The July-December 2022 earthquake sequence in the southeastern Fars arc of Zagros mountains, Iran

Authors

DOI:

https://doi.org/10.26443/seismica.v2i2.953

Abstract

Within two hours on 01 July 2023, three earthquakes of Mw 5.8-6.0 hit the SE Fars arc, Iran. In the following months, the region characterized by the collision of the Iranian and the Arabian plate, thrust faulting, and salt diapirism was stroke by more than 120 aftershocks of mL 3.1-5.2, of which two of the largest events occurred within one minute on 23 July 2023 in spatial vicinity to each other. We analyzed both the large mainshocks and aftershocks using different techniques, such as the inversion of seismic and satellite deformation data in a joint process and aftershock relocation. Our results indicate the activation of thrust faults within the lower sedimentary cover of the region along with high aftershock activity in significantly larger depth, supporting the controversial model of a crustal strain decoupling during the collision in the Fars Arc. We resolved a magnitude difference of >0.2 magnitude units between seismic and joint seismic and satellite deformation inversions probably caused by afterslip, thereby allowing to bridge between results from international agencies and earlier studies. We also find evidence for an event doublet and triplet activating the same or adjacent faults within the sedimentary cover and the basement

References

Alaska Earthquake Center, Univ. of Alaska Fairbanks. (1987). Alaska Regional Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AK

Alavi, M. (2007). Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9), 1064–1095. https://doi.org/0.2475/09.2007.02

Albuquerque Seismological Laboratory (ASL)/USGS. (1988). Global Seismograph Network - IRIS/USGS. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU

Albuquerque Seismological Laboratory (ASL)/USGS. (1992). New China Digital Seismograph Network. International Federation of Digital Seismograph Network. https://doi.org/10.7914/SN/IC

Albuquerque Seismological Laboratory (ASL)/USGS. (1993). Global Telemetered Seismograph Network (USAF/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GT

Ambraseys, N. N., & Melville, C. P. (2005). A History of Persian Earthquakes. Cambridge University Press. https://books.google.de/books?id=1JkfKub5vakC

Ammon, C. J., Kanamori, H., & Lay, T. (2008). A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature, 451(7178), 561–565. https://doi.org/10.1038/nature06521

Ansari, S. (2016). Co-seismic stress transfer and magnitude-frequency distribution due to the 2012 Varzaqan-Ahar earthquake doublets (Mw 6.5 and 6.4), NW Iran. Journal of Asian Earth Sciences, 132, 129–137. https://doi.org/10.1016/j.jseaes.2016.10.006

Asayesh, B. M., Zafarani, H., Hainzl, S., & Sharma, S. (2022). Effects of large aftershocks on spatial aftershock forecasts during the 2017–2019 western Iran sequence. Geophysical Journal International, 232(1), 147–161. https://doi.org/10.1093/gji/ggac333

Asayesh, B. M., Zarei, S., & Zafarani, H. (2020). Effects of imparted Coulomb stress changes in the seismicity and cluster of the December 2017 Hojedk (SE Iran) triplet. International Journal of Earth Sciences, 109, 2307–2323. https://doi.org/10.1007/s00531-020-01901-0

Astiz, L., Lay, T., & Kanamori, H. (1988). Large intermediate-depth earthquakes and the subduction process. Physics of the Earth and Planetary Interiors, 53(1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0

Baker, C., Jackson, J., & Priestley, K. (1993). Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: strike-slip faulting within a fold-and-thrust belt. Geophysical Journal International, 115(1), 41–61. https://doi.org/10.1111/j.1365-246X.1993.tb05587.x

Barnhart, W. D., Lohman, R. B., & Mellors, R. J. (2013). Active accommodation of plate convergence in Southern Iran: Earthquake locations, triggered aseismic slip, and regional strain rates. Journal of Geophysical Research: Solid Earth, 118(10), 5699–5711. https://doi.org/10.1002/jgrb.50380

