The Impact of the Three-Dimensional Structure of a Subduction Zone on Time-dependent Crustal Deformation Measured by HR-GNSS




HR-GNSS, Time-dependent Crustal Deformation, Subduction Zone, SW4, MudPy, FakeQuakes, Three-Dimensional Structure


Accurately modeling time-dependent coseismic crustal deformation as observed on high-rate Global Navigation Satellite System (HR-GNSS) lends insight into earthquake source processes and improves local earthquake and tsunami early warning algorithms. Currently, time-dependent crustal deformation modeling relies most frequently on simplified 1D radially symmetric Earth models. However, for shallow subduction zone earthquakes, even low-frequency shaking is likely affected by the many strongly heterogeneous structures such as the subducting slab, mantle wedge, and the overlying crustal structure. We demonstrate that including 3D structure improves the estimation of key features of coseismic HR-GNSS time series, such as the peak ground displacement (PGD), the time to PGD (tPGD), static displacements (SD), and waveform cross-correlation values. We computed synthetic 1D and 3D, 0.25 Hz and 0.5 Hz waveforms at HR-GNSS stations for four M7.3+ earthquakes in Japan using MudPy and SW4, respectively. From these synthetics, we computed intensity-measure residuals between the synthetic and observed GNSS waveforms. Comparing 1D and 3D residuals, we observed that the 3D simulations show better fits to the PGD and SD in the observed waveforms than the 1D simulations for both 0.25 Hz and 0.5 Hz simulations. We find that the reduction in PGD residuals in the 3D simulations is a combined effect of both shallow and deep 3D structures; hence incorporating only the upper 30 km of 3D structure will still improve the fit to the observed PGD values. Our results demonstrate that 3D simulations significantly improve models of GNSS waveform characteristics and will not only help understand the underlying processes, but also improve local tsunami warning.


Aagaard, B. T., Knepley, M. G., & Williams, C. A. (2013). A domain decomposition approach to implementing fault slip in finite‐element models of quasi‐static and dynamic crustal deformation. Journal of Geophysical Research: Solid Earth, 118(6), 3059–3079. DOI:

Baltay, A. S., Hanks, T. C., & Abrahamson, N. A. (2017). Uncertainty, Variability, and Earthquake Physics in Ground‐Motion Prediction Equations. Bulletin of the Seismological Society of America. DOI:

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. DOI:

Blaser, L., Kruger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926. DOI:

Bock, Y., Melgar, D., & Crowell, B. W. (2011). Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers. Bulletin of the Seismological Society of America, 101(6), 2904–2925. DOI:

Delouis, B., Nocquet, J., & Vallée, M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high‐rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37(17). DOI:

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. DOI:

Fadugba, O. I., Sahakian, V. J., Melgar, D. M., Rodgers, A., & Shimony, R. (2023). The Impact of the Three-Dimensional Structure of a Subduction Zone on Time-dependent Crustal Deformation Measured by HR-GNSS. Zenodo. DOI:

Furumura, T., & Kennett, B. L. N. (1998). On the nature of regional seismic phases-III. The influence of crustal heterogeneity on the wavefield for subduction earthquakes: the 1985 Michoacan and 1995 Copala, Guerrero, Mexico earthquakes. Geophysical Journal International, 135(3), 1060–1084. DOI:

Furumura, T., & Kennett, B. L. N. (2005). Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. Journal of Geophysical Research: Solid Earth, 110(B10). DOI:

Furumura, T., & Singh, S. K. (2002). Regional Wave Propagation from Mexican Subduction Zone Earthquakes: The Attenuation Functions for Interplate and Inslab Events. Bulletin of the Seismological Society of America, 92(6), 2110–2125. DOI:

Geng, J., Pan, Y., Li, X., Guo, J., Liu, J., Chen, X., & Zhang, Y. (2018). Noise Characteristics of High‐Rate Multi‐GNSS for Subdaily Crustal Deformation Monitoring. Journal of Geophysical Research: Solid Earth, 123(2), 1987–2002. DOI:

Geuzaine, C., & Remacle, J. (2009). Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331. DOI:

