Observation of a Synchronicity between Shallow and Deep Seismic Activities during the Foreshock Crisis Preceding the Iquique Megathrust Earthquake

Authors

DOI:

https://doi.org/10.26443/seismica.v2i2.849

Abstract

We analyze at a broad spatial scale the slab seismicity during one of the longest and best recorded foreshock sequence of a subduction earthquake to date: the M8.1 2014 Iquique earthquake in Chile.  We observe the synchronisation of this sequence with seismic events occurring in the deep slab (depth ~100km). This synchronisation supports the existence of long-range seismic bursts already observed in the Japan Trench subduction. It suggests that, like for the 2011 Tohoku earthquake, the deep slab was involved in the nucleation process of the Iquique earthquake.  We interpret these observations by the presence of pressure pulses propagating in transient fluid channels linking the deep slab where dehydration occurs to the shallow seismogenic zone before the earthquake. These observations may seem surprising but they are in line with the short-lived pulse-like channelized water escape from the dehydration zone predicted by recent studies in slab mineralogy and geochemistry.

References

Abers, G., Nakajima, J., Keken, P., Kita, S., & Hacker, B. (2013). Thermal-petrological controls on the location of earthquakes within subducting plates. Earth Plan. Sc. Lett, 369, 178–187. DOI: https://doi.org/10.1016/j.epsl.2013.03.022

Aden-Antoniow, F., Satriano, C., Bernard, P., Poiata, N., Aissaoui, E., Vilotte, J., & Frank, W. (2020). Statistical analysis of the preparatory phase of the M8.1 Iquique earthquake, Chile. J. Geophys. Res, 2019JB019337. DOI: https://doi.org/10.1029/2019JB019337

Angiboust, S., Pettke, T., Hoog, J., Caron, B., & Oncken, O. (2014). Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. J. Petrol, 55, 883–916. DOI: https://doi.org/10.1093/petrology/egu010

Bedford, J., Moreno, M., Schurr, B., Bartsch, M., & Oncken, O. (2015). Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw 8.1 by comparison of continuous GPS and seismic foreshock data. Geophys. Res. Lett, 42, 3820–3828. DOI: https://doi.org/10.1002/2015GL063953

Bedford, J. (2020). Months-long thousand-kilometre-scale wobbling before great subduction earthquakes. Nature, 580, 628–635. DOI: https://doi.org/10.1038/s41586-020-2212-1

Beroza, G., & Ide, S. (2011). Slow earthquakes and nonvolcanic tremors. Annu. Rev. Earth Planet. Sci, 39, 271–296. DOI: https://doi.org/10.1146/annurev-earth-040809-152531

Bouchon, M. (2016). Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geosci, 9, 380–383. DOI: https://doi.org/10.1038/ngeo2701

Bouchon, M. (2022). Observation of rapid long-range seismic bursts in the Japan Trench subduction leading to the nucleation of the Tohoku earthquake. Earth Plan. Sc. Lett, 594, 117696. DOI: https://doi.org/10.1016/j.epsl.2022.117696

Boudin, F. (2021). Slow slip events precursory to the 2014 Iquique earthquake, revisited with long-base tilt and GPS records. Geophys. J. Int, 228, 2092–2121. DOI: https://doi.org/10.1093/gji/ggab425

Bouih, M., Panet, I., Remy, D., Longuevergne, L., & Bonvalot, S. (2022). Deep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity. Earth Plan. Sc. Lett, 584, 117465. DOI: https://doi.org/10.1016/j.epsl.2022.117465

Cabrera, L., Ruiz, S., Poli, P., Contreras-Reyes, E., Osses, A., & Mancini, R. (2021). Northern Chile intermediate-depth earthquakes controlled by plate hydration. Geophys. J. Int, 226, 78–90. DOI: https://doi.org/10.1093/gji/ggaa565