Bassin, C., Laske, G., & Masters, G. (2000). The Current Limits of Resolution for Surface Wave Tomography in North America. Eos Trans. AGU, 81(F897). https://cir.nii.ac.jp/crid/1573105976172569088

Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., H Kim, R., S-and Ladner, Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., & Weatherall, P. (2009). Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371. https://doi.org/10.1080/01490410903297766

Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241(3–4), 193–224. https://doi.org/10.1016/0040-1951(94)00185-C

Braunmiller, J., & Nábělek, J. (1996). Geometry of continental normal faults: Seismological constraints. Journal of Geophysical Research: Solid Earth, 101(2), 3045–3052. https://doi.org/10.1029/95jb02882

Carrillo Ponce, A., Dahm, T., Cesca, S., Tilmann, F., Babeyko, A., & Heimann, S. (2021). Bayesian multiple rupture plane inversion to assess rupture complexity: application to the 2018 Mw 7.9 Alaska earthquake. EGU General Assembly Conference Abstracts, eGU21-1583. https://doi.org/10.5194/egusphere-egu21-1583

Cesca, S., Braun, T., Maccaferri, F., Passarelli, L., Rivalta, E., & Dahm, T. (2013). Source modelling of the M5–6 Emilia-Romagna, Italy, earthquakes (2012 May 20–29). Geophysical Journal International, 193(3), 1658–1672. https://doi.org/10.1093/gji/ggt069

Dahm, T., Heimann, S., Metz, M., & Isken, M. P. (2021). A self-similar dynamic rupture model based on the simplified wave-rupture analogy. Geophysical Journal International, 225, 1586–1604. https://doi.org/10.1093/gji/ggab045

Dal Zilio, L., & Ampuero, J. P. (2023). Earthquake doublet in Turkey and Syria. Commun Earth Environ, 4, 73. https://doi.org/10.1038/s43247-023-00747-z

Daout, S., Steinberg, A., Isken, M. P., Heimann, S., & Sudhaus, H. (2020). Illuminating the spatio-temporal evolution of the 2008–2009 qaidam earthquake sequence with the joint use of insar time series and teleseismic data. Remote Sensing, 12(17), 1–23. https://doi.org/10.3390/rs12172850

Doin, M.-P., Lasserre, C., Peltzer, G., Cavalie, O., & Doubre, C. (2015). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Remote Sensing of Environment, 160, 155–170. https://doi.org/10.1016/j.jappgeo.2009.03.010

Donner, S., Ghods, A., Krüger, F., Rößler, D., Landgraf, A., & Ballato, P. (2015). The Ahar-Varzeghan earthquake doublet (Mw 6.4 and 6.2) of 11 August 2012: Regional seismic moment tensors and a seismotectonic interpretation. Bulletin of the Seismological Society of America, 105(2), 791–807. https://doi.org/10.1785/0120140042

Dziewoński, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825

Edey, A., Allen, M. B., & Nilfouroushan, F. (2020). Kinematic Variation Within the Fars Arc, Eastern Zagros, and the Development of Fold-and-Thrust Belt Curvature. Tectonics, 39(8). https://doi.org/10.1029/2019TC005941

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Elliott, J., Bergman, E., Copley, A., Ghods, A., Nissen, E., Oveisi, B., Tatar, M., Walters, R., & Yamini-Fard, F. (2015). The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Insights into seismic and aseismic shortening of the Zagros sedimentary cover. Earth and Space Science, 2(11), 435–471. https://doi.org/10.1002/2015EA000098

Falcon, N. L. (1974). Southern Iran: Zagros Mountains. Geological Society, London, Special Publications, 4(1), 199–211. https://doi.org/10.1144/GSL.SP.2005.004.01.11

Fathian, A., Atzori, S., Nazari, H., Reicherter, K., Salvi, S., Svigkas, N., Tatar, M., Tolomei, C., & Yaminifard, F. (2021). Complex co- and postseismic faulting of the 2017–2018 seismic sequence in western Iran revealed by InSAR and seismic data. Remote Sensing of Environment, 253(December). https://doi.org/10.1016/j.rse.2020.112224

Fathian, Aram, Atzori, S., Svigkas, N., Tolomei, C., Shugar, D. H., & Reicherter, K. (2022). Source Characteristics of the Fin Doublet Earthquake of 14 November 2021 (Mw 6.2 and Mw 6.3) Utilizing InSAR Data. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium.