Goldberg, Dara E., Koch, P., Melgar, D., Riquelme, S., & Yeck, W. L. (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling. Seismological Research Letters, 93(6), 3308–3323. DOI:

Goldberg, Dara E., & Melgar, D. (2020). Generation and Validation of Broadband Synthetic P Waves in Semistochastic Models of Large Earthquakes. Bulletin of the Seismological Society of America, 110(4), 1982–1995. DOI:

Goldberg, D.E., Melgar, D., Hayes, G. P., Crowell, B. W., & Sahakian, V. J. (2021). A Ground-Motion Model for GNSS Peak Ground Displacement. Bulletin of the Seismolgical Society of America, 111. DOI:

Graves, R. (2014). Standard Rupture Format Version 2.0.

Graves, R., & Pitarka, A. (2014). Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method. Seismological Research Letters, 86(1), 75–80. DOI:

Graves, R. W., & Pitarka, A. (2010). Broadband Ground-Motion Simulation Using a Hybrid Approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123. DOI:

Hartzell, S., Harmsen, S., & Frankel, A. (2010). Effects of 3D Random Correlated Velocity Perturbations on Predicted Ground Motions. Bulletin of the Seismological Society of America, 100(4), 1415–1426. DOI:

Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological Survey. DOI:

Hayes, G. P. (2017). The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth and Planetary Science Letters, 468, 94–100. DOI:

Hearn, E. H., & Burgmann, R. (2005). The Effect of Elastic Layering on Inversions of GPS Data for Coseismic Slip and Resulting Stress Changes: Strike-Slip Earthquakes. Bulletin of the Seismological Society of America, 95(5), 1637–1653. DOI:

Ide, S. (2007). Slip Inversion. In Treatise on Geophysics (pp. 193–223). Elsevier. DOI:

Kaneko, Y., Ito, Y., Chow, B., Wallace, L. M., Tape, C., Grapenthin, R., D’Anastasio, E., Henrys, S., & Hino, R. (2019). Ultra‐long Duration of Seismic Ground Motion Arising From a Thick, Low‐Velocity Sedimentary Wedge. Journal of Geophysical Research: Solid Earth, 124(10), 10347–10359. DOI:

Koketsu, K., Miyake, H., Fujiwara, H., & Hashimoto, H. (2008). Progress towards a Japan integrated velocity structure model and long-period ground motion hazard map, . Proceedings of the 14th World Conference on Earthquake Engineering, Paper.

Koketsu, Kazuki, Hikima, K., Miyazaki, S., & Ide, S. (2004). Joint inversion of strong motion and geodetic data for the source process of the 2003 Tokachi-oki, Hokkaido, earthquake. Earth, Planets and Space, 56(3), 329–334. DOI:

Koketsu, Kazuki, Miyake, H., Afnimar, & Tanaka, Y. (2009). A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan. Tectonophysics, 472(1–4), 290–300. DOI:

Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale Dell’Istituto Italiano Degli Attuari, 4, 83-91 5.

Kotha, S. R., Weatherill, G., Bindi, D., & Cotton, F. (2020). A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe. Bulletin of Earthquake Engineering, 18(9), 4091–4125. DOI:

Kubo, H., Asano, K., & Iwata, T. (2013). Source‐rupture process of the 2011 Ibaraki‐oki, Japan, earthquake (Mw 7.9) estimated from the joint inversion of strong‐motion and GPS Data: Relationship with seamount and Philippine Sea Plate. Geophysical Research Letters, 40(12), 3003–3007. DOI:

Kuehn, N. M., & Abrahamson, N. A. (2019). Spatial correlations of ground motion for non‐ergodic seismic hazard analysis. Earthquake Engineering & Structural Dynamics, 49(1), 4–23. DOI:

Landwehr, N., Kuehn, N. M., Scheffer, T., & Abrahamson, N. (2016). A Nonergodic Ground‐Motion Model for California with Spatially Varying Coefficients. Bulletin of the Seismological Society of America, 106(6), 2574–2583. DOI:

Langer, L., Beller, S., Hirakawa, E., & Tromp, J. (2022). Impact of sedimentary basins on Green’s functions for static slip inversion. Geophysical Journal International, 232(1), 569–580. DOI:

Langer, L., Gharti, H. N., & Tromp, J. (2019). Impact of topography and three-dimensional heterogeneity on coseismic deformation. Geophysical Journal International, 217(2), 866–878. DOI:

Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 — A 1-degree global model of Earth’s crust. Geophysical Research Abstracts, 15(15), 2658.

LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment. Pure and Applied Geophysics, 173(12), 3671–3692. DOI:

Maeda, T., Takemura, S., & Furumura, T. (2017). OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth, Planets and Space, 69(1). DOI:

Mann, M. E., & Abers, G. A. (2019). First‐Order Mantle Subduction‐Zone Structure Effects on Ground Motion: The 2016 Mw 7.1 Iniskin and 2018 Mw 7.1 Anchorage Earthquakes. Seismological Research Letters, 91(1), 85–93. DOI:

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference. DOI:

Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research: Solid Earth, 120(5), 3324–3349. DOI:

Melgar, Diego, Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise Characteristics of Operational Real‐Time High‐Rate GNSS Positions in a Large Aperture Network. Journal of Geophysical Research: Solid Earth, 125(7). DOI:

Melgar, Diego, Ganas, A., Taymaz, T., Valkaniotis, S., Crowell, B. W., Kapetanidis, V., Tsironi, V., Yolsal-Çevikbilen, S., & Öcalan, T. (2020). Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophysical Journal International, 223(2), 862–874. DOI:

Melgar, Diego, & Hayes, G. P. (2019). Characterizing large earthquakes before rupture is complete. Science Advances, 5(5). DOI:

Melgar, Diego, LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. DOI:

Mena, B., Mai, P. M., Olsen, K. B., Purvance, M. D., & Brune, J. N. (2010). Hybrid Broadband Ground-Motion Simulation Using Scattering Green’s Functions: Application to Large-Magnitude Events. Bulletin of the Seismological Society of America, 100(5A), 2143–2162. DOI:

N.O.A.A. National Geophysical Data Center. (2009). ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information.

Olsen, K. B. (2000). Site Amplification in the Los Angeles Basin from Three-Dimensional Modeling of Ground Motion. Bulletin of the Seismological Society of America, 90(6B), S77–S94. DOI:

Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356), 373–376. DOI:

Petersson, N. A., & Sjögreen, B. (2012). Stable and Efficient Modeling of Anelastic Attenuation in Seismic Wave Propagation. Communications in Computational Physics, 12(1), 193–225. DOI:

Petersson, N. A., & Sjögreen, B. (2015). Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method. Journal of Computational Physics, 299, 820–841. DOI:

Petersson, N. A., & Sjögreen, B. (2017). geodynamics/sw4: SW4, version 2.01. Zenodo.

Rodgers, A. J., Anders Petersson, N., Pitarka, A., McCallen, D. B., Sjogreen, B., & Abrahamson, N. (2019). Broadband (0–5 Hz) Fully Deterministic 3D Ground‐Motion Simulations of a Magnitude 7.0 Hayward Fault Earthquake: Comparison with Empirical Ground‐Motion Models and 3D Path and Site Effects from Source Normalized Intensities. Seismological Research Letters, 90(3), 1268–1284. DOI:

Rodgers, A. J., Pitarka, A., Pankajakshan, R., Sjögreen, B., & Petersson, N. A. (2020). Regional-Scale 3D Ground-Motion Simulations of Mw 7 Earthquakes on the Hayward Fault, Northern California Resolving Frequencies 0–10 Hz and Including Site-Response Corrections. Bulletin of the Seismological Society of America, 110(6), 2862–2881. DOI:

Ruhl, C. J., Melgar, D., Geng, J., Goldberg, D. E., Crowell, B. W., Allen, R. M., Bock, Y., Barrientos, S., Riquelme, S., Baez, J. C., Cabral‐Cano, E., Pérez‐Campos, X., Hill, E. M., Protti, M., Ganas, A., Ruiz, M., Mothes, P., Jarrín, P., Nocquet, J., … D’Anastasio, E. (2018). A Global Database of Strong‐Motion Displacement GNSS Recordings and an Example Application to PGD Scaling. Seismological Research Letters, 90(1), 271–279. DOI:

