The Impact of the Three-Dimensional Structure of a Subduction Zone on Time-dependent Crustal Deformation Measured by HR-GNSS
DOI:
https://doi.org/10.26443/seismica.v3i1.887Keywords:
HR-GNSS, Time-dependent Crustal Deformation, Subduction Zone, SW4, MudPy, FakeQuakes, Three-Dimensional StructureAbstract
Accurately modeling time-dependent coseismic crustal deformation as observed on high-rate Global Navigation Satellite System (HR-GNSS) lends insight into earthquake source processes and improves local earthquake and tsunami early warning algorithms. Currently, time-dependent crustal deformation modeling relies most frequently on simplified 1D radially symmetric Earth models. However, for shallow subduction zone earthquakes, even low-frequency shaking is likely affected by the many strongly heterogeneous structures such as the subducting slab, mantle wedge, and the overlying crustal structure. We demonstrate that including 3D structure improves the estimation of key features of coseismic HR-GNSS time series, such as the peak ground displacement (PGD), the time to PGD (tPGD), static displacements (SD), and waveform cross-correlation values. We computed synthetic 1D and 3D, 0.25 Hz and 0.5 Hz waveforms at HR-GNSS stations for four M7.3+ earthquakes in Japan using MudPy and SW4, respectively. From these synthetics, we computed intensity-measure residuals between the synthetic and observed GNSS waveforms. Comparing 1D and 3D residuals, we observed that the 3D simulations show better fits to the PGD and SD in the observed waveforms than the 1D simulations for both 0.25 Hz and 0.5 Hz simulations. We find that the reduction in PGD residuals in the 3D simulations is a combined effect of both shallow and deep 3D structures; hence incorporating only the upper 30 km of 3D structure will still improve the fit to the observed PGD values. Our results demonstrate that 3D simulations significantly improve models of GNSS waveform characteristics and will not only help understand the underlying processes, but also improve local tsunami warning.
References
Aagaard, B. T., Knepley, M. G., & Williams, C. A. (2013). A domain decomposition approach to implementing fault slip in finite‐element models of quasi‐static and dynamic crustal deformation. Journal of Geophysical Research: Solid Earth, 118(6), 3059–3079. https://doi.org/10.1002/jgrb.50217 DOI: https://doi.org/10.1002/jgrb.50217
Baltay, A. S., Hanks, T. C., & Abrahamson, N. A. (2017). Uncertainty, Variability, and Earthquake Physics in Ground‐Motion Prediction Equations. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120160164 DOI: https://doi.org/10.1785/0120160164
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Blaser, L., Kruger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926. https://doi.org/10.1785/0120100111 DOI: https://doi.org/10.1785/0120100111
Bock, Y., Melgar, D., & Crowell, B. W. (2011). Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers. Bulletin of the Seismological Society of America, 101(6), 2904–2925. https://doi.org/10.1785/0120110007 DOI: https://doi.org/10.1785/0120110007
Delouis, B., Nocquet, J., & Vallée, M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high‐rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37(17). https://doi.org/10.1029/2010gl043899 DOI: https://doi.org/10.1029/2010GL043899
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 DOI: https://doi.org/10.1016/0031-9201(81)90046-7
Fadugba, O. I., Sahakian, V. J., Melgar, D. M., Rodgers, A., & Shimony, R. (2023). The Impact of the Three-Dimensional Structure of a Subduction Zone on Time-dependent Crustal Deformation Measured by HR-GNSS. Zenodo. https://doi.org/10.5281/zenodo.7765170 DOI: https://doi.org/10.31223/X5PD5N
Furumura, T., & Kennett, B. L. N. (1998). On the nature of regional seismic phases-III. The influence of crustal heterogeneity on the wavefield for subduction earthquakes: the 1985 Michoacan and 1995 Copala, Guerrero, Mexico earthquakes. Geophysical Journal International, 135(3), 1060–1084. https://doi.org/10.1046/j.1365-246x.1998.00698.x DOI: https://doi.org/10.1046/j.1365-246X.1998.00698.x
Furumura, T., & Kennett, B. L. N. (2005). Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. Journal of Geophysical Research: Solid Earth, 110(B10). https://doi.org/10.1029/2004jb003486 DOI: https://doi.org/10.1029/2004JB003486