Freund, R. (1970). Rotation of strike slip faults in Sistan, southeast Iran. The Journal of Geology, 78(2), 188–200. https://doi.org/10.1086/627500

GEOFON Data Centre. (1993). GEOFON Seismic Network. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/TR560404

GEUS Geological Survey of Denmark and Greenland. (1976). Danish Seismological Network. https://www.fdsn.org/networks/detail/DK/

Ghods, A., Shabanian, E., Bergman, E., Faridi, M., Donner, S., Mortezanejad, G., & Aziz-Zanjani, A. (2015). The Varzaghan-Ahar, Iran, Earthquake Doublet (Mw 6.4, 6.2): Implications for the geodynamics of northwest Iran. Geophysical Journal International, 203(1), 522–540. https://doi.org/10.1093/gji/ggv306

Guo, Z., Motagh, M., Hu, J. C., Xu, G., Haghighi, M. H., Bahroudi, A., Fathian, A., & Li, S. (2022). Depth-Varying Friction on a Ramp-Flat Fault Illuminated by 3-Year InSAR Observations Following the 2017 Mw 7.3 Sarpol-e Zahab Earthquake. Journal of Geophysical Research: Solid Earth, 127(12). https://doi.org/10.1029/2022JB025148

He, P., Ding, K., & Xu, C. (2018). The 2016 Mw 6.7 Aketao earthquake in Muji range, northern Pamir: Rupture on a strike-slip fault constrained by Sentinel-1 radar interferometry and GPS. International Journal of Applied Earth Observation and Geoinformation, 73, 99–106. https://doi.org/https://doi.org/10.1016/j.jag.2018.06.001

Heimann, S., Isken, M., Kühn, D., Sudhaus, H., Steinberg, A., Vasyura-Bathke, H., Daout, S., Cesca, S., & Dahm, T. (2018). Grond - A probabilistic earthquake source inversion framework. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2018.003

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura-Bathke, H., Willey, T., & Dahm, T. (2017). Pyrocko - An open-source seismology toolbox and library. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.001

Heimann, S., Vasyura-Bathke, H., Sudhaus, H., Isken, M. P., Kriegerowski, M., Steinberg, A., & Dahm, T. (2019). A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems. Solid Earth, 10(6), 1921–1935. https://doi.org/10.5194/se-10-1921-2019

Hessami, Kh, Jamali, F., & Tabassi, H. (2003). Major active faults of Iran. IIEES, Tehran.

Hessami, Khaled, Koyi, H. A., Talbot, C. J., Tabasi, H., & Shabanian, E. (2001). Progressive unconformities within an evolving foreland fold–thrust belt, Zagros Mountains. Journal of the Geological Society, 158(6), 969–981. https://doi.org/10.1144/0016-764901-007

Hogenson, K., Kristenson, H., Kennedy, J., Johnston, A., Rine, J., Logan, T. A., Zhu, J., Williams, F., Herrmann, J., & Smale, J. (2016). Hybrid Pluggable Processing Pipeline (HyP3): A Cloud-Native Infrastructure for Generic Processing of SAR Data. In Proceedings of the 2016 AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. https://ui.adsabs.harvard.edu/abs/2016AGUFMIN21B1740H