Chlieh, M. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. J. Geophys. Res, 116(B12), 1–21. DOI: https://doi.org/10.1029/2010JB008166

Contreras-Reyes, E. (2021). Subduction zone fluids and arc magmas conducted by lithospheric deformed regions beneath the central Andes. Scientific Reports, 11(23078). DOI: https://doi.org/10.1038/s41598-021-02430-9

Cruz-Atienza, V., Villafuerte, C., & Bhat, H. (2018). Rapid tremor migration and pore-pressure waves in subduction. Nature Comm. DOI: https://doi.org/10.1038/s41467-018-05150-3

Duputel, Z. (2015). The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophys. Res. Lett, 42, 7949–7957. DOI: https://doi.org/10.1002/2015GL065402

Edwards, J. (2018). Corrugated megathrust revealed offshore from Costa Rica. Nature Geosci, 11, 197–202. DOI: https://doi.org/10.1038/s41561-018-0061-4

Ekström, G., Nettles, M., & Dziewonski, A. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys.Earth Planet. Inter, 200–201. DOI: https://doi.org/10.1016/j.pepi.2012.04.002

Ferrand, T. (2017). Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Comm, 8, 15247. DOI: https://doi.org/10.1038/ncomms15247

Galbraith, C., Smyth, P., & Stern, H. (2020). Quantifying the association between discrete event time series with applications to digital forensics. J. Roy. Stat. Soc, Series A, 0964–1998 20 183000. DOI: https://doi.org/10.1111/rssa.12549

Gasc, J., Hilairet, N., Yu, T., Ferrand, T., Schubnel, A., & Y, W. (2017). Faulting of natural serpentine: Implications for intermediate-depth seismicity. Earth Plan. Sc. Lett, 474, 138–147. DOI: https://doi.org/10.1016/j.epsl.2017.06.016

Ghosh, A. (2010). Rapid continuous streaking of tremor in Cascadia. Geoch Geophys. Geosyst, 11, Q12010. DOI: https://doi.org/10.1029/2010GC003305

Gomberg, J. (2010). Slow slip phenomena in Cascadia from 2007 and beyond: A review. Geol. Soc. Am. Bull, 122, 963–978. DOI: https://doi.org/10.1130/B30287.1

Green, H., & Houston, H. (1995). The mechanics of deep earthquakes. Ann. Rev. Earth Planet. Sci, 23, 169–213. DOI: https://doi.org/10.1146/annurev.ea.23.050195.001125

Guillot, S., Schwartz, S., Agard, P., Renard, B., & Prigent, C. (2015). Tectonic significance of serpentinites. Tectonophysics, 1–19. DOI: https://doi.org/10.1016/j.tecto.2015.01.020

Hacker, B., Peacock, S., Abers, G., & Holloway, S. (2003). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. J. Geophys. Res, 108. DOI: https://doi.org/10.1029/2001JB001129

Hayes, G., Wald, D., & Johnson, R. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res, 117, B01302. DOI: https://doi.org/10.1029/2011JB008524

Ide, S. (2010). Striations, duration, migration, and tidal response in deep tremor. Nature, 466, 356–359. DOI: https://doi.org/10.1038/nature09251

Jara, J., Soquet, A., Marsan, D., & Bouchon, M. (2017). Long-term interactions between intermediate depth and shallow seismicity in North Chile subduction Zone. Geophys. Res. Lett, 44. DOI: https://doi.org/10.1002/2017GL075029

Jara, J. (2018). Kinematic study of Iquique 2014 Mw8.1 earthquake; Understanding the segmentation of the seismogenic zone. Earth Plan. Sc. Lett, 503, 131–143. DOI: https://doi.org/10.1016/j.epsl.2018.09.025

John, T. (2012). Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geosci, 5, 489–492. DOI: https://doi.org/10.1038/ngeo1482