Furumura, T., & Singh, S. K. (2002). Regional Wave Propagation from Mexican Subduction Zone Earthquakes: The Attenuation Functions for Interplate and Inslab Events. Bulletin of the Seismological Society of America, 92(6), 2110–2125. https://doi.org/10.1785/0120010278 DOI: https://doi.org/10.1785/0120010278
Geng, J., Pan, Y., Li, X., Guo, J., Liu, J., Chen, X., & Zhang, Y. (2018). Noise Characteristics of High‐Rate Multi‐GNSS for Subdaily Crustal Deformation Monitoring. Journal of Geophysical Research: Solid Earth, 123(2), 1987–2002. https://doi.org/10.1002/2018jb015527 DOI: https://doi.org/10.1002/2018JB015527
Geuzaine, C., & Remacle, J. (2009). Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579 DOI: https://doi.org/10.1002/nme.2579
Goldberg, Dara E., Koch, P., Melgar, D., Riquelme, S., & Yeck, W. L. (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling. Seismological Research Letters, 93(6), 3308–3323. https://doi.org/10.1785/0220220047 DOI: https://doi.org/10.1785/0220220047
Goldberg, Dara E., & Melgar, D. (2020). Generation and Validation of Broadband Synthetic P Waves in Semistochastic Models of Large Earthquakes. Bulletin of the Seismological Society of America, 110(4), 1982–1995. https://doi.org/10.1785/0120200049 DOI: https://doi.org/10.1785/0120200049
Goldberg, D.E., Melgar, D., Hayes, G. P., Crowell, B. W., & Sahakian, V. J. (2021). A Ground-Motion Model for GNSS Peak Ground Displacement. Bulletin of the Seismolgical Society of America, 111. https://doi.org/10.1785/0120210042 DOI: https://doi.org/10.1785/0120210042
Graves, R. (2014). Standard Rupture Format Version 2.0.
Graves, R., & Pitarka, A. (2014). Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method. Seismological Research Letters, 86(1), 75–80. https://doi.org/10.1785/0220140101 DOI: https://doi.org/10.1785/0220140101
Graves, R. W., & Pitarka, A. (2010). Broadband Ground-Motion Simulation Using a Hybrid Approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123. https://doi.org/10.1785/0120100057 DOI: https://doi.org/10.1785/0120100057
Hartzell, S., Harmsen, S., & Frankel, A. (2010). Effects of 3D Random Correlated Velocity Perturbations on Predicted Ground Motions. Bulletin of the Seismological Society of America, 100(4), 1415–1426. https://doi.org/10.1785/0120090060 DOI: https://doi.org/10.1785/0120090060
Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological Survey. https://doi.org/10.5066/F7PV6JNV DOI: https://doi.org/10.1126/science.aat4723
Hayes, G. P. (2017). The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth and Planetary Science Letters, 468, 94–100. https://doi.org/10.1016/j.epsl.2017.04.003 DOI: https://doi.org/10.1016/j.epsl.2017.04.003
Hearn, E. H., & Burgmann, R. (2005). The Effect of Elastic Layering on Inversions of GPS Data for Coseismic Slip and Resulting Stress Changes: Strike-Slip Earthquakes. Bulletin of the Seismological Society of America, 95(5), 1637–1653. https://doi.org/10.1785/0120040158 DOI: https://doi.org/10.1785/0120040158
Ide, S. (2007). Slip Inversion. In Treatise on Geophysics (pp. 193–223). Elsevier. https://doi.org/10.1016/b978-044452748-6.00068-7 DOI: https://doi.org/10.1016/B978-044452748-6.00068-7
Kaneko, Y., Ito, Y., Chow, B., Wallace, L. M., Tape, C., Grapenthin, R., D’Anastasio, E., Henrys, S., & Hino, R. (2019). Ultra‐long Duration of Seismic Ground Motion Arising From a Thick, Low‐Velocity Sedimentary Wedge. Journal of Geophysical Research: Solid Earth, 124(10), 10347–10359. https://doi.org/10.1029/2019jb017795 DOI: https://doi.org/10.1029/2019JB017795
Koketsu, K., Miyake, H., Fujiwara, H., & Hashimoto, H. (2008). Progress towards a Japan integrated velocity structure model and long-period ground motion hazard map, . Proceedings of the 14th World Conference on Earthquake Engineering, Paper.
Koketsu, Kazuki, Hikima, K., Miyazaki, S., & Ide, S. (2004). Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake. Earth, Planets and Space, 56(3), 329–334. https://doi.org/10.1186/bf03353060 DOI: https://doi.org/10.1186/BF03353060
Koketsu, Kazuki, Miyake, H., Afnimar, & Tanaka, Y. (2009). A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan. Tectonophysics, 472(1–4), 290–300. https://doi.org/10.1016/j.tecto.2008.05.037 DOI: https://doi.org/10.1016/j.tecto.2008.05.037
Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale Dell’Istituto Italiano Degli Attuari, 4, 83-91 5.
