The First Network of Ocean Bottom Seismometers in the Red Sea to Investigate the Zabargad Fracture Zone
DOI:
https://doi.org/10.26443/seismica.v3i1.729Keywords:
ocean bottom seismometer, Passive Seismology, Rift margins, Red SeaAbstract
In the last decades, the slow-spreading Red Sea rift has been the objective of several geophysical investigations to study the extension of the oceanic crust, the thickness of the sedimentary cover, and the formation of transform faults. However, local seismology datasets are still lacking despite their potential to contribute to the understanding of the tectonic evolution of the Red Sea. The Zabargad Fracture Zone is located in the Northern Red Sea and significantly offsets the rift axis to the East. Thus, it is considered a key tectonic element to understand better the formation of the Red Sea rift. To fill the gap in the dataset availability, we deployed the first passive seismic network in the Red Sea, within the Zabargad Fracture Zone. This network included 12 Lobster OBSs from the DEPAS pool, 2 OBS developed and deployed by Fugro, and 4 portable seismic land stations deployed on islands and onshore on the Saudi Arabian coast. Our data-quality analysis confirms that the head-buoy cable free to strum, as well as other additional elements of the DEPAS OBSs, generate seismic noise at frequencies $>$ 10 Hz. However, the Fugro OBSs show high-frequency disturbances even if they lack vibrating elements. Comparison between land and OBS stations reveals that noise between 1 and 10 Hz is due to ocean-generated seismic noise, and not due to resonance of the OBS elements. We also found that waveforms of teleseismic earthquakes recorded by the Fugro OBSs, islands, and onshore stations have comparable signal-to-noise ratios. Instead, differences in signal-to-noise ratio for local earthquakes are affected more by site and path effects than instrument settings.
References
Abdelwahed, M. F., Alqahtani, F. A., El-Masry, N. N., & El-Hady, S. M. (2023). Insights into the relationship between the Red Sea rift-related structures and the seismo-volcanic activity in Harrat Lunayyir, Saudi Arabia: A seismic tomography study. Journal of Asian Earth Sciences, 241, 105484. https://doi.org/10.1016/j.jseaes.2022.105484 DOI: https://doi.org/10.1016/j.jseaes.2022.105484
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung et al., . (2017). DEPAS (Deutscher Geräte-Pool für amphibische Seismologie): German Instrument Pool for Amphibian Seismology. Journal of Large-Scale Research Facilities, 3(A122). https://doi.org/10.17815/jlsrf-3-165 DOI: https://doi.org/10.17815/jlsrf-3-165
Almalki, K. A., Betts, P. G., & Ailleres, L. (2015). The Red Sea – 50years of geological and geophysical research. Earth-Science Reviews, 147, 109–140. https://doi.org/10.1016/j.earscirev.2015.05.002 DOI: https://doi.org/10.1016/j.earscirev.2015.05.002
Ardhuin, F. (2018). Large-Scale Forces Under Surface Gravity Waves at a Wavy Bottom: A Mechanism for the Generation of Primary Microseisms. Geophysical Research Letters, 45(16), 8173–8181. https://doi.org/10.1029/2018GL078855 DOI: https://doi.org/10.1029/2018GL078855
Ardhuin, F., Rawat, A., & Aucan, J. (2014). A numerical model for free infragravity waves: Definition and validation at regional and global scales. Ocean Modelling, 77, 20–32. https://doi.org/10.1016/j.ocemod.2014.02.006 DOI: https://doi.org/10.1016/j.ocemod.2014.02.006
