In G. Shanmugam (Ed.), Mass Transport, Gravity Flows, and Bottom Currents (pp. 309–375). Elsevier. https://doi.org/10.1016/B978-0-12-822576-9.00008-4

Stähler, S.C., Sigloch, K., Hosseini, K., Crawford, W. C., Barruol, G., Schmidt-Aursch, M. C., Tsekhmistrenko, M., Scholz, J.-R., Mazzullo, A., & Deen, M. (2016). Performance report of the RHUM-RUM ocean bottom seismometer network around la Réunion, western Indian Ocean. Advances in Geosciences, 41, 43–63. https://doi.org/10.5194/adgeo-41-43-2016

Stähler, Simon C., Schmidt‐Aursch, M. C., Hein, G., & Mars, R. (2018). A Self‐Noise Model for the German DEPAS OBS Pool. Seismological Research Letters, 89(5), 1838–1845. https://doi.org/10.1785/0220180056

Stephen, R. A., Spiess, F. N., Collins, J. A., Hildebrand, J. A., Orcutt, J. A., Peal, K. R., Vernon, F. L., & Wooding, F. B. (2003). Ocean Seismic Network Pilot Experiment. Geochemistry, Geophysics, Geosystems, 4(10). https://doi.org/10.1029/2002GC000485

Stutzmann, E., Roult, G., & Astiz, L. (2000). GEOSCOPE Station Noise Levels. Bulletin of the Seismological Society of America, 90(3), 690–701. https://doi.org/10.1785/0119990025

Trabattoni, A., Barruol, G., Dréo, R., & Boudraa, A. (2023). Ship detection and tracking from single ocean-bottom seismic and hydroacoustic stations. The Journal of the Acoustical Society of America, 153(1), 260–273. https://doi.org/10.1121/10.0016810

van der Zwan, F. M., Augustin, N., Petersen, S., Altalhi, S. M., Schultz, J., Peixoto, R. S., Follmann, J., Anker, A., Benzoni, F., Garcia Paredes, E. R., Al Malallah, M., Shepard, L., Ouhssain, M., Jägerup, S. B., Jones, B. H., & Rosado, A. S. (2023). Widespread diffuse venting and large microbial iron-mounds in the Red Sea [Article]. Communications Earth and Environment, 4(1). https://doi.org/10.1038/s43247-023-01169-7

Viltres, R., Jónsson, S., Alothman, A. O., Liu, S., Leroy, S., Masson, F., Doubre, C., & Reilinger, R. (2022). Present-Day Motion of the Arabian Plate. Tectonics, 41(3), e2021TC007013. https://doi.org/10.1029/2021TC007013

Webb, S. C. (1998). Broadband seismology and noise under the ocean. Reviews of Geophysics, 36(1), 105–142. https://doi.org/10.1029/97RG02287

Wilcock, W. S. D. (2012). Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network. The Journal of the Acoustical Society of America, 132(4), 2408–2419. https://doi.org/10.1121/1.4747017

Zali, Z., Rein, T., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2023). Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms. Solid Earth, 14(2), 181–195. https://doi.org/10.5194/se-14-181-2023

Zhang, H., Schmidt-Aursch, M. C., Geissler, W. H., & Xing, J. (2023). Characteristics of the Oceanic Ambient Seismic Noise Around Tristan da Cunha in the South Atlantic From OBS Data. Journal of Geophysical Research: Solid Earth, 128(6), e2022JB025884. https://doi.org/10.1029/2022JB025884

Additional Files

Published

2024-04-30

How to Cite

Parisi, L., Augustin, N., Trippanera, D., Kirk, H., Dannowski, A., Matrau, R., Fittipaldi, M., Nobile, A., Zielke, O., Valero Cano, E., Hoogewerf, G., Aspiotis, T., Manzo-Vega, S., Espindola Carmona, A., Barreto, A., Juchem, M., Suhendi, C., Schmidt-Aursch, M., Mai, P. M., & Jónsson, S. (2024). The First Network of Ocean Bottom Seismometers in the Red Sea to Investigate the Zabargad Fracture Zone. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.729

Issue

Section

Reports (excl. Fast Reports)

Funding data