Observation of a Synchronicity between Shallow and Deep Seismic Activities during the Foreshock Crisis Preceding the Iquique Megathrust Earthquake
DOI:
https://doi.org/10.26443/seismica.v2i2.849Abstract
We analyze at a broad spatial scale the slab seismicity during one of the longest and best recorded foreshock sequence of a subduction earthquake to date: the M8.1 2014 Iquique earthquake in Chile. We observe the synchronisation of this sequence with seismic events occurring in the deep slab (depth ~100km). This synchronisation supports the existence of long-range seismic bursts already observed in the Japan Trench subduction. It suggests that, like for the 2011 Tohoku earthquake, the deep slab was involved in the nucleation process of the Iquique earthquake. We interpret these observations by the presence of pressure pulses propagating in transient fluid channels linking the deep slab where dehydration occurs to the shallow seismogenic zone before the earthquake. These observations may seem surprising but they are in line with the short-lived pulse-like channelized water escape from the dehydration zone predicted by recent studies in slab mineralogy and geochemistry.
References
Abers, G., Nakajima, J., Keken, P., Kita, S., & Hacker, B. (2013). Thermal-petrological controls on the location of earthquakes within subducting plates. Earth Plan. Sc. Lett, 369, 178–187. DOI: https://doi.org/10.1016/j.epsl.2013.03.022
Aden-Antoniow, F., Satriano, C., Bernard, P., Poiata, N., Aissaoui, E., Vilotte, J., & Frank, W. (2020). Statistical analysis of the preparatory phase of the M8.1 Iquique earthquake, Chile. J. Geophys. Res, 2019JB019337. DOI: https://doi.org/10.1029/2019JB019337
Angiboust, S., Pettke, T., Hoog, J., Caron, B., & Oncken, O. (2014). Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. J. Petrol, 55, 883–916. DOI: https://doi.org/10.1093/petrology/egu010
Bedford, J., Moreno, M., Schurr, B., Bartsch, M., & Oncken, O. (2015). Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw 8.1 by comparison of continuous GPS and seismic foreshock data. Geophys. Res. Lett, 42, 3820–3828. DOI: https://doi.org/10.1002/2015GL063953
Bedford, J. (2020). Months-long thousand-kilometre-scale wobbling before great subduction earthquakes. Nature, 580, 628–635. DOI: https://doi.org/10.1038/s41586-020-2212-1
Beroza, G., & Ide, S. (2011). Slow earthquakes and nonvolcanic tremors. Annu. Rev. Earth Planet. Sci, 39, 271–296. DOI: https://doi.org/10.1146/annurev-earth-040809-152531
Bouchon, M. (2016). Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geosci, 9, 380–383. DOI: https://doi.org/10.1038/ngeo2701
Bouchon, M. (2022). Observation of rapid long-range seismic bursts in the Japan Trench subduction leading to the nucleation of the Tohoku earthquake. Earth Plan. Sc. Lett, 594, 117696. DOI: https://doi.org/10.1016/j.epsl.2022.117696
Boudin, F. (2021). Slow slip events precursory to the 2014 Iquique earthquake, revisited with long-base tilt and GPS records. Geophys. J. Int, 228, 2092–2121. DOI: https://doi.org/10.1093/gji/ggab425
Bouih, M., Panet, I., Remy, D., Longuevergne, L., & Bonvalot, S. (2022). Deep mass redistribution prior to the 2010 Mw 8.8 Maule (Chile) Earthquake revealed by GRACE satellite gravity. Earth Plan. Sc. Lett, 584, 117465. DOI: https://doi.org/10.1016/j.epsl.2022.117465
Cabrera, L., Ruiz, S., Poli, P., Contreras-Reyes, E., Osses, A., & Mancini, R. (2021). Northern Chile intermediate-depth earthquakes controlled by plate hydration. Geophys. J. Int, 226, 78–90. DOI: https://doi.org/10.1093/gji/ggaa565
Chlieh, M. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. J. Geophys. Res, 116(B12), 1–21. DOI: https://doi.org/10.1029/2010JB008166
Contreras-Reyes, E. (2021). Subduction zone fluids and arc magmas conducted by lithospheric deformed regions beneath the central Andes. Scientific Reports, 11(23078). DOI: https://doi.org/10.1038/s41598-021-02430-9
Cruz-Atienza, V., Villafuerte, C., & Bhat, H. (2018). Rapid tremor migration and pore-pressure waves in subduction. Nature Comm. DOI: https://doi.org/10.1038/s41467-018-05150-3
Duputel, Z. (2015). The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophys. Res. Lett, 42, 7949–7957. DOI: https://doi.org/10.1002/2015GL065402
Edwards, J. (2018). Corrugated megathrust revealed offshore from Costa Rica. Nature Geosci, 11, 197–202. DOI: https://doi.org/10.1038/s41561-018-0061-4