Augustin, N., van der Zwan, F. M., Devey, C. W., & Brandsdóttir, B. (2021). 13 million years of seafloor spreading throughout the Red Sea Basin [Article]. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22586-2 DOI: https://doi.org/10.1038/s41467-021-22586-2
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Blanck, H., Jousset, P., Hersir, G. P., Ágústsson, K., & Flóvenz, Ó. G. (2020). Analysis of 2014–2015 on- and off-shore passive seismic data on the Reykjanes Peninsula, SW Iceland. Journal of Volcanology and Geothermal Research, 391, 106548. https://doi.org/10.1016/j.jvolgeores.2019.02.001 DOI: https://doi.org/10.1016/j.jvolgeores.2019.02.001
Braunmiller, J., Nabelek, J., & Ghods, A. (2020). Sensor Orientation of Iranian Broadband Seismic Stations from P‐Wave Particle Motion. Seismological Research Letters, 91(3), 1660–1671. https://doi.org/10.1785/0220200019 DOI: https://doi.org/10.1785/0220200019
Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005a). Mid-ocean microseisms. Geochemistry, Geophysics, Geosystems, 6(4). https://doi.org/10.1029/2004GC000768
Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005b). Mid-ocean microseisms. Geochemistry, Geophysics, Geosystems, 6(4). https://doi.org/10.1029/2004GC000768 DOI: https://doi.org/10.1029/2004GC000768
Calderoni, G., Di Giovambattista, R., Pezzo, G., Albano, M., Atzori, S., Tolomei, C., & Ventura, G. (2019). Seismic and Geodetic Evidences of a Hydrothermal Source in the Md 4.0, 2017, Ischia Earthquake (Italy). Journal of Geophysical Research: Solid Earth, 124(5), 5014–5029. https://doi.org/10.1029/2018JB016431 DOI: https://doi.org/10.1029/2018JB016431
Carchedi, C. J. W., Gaherty, J. B., Webb, S. C., & Shillington, D. J. (2022). Investigating Short‐Period Lake‐Generated Microseisms Using a Broadband Array of Onshore and Lake‐Bottom Seismometers. Seismological Research Letters, 93(3), 1585–1600. https://doi.org/10.1785/0220210155 DOI: https://doi.org/10.1785/0220210155
Chouet, B. A. (1996). Long-period volcano seismicity: Its source and use in eruption forecasting. Nature, 380(6572), 309–316. https://doi.org/10.1038/380309a0 DOI: https://doi.org/10.1038/380309a0
Coleman, R. G., & McGuire, A. V. (1988). Magma systems related to the Red Sea opening. Tectonophysics, 150(1), 77–100. https://doi.org/10.1016/0040-1951(88)90296-X DOI: https://doi.org/10.1016/0040-1951(88)90296-X
Corela, C., Loureiro, A., Duarte, J. L., Matias, L., Rebelo, T., & Bartolomeu, T. (2022). The OBS noise due to deep ocean currents. Natural Hazards and Earth System Sciences Discussions, 2022, 1–21. https://doi.org/10.5194/nhess-2022-196 DOI: https://doi.org/10.5194/nhess-2022-196
Costa, M., Fumagalli, M., & Cesario, A. (2019). Review of Cetaceans in the Red Sea. In N. M. A. Rasul & I. C. F. Stewart (Eds.), Oceanographic and Biological Aspects of the Red Sea (pp. 281–303). Springer International Publishing. https://doi.org/10.1007/978-3-319-99417-8_16 DOI: https://doi.org/10.1007/978-3-319-99417-8_16
Crane, K., & Bonatti, E. (1987). The role of fracture zones during early Red Sea rifting: structural analysis using Space Shuttle radar and LANDSAT imagery. [Article]. Journal - Geological Society (London), 144(3), 407–420. https://doi.org/10.1144/gsjgs.144.3.0407 DOI: https://doi.org/10.1144/gsjgs.144.3.0407
Crawford, W. C., & Webb, S. C. (2000). Identifying and Removing Tilt Noise from Low-Frequency (<0.1 Hz) Seafloor Vertical Seismic Data. Bulletin of the Seismological Society of America, 90(4), 952–963. https://doi.org/10.1785/0119990121 DOI: https://doi.org/10.1785/0119990121