Ide, S. (2007). Bayesian multiple rupture plane inversion to assess rupture complexity: application to the 2018 Mw 7.9 Alaska earthquake. In H. Kanamori (Ed.), Slip inversion in Earthquake Seismology (Vol. 4, pp. 193–224). Elsevier. https://doi.org/10.1016/B978-044452748-6/00068-7

India Meteorological Department. (2000). National Seismic Network of India . International Federation of Digital Seismograph Networks. https://www.fdsn.org/networks/detail/IN/

Institut de physique du globe de Paris (IPGP), & École et Observatoire des Sciences de la Terre de Strasbourg (EOST). (1982). GEOSCOPE, French Global Network of broad band seismic stations. Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G

Isken, M., Sudhaus, H., Heimann, S., Steinberg, A., Daout, S., & Vasyura-Bathke, H. (2017). Kite - Software for Rapid Earthquake Source Optimisation from InSAR Surface Displacement (1.3) [Computer software]. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.002

Jahani, S., Callot, J. P., Letouzey, J., & De Lamotte, D. F. (2009). The eastern termination of the Zagros Fold-and-Thrust Belt, Iran: Structures, evolution, and relationships between salt plugs, folding, and faulting. Tectonics, 28(6). https://doi.org/10.1029/2008TC002418

Jamalreyhani, M, Rezapour, M., Cesca, S., Dahm, T., Heimann, S., Sudhaus, H., & Isken, M. P. (2022). Insight into the 2017–2019 Lurestan arc seismic sequence (Zagros, Iran); complex earthquake interaction in the basement and sediments. Geophysical Journal International, 230, 114–130. https://doi.org/https://doi.org/10.1093/gji/ggac057

Jamalreyhani, Mohammadreza, Pousse-Beltran, L., Büyükakpınar, P., Cesca, S., Nissen, E., Ghods, A., López-Comino, J. Á., Rezapour, M., & Najafi, M. (2021). The 2019–2020 Khalili (Iran) Earthquake Sequence—Anthropogenic Seismicity in the Zagros Simply Folded Belt? Journal of Geophysical Research: Solid Earth, 126(12), 1–19. https://doi.org/10.1029/2021JB022797

Jamalreyhani, Mohammadreza, Pousse-Beltran, L., Hassanzadeh, M., Arabi, S. S., Bergman, E. A., Shamszadeh, A., Arvin, S., Fariborzi, N., & Songhori, A. (2023). Co-seismic slip of the 18 April 2021 Mw 5.9 Genaveh earthquake in the South Dezful Embayment of Zagros (Iran) and its aftershock sequence. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.246

Jia, Z., Shen, Z., Zhan, Z., Li, C., Peng, Z., & Gurnis, M. (2020). The 2018 Fiji Mw 8.2 and 7.9 deep earthquakes: One doublet in two slabs. Earth and Planetary Science Letters, 531, 115997. https://doi.org/https://doi.org/10.1016/j.epsl.2019.115997

Jia, Z., Zhan, Z., & Kanamori, H. (2022). The 2021 South Sandwich Island Mw 8.2 earthquake: a slow event sandwiched between regular ruptures. Geophys. Res. Lett., 49, 1–8. https://doi.org/10.1029/2021GL097104

Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4), 1377–1389. https://doi.org/10.1785/0120000922

Karasözen, E., Nissen, E., Bergman, E. A., & Ghods, A. (2019). Seismotectonics of the Zagros (Iran) From Orogen-Wide, Calibrated Earthquake Relocations. Journal of Geophysical Research: Solid Earth, 124(8), 9109–9129. https://doi.org/10.1029/2019JB017336

Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Lay, T. (2015). The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters, 409, 133–146. https://doi.org/10.1016/j.epsl.2014.10.047

Lay, T., & Kanamori, H. (1980). Earthquake Doublets in the Solomon Islands. Physics Ofthe Earth and Planetary Interiors, 21, 283–304. https://doi.org/10.1016/0031-9201(80)90134-X