Kao, H., Shan, S., Rogers, G., & Dragert, H. (2007). Migration characteristics of seismic tremors in the northern Cascadia margin. Geophys. Res. Lett, 34, L03304. DOI: https://doi.org/10.1029/2006GL028430

Karabulut, H., Bouchon, M., & Schmittbuhl, J. (2022). Synchronization of small scale seismic clusters reveals large scale plate deformation. Earth Planets Space, 74(158). DOI: https://doi.org/10.1186/s40623-022-01725-z

Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophys. Res. Lett, 41, 5420–5427. DOI: https://doi.org/10.1002/2014GL061138

Kato, A., Fukuda, J., Kumazawa, T., & Nakagawa, S. (2016). Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 earthquake. Nature Sci. Rep, 6, 24792. DOI: https://doi.org/10.1038/srep24792

Kawakatsu, H., & Watada, S. (2007). Seismic Evidence for Deep-Water Transportation in the Mantle. Science, 316, 1468–1471. DOI: https://doi.org/10.1126/science.1140855

Kawano, S., Katayama, I., & Okazaki, K. (2011). Permeability anisotropy of serpentine and fluid pathways in a subduction zone. Geology, 39, 939–942. DOI: https://doi.org/10.1130/G32173.1

Keken, P., Hacker, B., Syracuse, E., & Abers, G. (2011). Subduction factory: Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res, 116, B01401. DOI: https://doi.org/10.1029/2010JB007922

Keken, P., Kita, S., & Nakajima, J. (2012). Thermal structure and intermediate-depth seismicity in the Tohoku-Hokkaido subduction zones. Solid Earth, 3, 355–364. DOI: https://doi.org/10.5194/se-3-355-2012

Kirby, S., Engdahl, R., & Denlinger, R. (1996). Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. Subduction Top to Bottom, Am. Geophys. Un. Geophys. Monogr, 96, 195–214. DOI: https://doi.org/10.1029/GM096p0195

Lay, T., Yue, H., Brodsky, E., & An, C. (2014). The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophys. Res. Lett, 41, 3818–3825. DOI: https://doi.org/10.1002/2014GL060238

Madariaga, R. (1998). Sismicidad de Chile. Fisica de la Tierra, 10, 221–258.

Meng, L., Huang, H., Bürgmann, R., Ampuero, J., & Strader, A. (2015). Dual megathrust behaviors of the 2014 Iquique earthquake sequence. Earth Planet. Sci. Lett, 411, 177–187. DOI: https://doi.org/10.1016/j.epsl.2014.11.041

Metois, M., Vigny, C., & Socquet, A. (2016). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°-18°S. Pure Appl. Geophys, 173, 1431–1449. DOI: https://doi.org/10.1007/s00024-016-1280-5

Miller, S., Nur, A., & Olgaard, D. (1996). Earthquakes as a coupled shear stress-high pore pressure dynamical system. Geophys. Res. Lett, 23, 197–200. DOI: https://doi.org/10.1029/95GL03178

Miller, S., Zee, W., Olgaard, D., & Connolly, J. (2003). A fluid-pressure feedback model of dehydration reactions: experiments, modelling, and application to subduction zones. Tectonophysics, 370, 241–251. DOI: https://doi.org/10.1016/S0040-1951(03)00189-6

Panet, I., Bonvalot, S., Narteau, C., Remy, D., & Lemoine, J. (2018). Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data. Nature Geosci, 11. DOI: https://doi.org/10.1038/s41561-018-0099-3

Panet, I., Narteau, C., Lemoine, J., Bonvalot, S., & Remy, D. (2022). Detecting preseismic signals in GRACE gravity solutions : Application to the 2011 Mw 9.0 Tohoku earthquake. J. Geophys. Res, 127. DOI: https://doi.org/10.1029/2022JB024542

Peacock, S. (1990). Fluid processes in subduction zones. Science, 248, 329–337. DOI: https://doi.org/10.1126/science.248.4953.329

Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosci, 3, 599–607. DOI: https://doi.org/10.1038/ngeo940

Plümper, O., John, T., Podladchikov, Y., Vrijmoed, J., & Scambelluri, M. (2017). Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geosci, 10, 150–155. DOI: https://doi.org/10.1038/ngeo2865

Poli, P., & Prieto, G. (2014). Global and along-strike variations of source duration and scaling for intermediate-depth and deep-focus earthquakes. Geophys. Res. Lett, 41, 8315–8324. DOI: https://doi.org/10.1002/2014GL061916

Prieto, G. (2013). Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophys. Res. Lett, 40, 6064–6068. DOI: https://doi.org/10.1002/2013GL058109

Raleigh, C., & Paterson, M. (1965). Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res, 70, 3965–3985. DOI: https://doi.org/10.1029/JZ070i016p03965

Rondenay, S., Abers, G., & P.E, K. (2008). Seismic imaging of subduction zone metamorphism. Geology, 36, 275–278. DOI: https://doi.org/10.1130/G24112A.1

Rousset, B., Campillo, M., Shapiro, N., Walpersdorf, A., Titkov, N., & Chebrov, D. (2023). The 2013 slab-wide Kamchatka earthquake sequence. Geophys. Res. Lett, 50. DOI: https://doi.org/10.1029/2022GL101856

Ruiz, S. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345, 1165–1169. DOI: https://doi.org/10.1126/science.1256074

Ruiz, S., & Madariaga, R. (2018). Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 733, 37–56. DOI: https://doi.org/10.1016/j.tecto.2018.01.015

Schurr, B. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512, 299–302. DOI: https://doi.org/10.1038/nature13681

Shapiro, N., Campillo, M., Kaminski, E., Vilotte, J., & Jaupard, C. (2018). Low-frequency earthquakes and pore-pressure transients in subduction zones. Geophys. Res. Lett, 43, 11083–11094. DOI: https://doi.org/10.1029/2018GL079893

Shelly, D., Beroza, G., & Ide, S. (2007). Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochem. Geophys. Geosyst, 8, Q10014. DOI: https://doi.org/10.1029/2007GC001640

Sibson, R.. (1992). Implications of fault-valve behavior for rupture nucleation and recurrence, Tectonophysics 18,1031–1042.

Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018). Catalogue of Earthquake Hypocenters for Northern Chile Compiled from IPOC (plus auxiliary) seismic stations. GFZ Data Services.

Sippl, C., Schurr, B., Asch, G., & Kummerow, K. (2018). Seismicity structure of the northern Chile forearc from >100,000 double-difference relocated hypocenters. J. Geophys. Res. Solid Earth, 123, 4063–4087. DOI: https://doi.org/10.1002/2017JB015384

Socquet, A. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophys. Res. Lett, 44. DOI: https://doi.org/10.1002/2017GL073023

Soto, H. (2019). Probing the Northern Chile Megathrust with Seismicity: The 2014 M8.1 Iquique Earthquake Sequence. J. Geophys. Res, 124, 12935–12954. DOI: https://doi.org/10.1029/2019JB017794

Taetz, S., John, T., Bröcker, M., Spandler, C., & Stracke, A. (2018). Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth Plan. Sc. Lett, 482, 33–43. DOI: https://doi.org/10.1016/j.epsl.2017.10.044

Vigny, C., Rudloff, A., Ruegg, J., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo gap. Chile, Phys. Earth planet. Inter, 175, 86–95. DOI: https://doi.org/10.1016/j.pepi.2008.02.013

Additional Files

Published

2023-10-10

How to Cite

Bouchon, M., Guillot, S., Marsan, D., Socquet, A., Jara, J., & Renard, F. (2023). Observation of a Synchronicity between Shallow and Deep Seismic Activities during the Foreshock Crisis Preceding the Iquique Megathrust Earthquake. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.849

Issue

Section

Articles