Ekström, G., Nettles, M., & Dziewonski, A. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys.Earth Planet. Inter, 200–201. DOI: https://doi.org/10.1016/j.pepi.2012.04.002
Ferrand, T. (2017). Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Comm, 8, 15247. DOI: https://doi.org/10.1038/ncomms15247
Galbraith, C., Smyth, P., & Stern, H. (2020). Quantifying the association between discrete event time series with applications to digital forensics. J. Roy. Stat. Soc, Series A, 0964–1998 20 183000. DOI: https://doi.org/10.1111/rssa.12549
Gasc, J., Hilairet, N., Yu, T., Ferrand, T., Schubnel, A., & Y, W. (2017). Faulting of natural serpentine: Implications for intermediate-depth seismicity. Earth Plan. Sc. Lett, 474, 138–147. DOI: https://doi.org/10.1016/j.epsl.2017.06.016
Ghosh, A. (2010). Rapid continuous streaking of tremor in Cascadia. Geoch Geophys. Geosyst, 11, Q12010. DOI: https://doi.org/10.1029/2010GC003305
Gomberg, J. (2010). Slow slip phenomena in Cascadia from 2007 and beyond: A review. Geol. Soc. Am. Bull, 122, 963–978. DOI: https://doi.org/10.1130/B30287.1
Green, H., & Houston, H. (1995). The mechanics of deep earthquakes. Ann. Rev. Earth Planet. Sci, 23, 169–213. DOI: https://doi.org/10.1146/annurev.ea.23.050195.001125
Guillot, S., Schwartz, S., Agard, P., Renard, B., & Prigent, C. (2015). Tectonic significance of serpentinites. Tectonophysics, 1–19. DOI: https://doi.org/10.1016/j.tecto.2015.01.020
Hacker, B., Peacock, S., Abers, G., & Holloway, S. (2003). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. J. Geophys. Res, 108. DOI: https://doi.org/10.1029/2001JB001129
Hayes, G., Wald, D., & Johnson, R. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res, 117, B01302. DOI: https://doi.org/10.1029/2011JB008524
Ide, S. (2010). Striations, duration, migration, and tidal response in deep tremor. Nature, 466, 356–359. DOI: https://doi.org/10.1038/nature09251
Jara, J., Soquet, A., Marsan, D., & Bouchon, M. (2017). Long-term interactions between intermediate depth and shallow seismicity in North Chile subduction Zone. Geophys. Res. Lett, 44. DOI: https://doi.org/10.1002/2017GL075029
Jara, J. (2018). Kinematic study of Iquique 2014 Mw8.1 earthquake; Understanding the segmentation of the seismogenic zone. Earth Plan. Sc. Lett, 503, 131–143. DOI: https://doi.org/10.1016/j.epsl.2018.09.025
John, T. (2012). Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geosci, 5, 489–492. DOI: https://doi.org/10.1038/ngeo1482
Kao, H., Shan, S., Rogers, G., & Dragert, H. (2007). Migration characteristics of seismic tremors in the northern Cascadia margin. Geophys. Res. Lett, 34, L03304. DOI: https://doi.org/10.1029/2006GL028430
Karabulut, H., Bouchon, M., & Schmittbuhl, J. (2022). Synchronization of small scale seismic clusters reveals large scale plate deformation. Earth Planets Space, 74(158). DOI: https://doi.org/10.1186/s40623-022-01725-z
Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophys. Res. Lett, 41, 5420–5427. DOI: https://doi.org/10.1002/2014GL061138
Kato, A., Fukuda, J., Kumazawa, T., & Nakagawa, S. (2016). Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 earthquake. Nature Sci. Rep, 6, 24792. DOI: https://doi.org/10.1038/srep24792
Kawakatsu, H., & Watada, S. (2007). Seismic Evidence for Deep-Water Transportation in the Mantle. Science, 316, 1468–1471. DOI: https://doi.org/10.1126/science.1140855
Kawano, S., Katayama, I., & Okazaki, K. (2011). Permeability anisotropy of serpentine and fluid pathways in a subduction zone. Geology, 39, 939–942. DOI: https://doi.org/10.1130/G32173.1
Keken, P., Hacker, B., Syracuse, E., & Abers, G. (2011). Subduction factory: Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res, 116, B01401. DOI: https://doi.org/10.1029/2010JB007922
Keken, P., Kita, S., & Nakajima, J. (2012). Thermal structure and intermediate-depth seismicity in the Tohoku-Hokkaido subduction zones. Solid Earth, 3, 355–364. DOI: https://doi.org/10.5194/se-3-355-2012
Kirby, S., Engdahl, R., & Denlinger, R. (1996). Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. Subduction Top to Bottom, Am. Geophys. Un. Geophys. Monogr, 96, 195–214. DOI: https://doi.org/10.1029/GM096p0195
Lay, T., Yue, H., Brodsky, E., & An, C. (2014). The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophys. Res. Lett, 41, 3818–3825. DOI: https://doi.org/10.1002/2014GL060238
Madariaga, R. (1998). Sismicidad de Chile. Fisica de la Tierra, 10, 221–258.