Lohman, R. B., & Barnhart, W. D. (2010). Evaluation of earthquake triggering during the 2005–2008 earthquake sequence on Qeshm Island, Iran. Journal of Geophysical Research, 115(B12). https://doi.org/https://doi.org/10.1029/2010JB007710

LTD Seismological Experience and Methodology Expedition of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan. (2003). Seismic network of the Seismological Experience and Methodology Expedition CS MES RK. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/QZ

Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., & Ghafory-Ashtiani, M. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophysical Journal International, 160(1), 217–226. https://doi.org/10.1111/j.1365-246X.2004.02465.x

Metz, M., Vera, F., Carrillo Ponce, A., Cesca, S., Babeyko, A., Dahm, T., Saul, J., & Tilmann, F. (2022). Seismic and Tsunamigenic Characteristics of a Multimodal Rupture of Rapid and Slow Stages: The Example of the Complex 12 August 2021 South Sandwich Earthquake. Journal of Geophysical Research: Solid Earth, 127(11). https://doi.org/10.1029/2022jb024646

Metz, Malte. (2019). A quasi-dynamic and self-consistent rupture model to simulate earthquake ruptures [Masterthesis]. Universität Potsdam. https://doi.org/10.25932/publishup-47310

Momeni, S. M., & Tatar, M. (2018). Mainshocks/aftershocks study of the August 2012 earthquake doublet on Ahar-Varzaghan complex fault system (NW Iran). Physics of the Earth and Planetary Interiors, 283, 67–81. https://doi.org/https://doi.org/10.1016/j.pepi.2018.08.001

Nemati, M. (2022). The November 2021 Fin ( SE Zagros , Iran ) doublet earthquakes of reverse faults in a transpressional tectonic regime [Techreport]. Shahid Bahonar University of Kerman. https://doi.org/10.21203/rs.3.rs-1314781/v1

Ni, J., & Barazangi, M. (1986). Seismotectonics of the Zagros continental collision zone and a comparison with the Himalayas. Journal of Geophysical Research: Solid Earth, 91(B8), 8205–8218. https://doi.org/10.1029/JB091iB08p08205

Nissen, E., Yamini-Fard, F., Tatar, M., Gholamzadeh, A., Bergman, E., Elliott, J. R., Jackson, J. A., & Parsons, B. (2010). The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran. Earth and Planetary Science Letters, 296(3–4), 181–194. https://doi.org/10.1016/j.epsl.2010.04.049

Nissen, Edwin, Ghods, A., Karasözen, E., Elliott, J. R., Barnhart, W. D., Bergman, E. A., Hayes, G. P., Jamal-Reyhani, M., Nemati, M., Tan, F., Abdulnaby, W., Benz, H. M., Shahvar, M. P., Talebian, M., & Chen, L. (2019). The 12 November 2017 M w 7.3 Ezgeleh-Sarpolzahab (Iran) Earthquake and Active Tectonics of the Lurestan Arc. Journal of Geophysical Research: Solid Earth, 124(2), 2124–2152. https://doi.org/10.1029/2018JB016221

Nissen, Edwin, Ghorashi, M., Jackson, J., Parsons, B., & Talebian, M. (2007). The 2005 Qeshm Island earthquake (Iran) - A link between buried reverse faulting and surface folding in the Zagros Simply Folded Belt? Geophysical Journal International, 171(1), 326–338. https://doi.org/10.1111/j.1365-246X.2007.03514.x

Nissen, Edwin, Jackson, J., Jahani, S., & Tatar, M. (2014). Zagros “phantom earthquakes” reassessed - The interplay of seismicity and deep salt flow in the Simply Folded Belt? Journal of Geophysical Research: Solid Earth, 119(4), 3561–3583. https://doi.org/10.1002/2013JB010796

Nissen, Edwin, Tatar, M., Jackson, J. A., & Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3), 928–944. https://doi.org/10.1111/j.1365-246X.2011.05119.x