Sahakian, V. J., Baltay, A., Hanks, T. C., Buehler, J., Vernon, F. L., Kilb, D., & Abrahamson, N. A. (2019). Ground Motion Residuals, Path Effects, and Crustal Properties: A Pilot Study in Southern California. Journal of Geophysical Research: Solid Earth, 124(6), 5738–5753. DOI:

Sahakian, Valerie J., Melgar, D., Quintanar, L., Ramírez‐Guzmán, L., Pérez‐Campos, X., & Baltay, A. (2018). Ground Motions from the 7 and 19 September 2017 Tehuantepec and Puebla‐Morelos, Mexico, Earthquakes. Bulletin of the Seismological Society of America. DOI:

Sahakian, V.J., Melgar, D., & Muzli, M. (2019). Weak Near‐Field Behavior of a Tsunami Earthquake: Toward Real‐Time Identification for Local Warning. Geophysical Research Letters, 46(16), 9519–9528. DOI:

Sjögreen, B., & Petersson, N. A. (2011). A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation. Journal of Scientific Computing, 52(1), 17–48. DOI:

Smirnov, N. (1948). Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19(2), 279–281. DOI:

Tung, S., & Masterlark, T. (2018). Sensitivities of Near‐field Tsunami Forecasts to Megathrust Deformation Predictions. Journal of Geophysical Research: Solid Earth, 123(2), 1711–1735. DOI:

Ueno, H., Hatakeyama, S., Aketagawa, T., Funasaki, J., & Hamada, N. (2002). Improvement of hypocenter determination procedures in the Japan Meteorological Agency. Quarterly Journal of Seismology, 65, 123–134.

Uieda, L., Tian, D., Leong, W. J., Toney, L., Schlitzer, W., Yao, J., Grund, M., Jones, M., Materna, K., Newton, T., Ziebarth, M., & Wessel, P. (2021). PyGMT: A Python interface for the Generic Mapping Tools. Zenodo.

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.

Vidale, J. E., & Helmberger, D. V. (1988). Elastic finite-difference modeling of the 1971 San Fernando, California earthquake. Bulletin of the Seismological Society of America, 78(1), 122–141.

Wald, D. J., & Graves, R. W. (2001). Resolution analysis of finite fault source inversion using one‐ and three‐dimensional Green’s functions: 2. Combining seismic and geodetic data. Journal of Geophysical Research: Solid Earth, 106(B5), 8767–8788. DOI:

Wallace, L. M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., D’Anastasio, E., & Fry, B. (2017). Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geoscience, 10(10), 765–770. DOI:

Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. DOI:

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. DOI:

Williams, C. A., & Wallace, L. M. (2015). Effects of material property variations on slip estimates for subduction interface slow‐slip events. Geophysical Research Letters, 42(4), 1113–1121. DOI:

Wirth, E. A., Sahakian, V. J., Wallace, L. M., & Melnick, D. (2022). The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment, 3(2), 125–140. DOI:

Yagi, Y. (2004). Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth, Planets and Space, 56(3), 311–316. DOI:

Yamanaka, Y., & Kikuchi, M. (2003). Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves. Earth, Planets and Space, 55(12), e21–e24. DOI:

Yue, H., & Lay, T. (2011). Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophysical Research Letters, 38(7). DOI:

Zhang, H., Melgar, D., Sahakian, V., Searcy, J., & Lin, J.-T. (2022). Learning source, path and site effects: CNN-based on-site intensity prediction for earthquake early warning. Geophysical Journal International, 231(3), 2186–2204. DOI:

Zheng, X., Zhang, Y., Wang, R., Zhao, L., Li, W., & Huang, Q. (2020). Automatic Inversions of Strong‐Motion Records for Finite‐Fault Models of Significant Earthquakes in and Around Japan. Journal of Geophysical Research: Solid Earth, 125(9). DOI:

Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. DOI:



How to Cite

Fadugba, O., Sahakian, V., Melgar, D., Rodgers, A., & Shimony, R. (2024). The Impact of the Three-Dimensional Structure of a Subduction Zone on Time-dependent Crustal Deformation Measured by HR-GNSS. Seismica, 3(1).