Kotha, S. R., Weatherill, G., Bindi, D., & Cotton, F. (2020). A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe. Bulletin of Earthquake Engineering, 18(9), 4091–4125. https://doi.org/10.1007/s10518-020-00869-1 DOI: https://doi.org/10.1007/s10518-020-00869-1
Kubo, H., Asano, K., & Iwata, T. (2013). Source‐rupture process of the 2011 Ibaraki‐oki, Japan, earthquake (Mw 7.9) estimated from the joint inversion of strong‐motion and GPS Data: Relationship with seamount and Philippine Sea Plate. Geophysical Research Letters, 40(12), 3003–3007. https://doi.org/10.1002/grl.50558 DOI: https://doi.org/10.1002/grl.50558
Kuehn, N. M., & Abrahamson, N. A. (2019). Spatial correlations of ground motion for non‐ergodic seismic hazard analysis. Earthquake Engineering & Structural Dynamics, 49(1), 4–23. https://doi.org/10.1002/eqe.3221 DOI: https://doi.org/10.1002/eqe.3221
Landwehr, N., Kuehn, N. M., Scheffer, T., & Abrahamson, N. (2016). A Nonergodic Ground‐Motion Model for California with Spatially Varying Coefficients. Bulletin of the Seismological Society of America, 106(6), 2574–2583. https://doi.org/10.1785/0120160118 DOI: https://doi.org/10.1785/0120160118
Langer, L., Beller, S., Hirakawa, E., & Tromp, J. (2022). Impact of sedimentary basins on Green’s functions for static slip inversion. Geophysical Journal International, 232(1), 569–580. https://doi.org/10.1093/gji/ggac344 DOI: https://doi.org/10.1093/gji/ggac344
Langer, L., Gharti, H. N., & Tromp, J. (2019). Impact of topography and three-dimensional heterogeneity on coseismic deformation. Geophysical Journal International, 217(2), 866–878. https://doi.org/10.1093/gji/ggz060 DOI: https://doi.org/10.1093/gji/ggz060
Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 — A 1-degree global model of Earth’s crust. Geophysical Research Abstracts, 15(15), 2658.
LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment. Pure and Applied Geophysics, 173(12), 3671–3692. https://doi.org/10.1007/s00024-016-1357-1 DOI: https://doi.org/10.1007/s00024-016-1357-1
Maeda, T., Takemura, S., & Furumura, T. (2017). OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth, Planets and Space, 69(1). https://doi.org/10.1186/s40623-017-0687-2 DOI: https://doi.org/10.1186/s40623-017-0687-2
Mann, M. E., & Abers, G. A. (2019). First‐Order Mantle Subduction‐Zone Structure Effects on Ground Motion: The 2016 Mw 7.1 Iniskin and 2018 Mw 7.1 Anchorage Earthquakes. Seismological Research Letters, 91(1), 85–93. https://doi.org/10.1785/0220190197 DOI: https://doi.org/10.1785/0220190197
McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference. https://doi.org/10.25080/majora-92bf1922-00a DOI: https://doi.org/10.25080/Majora-92bf1922-00a
Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research: Solid Earth, 120(5), 3324–3349. https://doi.org/10.1002/2014jb011832 DOI: https://doi.org/10.1002/2014JB011832
Melgar, Diego, Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise Characteristics of Operational Real‐Time High‐Rate GNSS Positions in a Large Aperture Network. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2019jb019197 DOI: https://doi.org/10.1029/2019JB019197
Melgar, Diego, Ganas, A., Taymaz, T., Valkaniotis, S., Crowell, B. W., Kapetanidis, V., Tsironi, V., Yolsal-Çevikbilen, S., & Öcalan, T. (2020). Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophysical Journal International, 223(2), 862–874. https://doi.org/10.1093/gji/ggaa345 DOI: https://doi.org/10.1093/gji/ggaa345
Melgar, Diego, & Hayes, G. P. (2019). Characterizing large earthquakes before rupture is complete. Science Advances, 5(5). https://doi.org/10.1126/sciadv.aav2032 DOI: https://doi.org/10.1126/sciadv.aav2032
Melgar, Diego, LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. https://doi.org/10.1002/2016jb013314 DOI: https://doi.org/10.1002/2016JB013314
Mena, B., Mai, P. M., Olsen, K. B., Purvance, M. D., & Brune, J. N. (2010). Hybrid Broadband Ground-Motion Simulation Using Scattering Green’s Functions: Application to Large-Magnitude Events. Bulletin of the Seismological Society of America, 100(5A), 2143–2162. https://doi.org/10.1785/0120080318 DOI: https://doi.org/10.1785/0120080318
N.O.A.A. National Geophysical Data Center. (2009). ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information.