D’Alessandro, A., Mangano, G., D’Anna, G., & Luzio, D. (2013). Waveforms clustering and single-station location of microearthquake multiplets recorded in the northern sicilian offshore region [Article]. Geophysical Journal International, 194(3), 1789–1809. https://doi.org/10.1093/gji/ggt192 DOI: https://doi.org/10.1093/gji/ggt192
Delaunay, A., Baby, G., Fedorik, J., Afifi, A. M., Tapponnier, P., & Dyment, J. (2023). Structure and morphology of the Red Sea, from the mid-ocean ridge to the ocean-continent boundary. Tectonophysics, 849, 229728. https://doi.org/10.1016/j.tecto.2023.229728 DOI: https://doi.org/10.1016/j.tecto.2023.229728
Dixon, T. H., Stern, R. J., & Hussein, I. M. (1987). Control of Red Sea rift geometry by Precambrian structures [Article]. Tectonics, 6(5), 551–571. https://doi.org/10.1029/TC006i005p00551 DOI: https://doi.org/10.1029/TC006i005p00551
Doran, A. K., & Laske, G. (2017). Ocean‐Bottom Seismometer Instrument Orientations via Automated Rayleigh‐Wave Arrival‐Angle Measurements. Bulletin of the Seismological Society of America, 107(2), 691–708. https://doi.org/10.1785/0120160165 DOI: https://doi.org/10.1785/0120160165
El Khrepy, S., Koulakov, I., Gerya, T., Al-Arifi, N., Alajmi, M. S., & Qadrouh, A. N. (2021). Transition from continental rifting to oceanic spreading in the northern Red Sea area [Article]. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84952-w DOI: https://doi.org/10.1038/s41598-021-84952-w
El-Isa, Z. H. (2015). Seismicity and seismotectonics of the Red Sea Region [Article]. Arabian Journal of Geosciences, 8(10), 8505–8525. https://doi.org/10.1007/s12517-015-1819-2 DOI: https://doi.org/10.1007/s12517-015-1819-2
Essing, D., Schlindwein, V., Schmidt‐Aursch, M. C., Hadziioannou, C., & Stähler, S. C. (2021a). Characteristics of Current‐Induced Harmonic Tremor Signals in Ocean‐Bottom Seismometer Records. Seismological Research Letters, 92(5), 3100–3112. https://doi.org/10.1785/0220200397
Essing, D., Schlindwein, V., Schmidt‐Aursch, M. C., Hadziioannou, C., & Stähler, S. C. (2021b). Characteristics of Current‐Induced Harmonic Tremor Signals in Ocean‐Bottom Seismometer Records. Seismological Research Letters, 92(5), 3100–3112. https://doi.org/10.1785/0220200397 DOI: https://doi.org/10.1785/0220200397
Ewing, M., & Vine, A. (1938). Deep-sea measurements without wires or cables. Eos, Transactions American Geophysical Union, 19(1), 248–251. DOI: https://doi.org/10.1029/TR019i001p00248
Fittipaldi, M., Trippanera, D., Augustin, N., van der Zwan, F. M., Petrovic, A., Metz, D., & Jónsson, S. (2022). Geomorphology of the Mabahiss Deep area, Northern Red Sea: New insights from high-resolution multibeam bathymetric mapping. EGU General Assembly 2022, Vienna. DOI: https://doi.org/10.5194/egusphere-egu22-11791
Fittipaldi, M., Trippanera, D., Augustin, N., van der Zwan, L., Parisi, & Jónsson, S. (2024). Mabahiss Deep in the Northern Red Sea: New geomorphological insights from high-resolution bathymetric mapping . Submitted to Geomorphology. DOI: https://doi.org/10.5194/egusphere-egu24-19617
Geissler, W. H., Matias, L., Stich, D., Carrilho, F., Jokat, W., Monna, S., IbenBrahim, A., Mancilla, F., Gutscher, M.-A., Sallarès, V., & Zitellini, N. (2010). Focal mechanisms for sub-crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment. Geophysical Research Letters, 37(18). https://doi.org/10.1029/2010GL044289 DOI: https://doi.org/10.1029/2010GL044289