Okada, Y. (1992). Gravity and potential changes due to shear and tensile faults in a half-space. Journal of Geophysical Research, 82(2), 1018–1040. https://doi.org/10.1029/92JB00178

Oveisi, B., Lavé, J., Van Der Beek, P., Carcaillet, J., Benedetti, L., & Aubourg, C. (2009). Thick-and thin-skinned deformation rates in the central Zagros simple folded zone (Iran) indicated by displacement of geomorphic surfaces. Geophysical Journal International, 176(2), 627–654. https://doi.org/10.1111/j.1365-246X.2008.04002.x

Quinteros, J., Strollo, A., Evans, P. L., Hanka, W., Heinloo, A., Hemmleb, S., Hillmann, L., Jaeckel, K., Kind, R., Saul, J., Zieke, T., & Tilmann, F. (2021). The GEOFON Program in 2020. Seismological Research Letters, 92(3), 1610–1622. https://doi.org/10.1785/0220200415

Regard, V., Bellier, O., Thomas, J.-C., Abbassi, M., Mercier, J., Shabanian, E., Feghhi, K., & Soleymani, S. (2004). Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: A transition between collision and subduction through a young deforming system. Tectonics, 23(4). https://doi.org/10.1029/2003TC001599

Regional Integrated Multi-Hazard Early Warning System (RIMES Thailand). (2008). Regional Integrated Multi-Hazard Early Warning System. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/RM

Rezapour, M., & Jamalreyhani, M. R. (2022). Source fault analyses from InSAR data and aftershocks for the Fin doublet earthquakes on 14 November 2021 in Hormozgan province, South Iran. Earth and Space Physics. https://doi.org/10.22059/jesphys.2022.337959.1007399

Roustaei, M., Nissen, E., Abbassi, M., Gholamzadeh, A., Ghorashi, M., Tatar, M., Yamini-Fard, F., Bergman, E., Jackson, J., & Parsons, B. (2010). The 2006 March 25 Fin earthquakes (Iran) - insights into the vertical extents of faulting in the Zagros Simply Folded Belt. Geophysical Journal International, 181(3), 1275–1291. https://doi.org/10.1111/j.1365-246X.2010.04601.x

San Fernando Royal Naval Observatory (ROA), Universidad Complutense De Madrid (UCM), Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), Universidade De Évora (UEVORA, Portugal) and Institute Scientifique Of Rabat (ISRABAT, Morocco). (1996). The Western Mediterranean BB seismic Network. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/JZ581150

Savidge, E., Nissen, E., Nemati, M., Karasözen, E., Hollingsworth, J., Talebian, M., Bergman, E., Ghods, A., Ghorashi, M., Kosari, E., & others. (2019). The December 2017 Hojedk (Iran) earthquake triplet—sequential rupture of shallow reverse faults in a strike-slip restraining bend. Geophysical Journal International, 217(2), 909–925. https://doi.org/10.1093/gji/ggz053

Scripps Institution of Oceanography. (1986). Global Seismograph Network - IRIS/IDA. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II

Sokos, E., Kiratzi, A., Gallovič, F., Zahradník, J., Serpetsidaki, A., Plicka, V., Janský, J., Kostelecký, J., & Tselentis, G. A. (2015). Rupture process of the 2014 Cephalonia, Greece, earthquake doublet (Mw6) as inferred from regional and local seismic data. Tectonophysics, 656, 131–141. https://doi.org/10.1016/j.tecto.2015.06.013

Steinberg, A., Sudhaus, H., Heimann, S., & Krüger, F. (2020). Sensitivity of InSAR and teleseismic observations to earthquake rupture segmentation. Geophysical Journal International, 223(2), 875–907. https://doi.org/10.1093/gji/ggaa351

Steinberg, A., Sudhaus, H., & Krüger, F. (2022). Using teleseismic backprojection and InSAR to obtain segmentation information for large earthquakes: a case study of the 2016 Mw 6.6 Muji earthquake. Geophysical Journal International. https://doi.org/10.1093/gji/ggac392

Stoecklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7), 1229–1258. https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D

Sudhaus, H., & Jónsson, S. (2009). Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: Application to the June 2000 Kleifarvatn earthquake, Iceland. Geophysical Journal International, 176(2), 389–404. https://doi.org/10.1111/j.1365-246X.2008.03989.x

Talebian, M., & Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506–526. https://doi.org/10.1111/j.1365-246X.2004.02092.x

Tatar, M., Hatzfeld, D., & Ghafory-Ashtiany, M. (2004). Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophysical Journal International, 156(2), 255–266. https://doi.org/10.1111/j.1365-246X.2003.02145.x

Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T. S., Kapetanidis, V., Yolsal-Çevikbilen, S., Erman, C., Keleş, D., Esmaeili, C., Tsironi, V., & Özkan, B. (2022). The 23 February 2020 Qotur-Ravian earthquake doublet at the Iranian-Turkish border: Seismological and InSAR evidence for escape tectonics. Tectonophysics, 838, 229482. https://doi.org/10.1016/j.tecto.2022.229482

Thapa, D. R., Tao, X., Fan, F., & Tao, Z. (2018). Aftershock analysis of the 2015 Gorkha-Dolakha (Central Nepal) earthquake doublet. Heliyon, 4(7), e00678. https://doi.org/10.1016/j.heliyon.2018.e00678

Trugman, D. T., Chamberlain, C. J., Savvaidis, A., & Lomax, A. (2023). GrowClust3D.jl: A Julia Package for the Relative Relocation of Earthquake Hypocenters Using 3D Velocity Models. Seismological Research Letters, 94(1), 443–456. https://doi.org/10.1785/0220220193

Trugman, D. T., & Shearer, P. M. (2017). GrowClust: A Hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequences. Seismological Research Letters, 88(2), 379–391. https://doi.org/10.1785/0220160188

Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., & others. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), 381–398. https://doi.org/10.1111/j.1365-246X.2004.02222.x

Walker, R., & Jackson, J. (2002). Offset and evolution of the Gowk fault, SE Iran: a major intra-continental strike-slip system. Journal of Structural Geology, 24(11), 1677–1698. https://doi.org/10.1016/S0191-8141(01)00170-5

Walker, R. T., Andalibi, M. J., Gheitanchi, M. R., Jackson, J. A., Karegar, S., & Priestley, K. (2005). Seismological and field observations from the 1990 November 6 Furg (Hormozgan) earthquake: A rare case of surface rupture in the Zagros mountains of Iran. Geophysical Journal International, 163(2), 567–579. https://doi.org/10.1111/j.1365-246X.2005.02731.x

Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Green’s functions. Bulletin of the Seismological Society of America, 89(3), 733–741. https://doi.org/10.1785/BSSA0890030733

Wang, R. (2005). The dislocation theory: a consistent way for including the gravity effect in (visco)elastic plane-earth models. Geophysical Journal International, 161, 191–196. https://doi.org/10.1111/j.1365-246X.2005.02614.x

Wang, R., Lorenzo-Martín, F., & Roth, F. (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust - FORTRAN programs EDGRN/EDCMP. Computer and Geosciences, 29(2), 195–207. https://doi.org/10.1016/S0098-3004(02)00111-5

Wang, R., Lorenzo-Martín, F., & Roth, F. (2006). PSGRN/PSCMP - a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computer and Geosciences, 32, 527–541. https://doi.org/10.1016/j.cageo.2005.08.006

Wessel, P., & Smith, W. H. F. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research, 101(B4), 8741–8743. https://doi.org/10.1029/96JB00104

Wessel, Paul, Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, 94(45), 409–410. https://doi.org/10.1002/2013EO450001