Meng, L., Huang, H., Bürgmann, R., Ampuero, J., & Strader, A. (2015). Dual megathrust behaviors of the 2014 Iquique earthquake sequence. Earth Planet. Sci. Lett, 411, 177–187. DOI: https://doi.org/10.1016/j.epsl.2014.11.041
Metois, M., Vigny, C., & Socquet, A. (2016). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°-18°S. Pure Appl. Geophys, 173, 1431–1449. DOI: https://doi.org/10.1007/s00024-016-1280-5
Miller, S., Nur, A., & Olgaard, D. (1996). Earthquakes as a coupled shear stress-high pore pressure dynamical system. Geophys. Res. Lett, 23, 197–200. DOI: https://doi.org/10.1029/95GL03178
Miller, S., Zee, W., Olgaard, D., & Connolly, J. (2003). A fluid-pressure feedback model of dehydration reactions: experiments, modelling, and application to subduction zones. Tectonophysics, 370, 241–251. DOI: https://doi.org/10.1016/S0040-1951(03)00189-6
Panet, I., Bonvalot, S., Narteau, C., Remy, D., & Lemoine, J. (2018). Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data. Nature Geosci, 11. DOI: https://doi.org/10.1038/s41561-018-0099-3
Panet, I., Narteau, C., Lemoine, J., Bonvalot, S., & Remy, D. (2022). Detecting preseismic signals in GRACE gravity solutions : Application to the 2011 Mw 9.0 Tohoku earthquake. J. Geophys. Res, 127. DOI: https://doi.org/10.1029/2022JB024542
Peacock, S. (1990). Fluid processes in subduction zones. Science, 248, 329–337. DOI: https://doi.org/10.1126/science.248.4953.329
Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosci, 3, 599–607. DOI: https://doi.org/10.1038/ngeo940
Plümper, O., John, T., Podladchikov, Y., Vrijmoed, J., & Scambelluri, M. (2017). Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geosci, 10, 150–155. DOI: https://doi.org/10.1038/ngeo2865
Poli, P., & Prieto, G. (2014). Global and along-strike variations of source duration and scaling for intermediate-depth and deep-focus earthquakes. Geophys. Res. Lett, 41, 8315–8324. DOI: https://doi.org/10.1002/2014GL061916
Prieto, G. (2013). Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophys. Res. Lett, 40, 6064–6068. DOI: https://doi.org/10.1002/2013GL058109
Raleigh, C., & Paterson, M. (1965). Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res, 70, 3965–3985. DOI: https://doi.org/10.1029/JZ070i016p03965
Rondenay, S., Abers, G., & P.E, K. (2008). Seismic imaging of subduction zone metamorphism. Geology, 36, 275–278. DOI: https://doi.org/10.1130/G24112A.1
Rousset, B., Campillo, M., Shapiro, N., Walpersdorf, A., Titkov, N., & Chebrov, D. (2023). The 2013 slab-wide Kamchatka earthquake sequence. Geophys. Res. Lett, 50. DOI: https://doi.org/10.1029/2022GL101856
Ruiz, S. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345, 1165–1169. DOI: https://doi.org/10.1126/science.1256074
Ruiz, S., & Madariaga, R. (2018). Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 733, 37–56. DOI: https://doi.org/10.1016/j.tecto.2018.01.015
Schurr, B. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512, 299–302. DOI: https://doi.org/10.1038/nature13681
Shapiro, N., Campillo, M., Kaminski, E., Vilotte, J., & Jaupard, C. (2018). Low-frequency earthquakes and pore-pressure transients in subduction zones. Geophys. Res. Lett, 43, 11083–11094. DOI: https://doi.org/10.1029/2018GL079893
Shelly, D., Beroza, G., & Ide, S. (2007). Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochem. Geophys. Geosyst, 8, Q10014. DOI: https://doi.org/10.1029/2007GC001640
Sibson, R.. (1992). Implications of fault-valve behavior for rupture nucleation and recurrence, Tectonophysics 18,1031–1042.
Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018). Catalogue of Earthquake Hypocenters for Northern Chile Compiled from IPOC (plus auxiliary) seismic stations. GFZ Data Services.
Sippl, C., Schurr, B., Asch, G., & Kummerow, K. (2018). Seismicity structure of the northern Chile forearc from >100,000 double-difference relocated hypocenters. J. Geophys. Res. Solid Earth, 123, 4063–4087. DOI: https://doi.org/10.1002/2017JB015384
Socquet, A. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophys. Res. Lett, 44. DOI: https://doi.org/10.1002/2017GL073023
Soto, H. (2019). Probing the Northern Chile Megathrust with Seismicity: The 2014 M8.1 Iquique Earthquake Sequence. J. Geophys. Res, 124, 12935–12954. DOI: https://doi.org/10.1029/2019JB017794
Taetz, S., John, T., Bröcker, M., Spandler, C., & Stracke, A. (2018). Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth Plan. Sc. Lett, 482, 33–43. DOI: https://doi.org/10.1016/j.epsl.2017.10.044
Vigny, C., Rudloff, A., Ruegg, J., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo gap. Chile, Phys. Earth planet. Inter, 175, 86–95. DOI: https://doi.org/10.1016/j.pepi.2008.02.013
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Michel Bouchon, Stéphane Guillot, David Marsan, Anne Socquet, Jorge Jara, François Renard
This work is licensed under a Creative Commons Attribution 4.0 International License.