Gualtieri, L., Stutzmann, E., Capdeville, Y., Ardhuin, F., Schimmel, M., Mangeney, A., & Morelli, A. (2013). Modelling secondary microseismic noise by normal mode summation. Geophysical Journal International, 193(3), 1732–1745. https://doi.org/10.1093/gji/ggt090 DOI: https://doi.org/10.1093/gji/ggt090
Guo, Z., Huang, Y., & Aydin, A. (2021). Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation. Journal of Earth Science, 32(5), 1190–1201. https://doi.org/10.1007/s12583-021-1426-y DOI: https://doi.org/10.1007/s12583-021-1426-y
Hamieh, A., Rowaihy, F., Al-Juaied, M., Abo-Khatwa, A. N., Afifi, A. M., & Hoteit, H. (2022). Quantification and analysis of CO2 footprint from industrial facilities in Saudi Arabia. Energy Conversion and Management: X, 16, 100299. https://doi.org/10.1016/j.ecmx.2022.100299 DOI: https://doi.org/10.1016/j.ecmx.2022.100299
Hannemann, K., Krüger, F., Dahm, T., & Lange, D. (2016). Oceanic lithospheric S-wave velocities from the analysis of P-wave polarization at the ocean floor. Geophysical Journal International, 207(3), 1796–1817. https://doi.org/10.1093/gji/ggw342 DOI: https://doi.org/10.1093/gji/ggw342
Harrington, R. M., & Brodsky, E. E. (2007). Volcanic hybrid earthquakes that are brittle-failure events. Geophysical Research Letters, 34(6). https://doi.org/10.1029/2006GL028714 DOI: https://doi.org/10.1029/2006GL028714
Heleno, S. I. N., Faria, B. V. E., Bandomo, Z., & Fonseca, J. F. B. D. (2006). Observations of high-frequency harmonic tremor in Fogo, Cape Verde Islands. Journal of Volcanology and Geothermal Research, 158(3), 361–379. https://doi.org/10.1016/j.jvolgeores.2006.06.018 DOI: https://doi.org/10.1016/j.jvolgeores.2006.06.018
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47
Hilmo, R., & Wilcock, W. S. D. (2020). Physical Sources of High-Frequency Seismic Noise on Cascadia Initiative Ocean Bottom Seismometers. Geochemistry, Geophysics, Geosystems, 21(10), e2020GC009085. https://doi.org/10.1029/2020GC009085 DOI: https://doi.org/10.1029/2020GC009085
Hsu, S.-K., Wang, S.-Y., Liao, Y.-C., Yang, T. F., Jan, S., Lin, J.-Y., & Chen, S.-C. (2013). Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters, 369–370, 98–107. https://doi.org/10.1016/j.epsl.2013.03.013 DOI: https://doi.org/10.1016/j.epsl.2013.03.013
Janiszewski, H. A., Eilon, Z., Russell, J. B., Brunsvik, B., Gaherty, J. B., Mosher, S. G., Hawley, W. B., & Coats, S. (2022). Broad-band ocean bottom seismometer noise properties. Geophysical Journal International, 233(1), 297–315. https://doi.org/10.1093/gji/ggac450 DOI: https://doi.org/10.1093/gji/ggac450
Janiszewski, H. A., Gaherty, J. B., Abers, G. A., Gao, H., & Eilon, Z. C. (2019). Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone. Geophysical Journal International, 217(3), 1929–1948. https://doi.org/10.1093/gji/ggz051 DOI: https://doi.org/10.1093/gji/ggz051
Kennet, B. L. N. (1991). IASPEI 1991 SEISMOLOGICAL TABLES. Terra Nova, 3(2), 122–122. https://doi.org/10.1111/j.1365-3121.1991.tb00863.x DOI: https://doi.org/10.1111/j.1365-3121.1991.tb00863.x
Kim, T., Park, J., Ko, J., Oh, S., Witek, M., Chang, S., Lee, S., Kim, Y., Utada, H., Kawakatsu, H., Shiobara, H., Isse, T., Takeuchi, N., & Sugioka, H. (2023). Characteristics of Background Noise in the Oldest‐1 Array Deployed on the Oldest Part of the Pacific Plate. Bulletin of the Seismological Society of America, 113(4), 1772–1793. https://doi.org/10.1785/0120220215 DOI: https://doi.org/10.1785/0120220215
Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. USGS, Open-File Report 2002-171. DOI: https://doi.org/10.3133/ofr02171