Olsen, K. B. (2000). Site Amplification in the Los Angeles Basin from Three-Dimensional Modeling of Ground Motion. Bulletin of the Seismological Society of America, 90(6B), S77–S94. https://doi.org/10.1785/0120000506 DOI: https://doi.org/10.1785/0120000506
Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356), 373–376. https://doi.org/10.1038/nature10227 DOI: https://doi.org/10.1038/nature10227
Petersson, N. A., & Sjögreen, B. (2012). Stable and Efficient Modeling of Anelastic Attenuation in Seismic Wave Propagation. Communications in Computational Physics, 12(1), 193–225. https://doi.org/10.4208/cicp.201010.090611a DOI: https://doi.org/10.4208/cicp.201010.090611a
Petersson, N. A., & Sjögreen, B. (2015). Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method. Journal of Computational Physics, 299, 820–841. https://doi.org/10.1016/j.jcp.2015.07.023 DOI: https://doi.org/10.1016/j.jcp.2015.07.023
Petersson, N. A., & Sjögreen, B. (2017). geodynamics/sw4: SW4, version 2.01. Zenodo. https://doi.org/10.5281/ZENODO.1063644
Rodgers, A. J., Anders Petersson, N., Pitarka, A., McCallen, D. B., Sjogreen, B., & Abrahamson, N. (2019). Broadband (0–5 Hz) Fully Deterministic 3D Ground‐Motion Simulations of a Magnitude 7.0 Hayward Fault Earthquake: Comparison with Empirical Ground‐Motion Models and 3D Path and Site Effects from Source Normalized Intensities. Seismological Research Letters, 90(3), 1268–1284. https://doi.org/10.1785/0220180261 DOI: https://doi.org/10.1785/0220180261
Rodgers, A. J., Pitarka, A., Pankajakshan, R., Sjögreen, B., & Petersson, N. A. (2020). Regional-Scale 3D Ground-Motion Simulations of Mw 7 Earthquakes on the Hayward Fault, Northern California Resolving Frequencies 0–10 Hz and Including Site-Response Corrections. Bulletin of the Seismological Society of America, 110(6), 2862–2881. https://doi.org/10.1785/0120200147 DOI: https://doi.org/10.1785/0120200147
Ruhl, C. J., Melgar, D., Geng, J., Goldberg, D. E., Crowell, B. W., Allen, R. M., Bock, Y., Barrientos, S., Riquelme, S., Baez, J. C., Cabral‐Cano, E., Pérez‐Campos, X., Hill, E. M., Protti, M., Ganas, A., Ruiz, M., Mothes, P., Jarrín, P., Nocquet, J., … D’Anastasio, E. (2018). A Global Database of Strong‐Motion Displacement GNSS Recordings and an Example Application to PGD Scaling. Seismological Research Letters, 90(1), 271–279. https://doi.org/10.1785/0220180177 DOI: https://doi.org/10.1785/0220180177
Sahakian, V. J., Baltay, A., Hanks, T. C., Buehler, J., Vernon, F. L., Kilb, D., & Abrahamson, N. A. (2019). Ground Motion Residuals, Path Effects, and Crustal Properties: A Pilot Study in Southern California. Journal of Geophysical Research: Solid Earth, 124(6), 5738–5753. https://doi.org/10.1029/2018jb016796 DOI: https://doi.org/10.1029/2018JB016796
Sahakian, Valerie J., Melgar, D., Quintanar, L., Ramírez‐Guzmán, L., Pérez‐Campos, X., & Baltay, A. (2018). Ground Motions from the 7 and 19 September 2017 Tehuantepec and Puebla‐Morelos, Mexico, Earthquakes. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120180108 DOI: https://doi.org/10.1785/0120180108
Sahakian, V.J., Melgar, D., & Muzli, M. (2019). Weak Near‐Field Behavior of a Tsunami Earthquake: Toward Real‐Time Identification for Local Warning. Geophysical Research Letters, 46(16), 9519–9528. https://doi.org/10.1029/2019gl083989 DOI: https://doi.org/10.1029/2019GL083989
Sjögreen, B., & Petersson, N. A. (2011). A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation. Journal of Scientific Computing, 52(1), 17–48. https://doi.org/10.1007/s10915-011-9531-1 DOI: https://doi.org/10.1007/s10915-011-9531-1
Smirnov, N. (1948). Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19(2), 279–281. https://doi.org/10.1214/aoms/1177730256 DOI: https://doi.org/10.1214/aoms/1177730256
Tung, S., & Masterlark, T. (2018). Sensitivities of Near‐field Tsunami Forecasts to Megathrust Deformation Predictions. Journal of Geophysical Research: Solid Earth, 123(2), 1711–1735. https://doi.org/10.1002/2017jb015354 DOI: https://doi.org/10.1002/2017JB015354
Ueno, H., Hatakeyama, S., Aketagawa, T., Funasaki, J., & Hamada, N. (2002). Improvement of hypocenter determination procedures in the Japan Meteorological Agency. Quarterly Journal of Seismology, 65, 123–134.