Weston, J., Ferreira, A. M. G., & Funning, G. J. (2012). Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics, 532–535, 61–81. https://doi.org/10.1016/j.tecto.2012.02.001

Xu, Z., & Schwartz, S. Y. (1993). Large earthquake doublets and fault plane heterogeneity in the northern Solomon Islands subduction zone. Pure and Applied Geophysics PAGEOPH, 140(2), 365–390. https://doi.org/10.1007/BF00879412

Yamini-Fard, F., Hatzfeld, D., Farahbod, A., Paul, A., & Mokhtari, M. (2007). The diffuse transition between the Zagros continental collision and the Makran oceanic subduction (Iran): microearthquake seismicity and crustal structure. Geophysical Journal International, 170(1), 182–194. https://doi.org/10.1111/j.1365-246X.2006.03232.x

Yaminifard, F., Tatar, M., Hessami, K., Gholamzadeh, A., & Bergman, E. (2012). Aftershock analysis of the 2005 November 27 (Mw 5.8) Qeshm Island earthquake (Zagros-Iran): Triggering of strike-slip faults at the basement. Journal of Geodynamics, 61, 138–147. https://doi.org/10.1016/j.jog.2012.04.005

Yang, Y., Li, X., Hu, J., Song, J., Zhao, J., & Yassaghi, A. (2023). The 2022 Hormozgan Doublet Earthquake : Two Blind Thrusts-Related Folding in Zagros Fold-And-Thrust Belt , Southeast Iran. Geophysical Research Letters, 50. https://doi.org/10.1029/2022GL101902

Ye, L., Lay, T., Kanamori, H., & Koper, K. D. (2013). Energy Release of the 2013 Mw 8.3 Sea of Okhotsk Earthquake and Deep Slab Stress Heterogeneity. Science, 341(September), 1380–1384. https://doi.org/10.1126/science.1242032

Ye, L., Lay, T., Kanamori, H., Zhan, Z., & Duputel, Z. (2016). Diverse rupture processes in the 2015 Peru deep earthquake doublet. Science Advances, 2(6), 1989–1990. https://doi.org/10.1126/sciadv.1600581

Yu, C., Li, Z., & Penna, N. T. (2018). Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sensing of Environment, 204, 109–121. https://doi.org/10.1016/j.rse.2017.10.038

Yu, C., Li, Z., Penna, N. T., & Crippa, P. 1. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202–9222. https://doi.org/10.1029/2017JB015305

Yu, C., Penna, N. T., & Li, Z. (2017). Generation of real‐time mode high‐resolution water vapor fields from GPS observations. Journal of Geophysical Research: Atmospheres, 122(3), 2008–2025. https://doi.org/10.1002/2016JD025753

Yunjun, Z., Fattahi, H., & Amelung, F. (2022). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Remote Sens., 14(336). https://doi.org/10.1016/j.cageo.2019.104331

Zhang, X., Feng, W., Li, D., Yin, F., & Yi, L. (2021). Diverse rupture processes of the 2014 Kangding, China, earthquake doublet (MW 6.0 and 5.7) and driving mechanisms of aftershocks. Tectonophysics, 820, 229118. https://doi.org/10.1016/j.tecto.2021.229118

Zhao, X., Xu, C., Wen, Y., He, K., & Yang, J. (2023). Early post-seismic deformation of the 2017 Mw 7.3 Darbandikhan, Iran/Iraq Earthquake on a flat-ramp-flat fault. Tectonophysics, 853, 229809. https://doi.org/10.1016/j.tecto.2023.229809

Published

2023-10-20 — Updated on 2023-11-01

Versions

How to Cite

Metz, M., Maleki Asayesh, B., Mohseni Aref, M., Jamalreyhani, M., Büyükakpınar, P., & Dahm, T. (2023). The July-December 2022 earthquake sequence in the southeastern Fars arc of Zagros mountains, Iran. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.953 (Original work published October 20, 2023)

Issue

Section

Articles

Funding data