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003
Lazzaro, G., Longo, M., Caruso, C., S., Sciré Scappuzzo, Semprebello, A., Manganello, P., Traina, D., & Italiano, F. (2023). The acoustic signature of shallow hydrothermal brine of Panarea: source mechanism recognition and behaviour changes over mid-term observations. EGU General Assembly 2023, Vienna. DOI: https://doi.org/10.5194/egusphere-egu23-16332
Leva, C., Rümpker, G., & Wölbern, I. (2022). Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde. Solid Earth, 13(8), 1243–1258. https://doi.org/10.5194/se-13-1243-2022 DOI: https://doi.org/10.5194/se-13-1243-2022
Ligi, M., Bonatti, E., Bosworth, W., Cai, Y., Cipriani, A., Palmiotto, C., Ronca, S., & Seyler, M. (2018). Birth of an ocean in the Red Sea: Oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Research, 54, 150–160. https://doi.org/10.1016/j.gr.2017.11.002 DOI: https://doi.org/10.1016/j.gr.2017.11.002
Marshak, S., Bonatti, E., Brueckner, H., & Paulsen, T. (1992). Fracture-zone tectonics at Zabargad Island, Red Sea (Egypt). Tectonophysics, 216(3), 379–385. https://doi.org/10.1016/0040-1951(92)90407-W DOI: https://doi.org/10.1016/0040-1951(92)90407-W
McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001 DOI: https://doi.org/10.1785/012003001
Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310 DOI: https://doi.org/10.1080/01621459.1949.10483310
Mitchell, N. C., Ligi, M., Ferrante, V., Bonatti, E., & Rutter, E. (2010). Submarine salt flows in the central Red Sea. GSA Bulletin, 122(5–6), 701–713. https://doi.org/10.1130/B26518.1 DOI: https://doi.org/10.1130/B26518.1
Molnar, N., Cruden, A., & Betts, P. (2020). The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments. Earth and Planetary Science Letters, 544, 116377. https://doi.org/10.1016/j.epsl.2020.116377 DOI: https://doi.org/10.1016/j.epsl.2020.116377
Naranjo, D., Parisi, L., Jónsson, S., Jousset, P., Werthmüller, D., & Weemstra, C. (2024). Ocean Bottom Seismometer Clock Correction using Ambient Seismic Noise. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.367 DOI: https://doi.org/10.26443/seismica.v3i1.367
Neuberg, J., Luckett, R., Baptie, B., & Olsen, K. (2000). Models of tremor and low-frequency earthquake swarms on Montserrat. Journal of Volcanology and Geothermal Research, 101(1), 83–104. https://doi.org/10.1016/S0377-0273(00)00169-4 DOI: https://doi.org/10.1016/S0377-0273(00)00169-4
Neuberg, J. W., Tuffen, H., Collier, L., Green, D., Powell, T., & Dingwell, D. (2006). The trigger mechanism of low-frequency earthquakes on Montserrat. Journal of Volcanology and Geothermal Research, 153(1), 37–50. https://doi.org/10.1016/j.jvolgeores.2005.08.008 DOI: https://doi.org/10.1016/j.jvolgeores.2005.08.008
Núñez-Cornú, F. J., Córdoba Barba, D., Bandy, W., Dañobeitia, J. J., Alarcón Salazar, J. E., Núñez, D., & Suárez Plascencia, C. (2021). The TsuJal Amphibious Seismic Network: A Passive-Source Seismic Experiment in Western Mexico [Article]. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.738515 DOI: https://doi.org/10.3389/feart.2021.738515
Okal, E. A. (2008). The generation of T waves by earthquakes (R. Dmowska, Ed.; Vol. 49, pp. 1–65). Elsevier. https://doi.org/10.1016/S0065-2687(07)49001-X DOI: https://doi.org/10.1016/S0065-2687(07)49001-X
Parisi, L., Stanistreet, I., Njau, J., Schick, K., Toth, N., & Mai, P. M. (2020). Seismological Investigations in the Olduvai Basin and Ngorongoro Volcanic Highlands (Western Flank of the North Tanzanian Divergence). Seismological Research Letters, 91(6), 3286–3303. https://doi.org/10.1785/0220200111 DOI: https://doi.org/10.1785/0220200111