Uieda, L., Tian, D., Leong, W. J., Toney, L., Schlitzer, W., Yao, J., Grund, M., Jones, M., Materna, K., Newton, T., Ziebarth, M., & Wessel, P. (2021). PyGMT: A Python interface for the Generic Mapping Tools. Zenodo. https://doi.org/10.5281/ZENODO.4592991
Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.
Vidale, J. E., & Helmberger, D. V. (1988). Elastic finite-difference modeling of the 1971 San Fernando, California earthquake. Bulletin of the Seismological Society of America, 78(1), 122–141. https://doi.org/10.1785/BSSA0780010122
Wald, D. J., & Graves, R. W. (2001). Resolution analysis of finite fault source inversion using one‐ and three‐dimensional Green’s functions: 2. Combining seismic and geodetic data. Journal of Geophysical Research: Solid Earth, 106(B5), 8767–8788. https://doi.org/10.1029/2000jb900435 DOI: https://doi.org/10.1029/2000JB900435
Wallace, L. M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., D’Anastasio, E., & Fry, B. (2017). Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geoscience, 10(10), 765–770. https://doi.org/10.1038/ngeo3021 DOI: https://doi.org/10.1038/ngeo3021
Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021 DOI: https://doi.org/10.21105/joss.03021
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515 DOI: https://doi.org/10.1029/2019GC008515
Williams, C. A., & Wallace, L. M. (2015). Effects of material property variations on slip estimates for subduction interface slow‐slip events. Geophysical Research Letters, 42(4), 1113–1121. https://doi.org/10.1002/2014gl062505 DOI: https://doi.org/10.1002/2014GL062505
Wirth, E. A., Sahakian, V. J., Wallace, L. M., & Melnick, D. (2022). The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment, 3(2), 125–140. https://doi.org/10.1038/s43017-021-00245-w DOI: https://doi.org/10.1038/s43017-021-00245-w
Yagi, Y. (2004). Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth, Planets and Space, 56(3), 311–316. https://doi.org/10.1186/bf03353057 DOI: https://doi.org/10.1186/BF03353057
Yamanaka, Y., & Kikuchi, M. (2003). Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves. Earth, Planets and Space, 55(12), e21–e24. https://doi.org/10.1186/bf03352479 DOI: https://doi.org/10.1186/BF03352479
Yue, H., & Lay, T. (2011). Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011gl048700 DOI: https://doi.org/10.1029/2011GL048700
Zhang, H., Melgar, D., Sahakian, V., Searcy, J., & Lin, J.-T. (2022). Learning source, path and site effects: CNN-based on-site intensity prediction for earthquake early warning. Geophysical Journal International, 231(3), 2186–2204. https://doi.org/10.1093/gji/ggac325 DOI: https://doi.org/10.1093/gji/ggac325
Zheng, X., Zhang, Y., Wang, R., Zhao, L., Li, W., & Huang, Q. (2020). Automatic Inversions of Strong‐Motion Records for Finite‐Fault Models of Significant Earthquakes in and Around Japan. Journal of Geophysical Research: Solid Earth, 125(9). https://doi.org/10.1029/2020jb019992 DOI: https://doi.org/10.1029/2020JB019992
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246x.2002.01610.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01610.x
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Oluwaseun Fadugba, Valerie Sahakian, Diego Melgar, Arthur Rodgers, Roey Shimony
This work is licensed under a Creative Commons Attribution 4.0 International License.