Peterson, J. (1993). Observations and Modeling of Seismic Background Noise. U.S. Geological Survey Open-File Report , Albuquerque, N.M, 93–3222. https://doi.org/10.1016/j.ocemod.2014.02.006 DOI: https://doi.org/10.3133/ofr93322
Podolskiy, E. A., Murai, Y., Kanna, N., & Sugiyama, S. (2021a). Ocean-bottom and surface seismometers reveal continuous glacial tremor and slip. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24142-4
Podolskiy, E. A., Murai, Y., Kanna, N., & Sugiyama, S. (2021b). Ocean-bottom and surface seismometers reveal continuous glacial tremor and slip [Article]. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24142-4 DOI: https://doi.org/10.1038/s41467-021-24142-4
Ramakrushana Reddy, T., Dewangan, P., Arya, L., Singha, P., & Kamesh Raju, K. A. (2020). Tidal Triggering of the Harmonic Noise in Ocean‐Bottom Seismometers. Seismological Research Letters, 91(2A), 803–813. https://doi.org/10.1785/0220190080 DOI: https://doi.org/10.1785/0220190080
Rehman, F., Alamri, A. M., El-Hady, S. M., Harbi, H. M., & Atef, A. H. (2017). Seismic hazard assessment and rheological implications: a case study selected for cities of Saudi Arabia along the eastern coast of Red Sea [Article]. Arabian Journal of Geosciences, 10(24). https://doi.org/10.1007/s12517-017-3325-1 DOI: https://doi.org/10.1007/s12517-017-3325-1
Schettino, A., Macchiavelli, C., Pierantoni, P. P., Zanoni, D., & Rasul, N. (2016). Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophysical Journal International, 207(1), 457–480. https://doi.org/10.1093/gji/ggw280 DOI: https://doi.org/10.1093/gji/ggw280
Schlaphorst, D., Rychert, C. A., Harmon, N., Hicks, S. P., Bogiatzis, P., Kendall, J.-M., & Abercrombie, R. E. (2023). Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations. Geophysical Journal International. https://doi.org/10.1093/gji/ggad124 DOI: https://doi.org/10.1002/essoar.10511147.1
Schlindwein, V., Krüger, F., & Schmidt-Aursch, M. (2018). Project KNIPAS: DEPAS ocean-bottom seismometer operations in the Greenland Sea in 2016-2017 [Data set]. PANGAEA. https://doi.org/10.1594/PANGAEA.896635
Schmidt-Aursch, M. C., & Crawford, W. C. (2021). Ocean-Bottom Seismometer. In M. Beer, I. A. Kougioumtzoglou, E. Patelli, & I. S.-K. Au (Eds.), Encyclopedia of Earthquake Engineering (pp. 1–16). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_173-1 DOI: https://doi.org/10.1007/978-3-642-36197-5_173-1
Sgroi, T., Polonia, A., Beranzoli, L., Billi, A., Bosman, A., Costanza, A., Cuffaro, M., D’Anna, G., De Caro, M., Di Nezza, M., Fertitta, G., Frugoni, F., Gasperini, L., Monna, S., Montuori, C., Petracchini, L., Petricca, P., Pinzi, S., Ursino, A., & Doglioni, C. (2021). One Year of Seismicity Recorded Through Ocean Bottom Seismometers Illuminates Active Tectonic Structures in the Ionian Sea (Central Mediterranean) [Article]. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.661311 DOI: https://doi.org/10.3389/feart.2021.661311
Shanmugam, G. (2021). Chapter 8 - Bottom currents. In G. Shanmugam (Ed.), Mass Transport, Gravity Flows, and Bottom Currents (pp. 309–375). Elsevier. https://doi.org/10.1016/B978-0-12-822576-9.00008-4 DOI: https://doi.org/10.1016/B978-0-12-822576-9.00008-4
Stähler, S.C., Sigloch, K., Hosseini, K., Crawford, W. C., Barruol, G., Schmidt-Aursch, M. C., Tsekhmistrenko, M., Scholz, J.-R., Mazzullo, A., & Deen, M. (2016). Performance report of the RHUM-RUM ocean bottom seismometer network around la Réunion, western Indian Ocean. Advances in Geosciences, 41, 43–63. https://doi.org/10.5194/adgeo-41-43-2016 DOI: https://doi.org/10.5194/adgeo-41-43-2016
Stähler, Simon C., Schmidt‐Aursch, M. C., Hein, G., & Mars, R. (2018). A Self‐Noise Model for the German DEPAS OBS Pool. Seismological Research Letters, 89(5), 1838–1845. https://doi.org/10.1785/0220180056 DOI: https://doi.org/10.1785/0220180056
Stephen, R. A., Spiess, F. N., Collins, J. A., Hildebrand, J. A., Orcutt, J. A., Peal, K. R., Vernon, F. L., & Wooding, F. B. (2003). Ocean Seismic Network Pilot Experiment. Geochemistry, Geophysics, Geosystems, 4(10). https://doi.org/10.1029/2002GC000485 DOI: https://doi.org/10.1029/2002GC000485
Stutzmann, E., Roult, G., & Astiz, L. (2000). GEOSCOPE Station Noise Levels. Bulletin of the Seismological Society of America, 90(3), 690–701. https://doi.org/10.1785/0119990025 DOI: https://doi.org/10.1785/0119990025
Trabattoni, A., Barruol, G., Dréo, R., & Boudraa, A. (2023). Ship detection and tracking from single ocean-bottom seismic and hydroacoustic stations. The Journal of the Acoustical Society of America, 153(1), 260–273. https://doi.org/10.1121/10.0016810 DOI: https://doi.org/10.1121/10.0016810
van der Zwan, F. M., Augustin, N., Petersen, S., Altalhi, S. M., Schultz, J., Peixoto, R. S., Follmann, J., Anker, A., Benzoni, F., Garcia Paredes, E. R., Al Malallah, M., Shepard, L., Ouhssain, M., Jägerup, S. B., Jones, B. H., & Rosado, A. S. (2023). Widespread diffuse venting and large microbial iron-mounds in the Red Sea [Article]. Communications Earth and Environment, 4(1). https://doi.org/10.1038/s43247-023-01169-7 DOI: https://doi.org/10.1038/s43247-023-01169-7
Viltres, R., Jónsson, S., Alothman, A. O., Liu, S., Leroy, S., Masson, F., Doubre, C., & Reilinger, R. (2022). Present-Day Motion of the Arabian Plate. Tectonics, 41(3), e2021TC007013. https://doi.org/10.1029/2021TC007013 DOI: https://doi.org/10.1029/2021TC007013
Webb, S. C. (1998). Broadband seismology and noise under the ocean. Reviews of Geophysics, 36(1), 105–142. https://doi.org/10.1029/97RG02287 DOI: https://doi.org/10.1029/97RG02287
Wilcock, W. S. D. (2012). Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network. The Journal of the Acoustical Society of America, 132(4), 2408–2419. https://doi.org/10.1121/1.4747017 DOI: https://doi.org/10.1121/1.4747017
Zali, Z., Rein, T., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2023). Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms. Solid Earth, 14(2), 181–195. https://doi.org/10.5194/se-14-181-2023 DOI: https://doi.org/10.5194/se-14-181-2023
Zhang, H., Schmidt-Aursch, M. C., Geissler, W. H., & Xing, J. (2023). Characteristics of the Oceanic Ambient Seismic Noise Around Tristan da Cunha in the South Atlantic From OBS Data. Journal of Geophysical Research: Solid Earth, 128(6), e2022JB025884. https://doi.org/10.1029/2022JB025884 DOI: https://doi.org/10.1029/2022JB025884
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Laura Parisi, Nico Augustin, Daniele Trippanera, Henning Kirk, Anke Dannowski, Rémi Matrau, Margherita Fittipaldi, Adriano Nobile, Olaf Zielke, Eduardo Valero Cano, Guus Hoogewerf, Theodoros Aspiotis, Sofia Manzo-Vega, Armando Espindola Carmona, Alejandra Barreto, Marlin Juchem, Cahli Suhendi, Mechita Schmidt-Aursch, P. Martin Mai, Sigurjón Jónsson
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
King Abdullah University of Science and Technology
Grant numbers URF/1/4076-01-01