Characterizing High Rate GNSS Velocity Noise for Synthesizing a GNSS Strong Motion Learning Catalog

Authors

  • Timothy Dittmann EarthScope Consortium, USA; Ann and H. J. Smead Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, USA https://orcid.org/0000-0002-6104-7190
  • Y. Jade Morton Ann and H. J. Smead Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, USA https://orcid.org/0000-0001-9173-2888
  • Brendan Crowell Department of Earth and Space Sciences, University of Washington https://orcid.org/0000-0001-7096-601X
  • Diego Melgar Department of Earth Sciences, University of Oregon, Eugene, USA
  • Jensen DeGrande Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA https://orcid.org/0000-0003-4142-2587
  • David Mencin EarthScope Consortium, USA https://orcid.org/0000-0001-9984-6724

DOI:

https://doi.org/10.26443/seismica.v2i2.978

Abstract

Data-driven approaches to identify geophysical signals have proven beneficial in high dimensional environments where model-driven methods fall short. GNSS offers a source of unsaturated ground motion observations that are the data currency of ground motion forecasting and rapid seismic hazard assessment and alerting. However, these GNSS-sourced signals are superposed onto hardware-, location- and time-dependent noise signatures influenced by the Earth’s atmosphere, low-cost or spaceborne oscillators, and complex radio frequency environments. Eschewing heuristic or physics based models for a data-driven approach in this context is a step forward in autonomous signal discrimination. However, the performance of a data-driven approach depends upon substantial representative samples with accurate classifications, and more complex algorithm architectures for deeper scientific insights compound this need. The existing catalogs of high-rate (≥1Hz) GNSS ground motions are relatively limited. In this work, we model and evaluate the probabilistic noise of GNSS velocity measurements over a hemispheric network. We generate stochastic noise time series to augment transferred low-noise strong motion signals from within 70 kilometers of strong events (≥ MW 5.0) from an existing inertial catalog. We leverage known signal and noise information to assess feature extraction strategies and quantify augmentation benefits. We find a classifier model trained on this expanded pseudo-synthetic catalog improves generalization compared to a model trained solely on a real-GNSS velocity catalog, and offers a framework for future enhanced data driven approaches.

References

Allen, R. M., & Ziv, A. (2011). Application of real-time GPS to earthquake early warning. Geophysical Research Letters, 38(16). https://doi.org/10.1029/2011gl047947 DOI: https://doi.org/10.1029/2011GL047947

Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., Kishida, T., & Donahue, J. L. (2014). NGA-West2 Database. Earthquake Spectra, 30(3), 989–1005. https://doi.org/10.1193/070913eqs197m DOI: https://doi.org/10.1193/070913EQS197M

Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Alessandro, C. D., D’Anastasio, E., D’Agostino, N., Giuliani, R., & Mattone, M. (2011). Very high rate (10 Hz) GPS seismology for moderate‐magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event. Journal of Geophysical Research, 116(B2). https://doi.org/10.1029/2010jb007834 DOI: https://doi.org/10.1029/2010JB007834

Benedetti, E., Branzanti, M., Biagi, L., Colosimo, G., Mazzoni, A., & Crespi, M. (2014). Global Navigation Satellite Systems Seismology for the 2012 Mw 6.1 Emilia Earthquake: Exploiting the VADASE Algorithm. Seismological Research Letters, 85(3), 649–656. https://doi.org/10.1785/0220130094 DOI: https://doi.org/10.1785/0220130094

Bergen, K. J., Johnson, P. A., de Hoop, M. V., & Beroza, G. C. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433). https://doi.org/10.1126/science.aau0323 DOI: https://doi.org/10.1126/science.aau0323

Bishop, Chris M. (1995). Training with Noise is Equivalent to Tikhonov Regularization. Neural Computation, 7(1), 108–116. https://doi.org/10.1162/neco.1995.7.1.108 DOI: https://doi.org/10.1162/neco.1995.7.1.108

Bishop, Christopher M., & Nasrabadi, N. M. (2007). Pattern Recognition and Machine Learning. J. Electronic Imaging, 16, 49901. DOI: https://doi.org/10.1117/1.2819119

Bock, Y., Prawirodirdjo, L., & Melbourne, T. I. (2004). Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophysical Research Letters, 31(6). https://doi.org/10.1029/2003gl019150 DOI: https://doi.org/10.1029/2003GL019150

Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America. https://doi.org/https://doi.org/10.1785/BSSA07306A1865

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324

Casey, R., Templeton, M. E., Sharer, G., Keyson, L., Weertman, B. R., & Ahern, T. (2018). Assuring the Quality of IRIS Data with MUSTANG. Seismological Research Letters, 89(2A), 630–639. https://doi.org/10.1785/0220170191 DOI: https://doi.org/10.1785/0220170191

Caswell, T. A., Droettboom, M., Lee, A., de Andrade, E. S., Hoffmann, T., Hunter, J., Klymak, J., Firing, E., Stansby, D., Varoquaux, N., Nielsen, J. H., Root, B., May, R., Elson, P., Seppänen, J. K., Dale, D., Lee, J.-J., McDougall, D., Straw, A., … Ivanov, P. (2021). matplotlib/matplotlib: REL: v3.5.1. Zenodo. https://doi.org/10.5281/ZENODO.5773480

Colombelli, S., Allen, R. M., & Zollo, A. (2013). Application of real-time GPS to earthquake early warning in subduction and strike-slip environments. Journal of Geophysical Research: Solid Earth, 118(7), 3448–3461. https://doi.org/10.1002/jgrb.50242 DOI: https://doi.org/10.1002/jgrb.50242

Colosimo, G., Crespi, M., & Mazzoni, A. (2011). Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration. Journal of Geophysical Research: Solid Earth, 116(B11). https://doi.org/10.1029/2010jb007941 DOI: https://doi.org/10.1029/2010JB007941

Crowell, B., DeGrande, J., Dittmann, T., & Ghent, J. (2023). Validation of Peak Ground Velocities Recorded on Very-high rate GNSS Against NGA-West2 Ground Motion Models. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.239 DOI: https://doi.org/10.26443/seismica.v2i1.239

Crowell, B. W., Bock, Y., & Squibb, M. B. (2009). Demonstration of Earthquake Early Warning Using Total Displacement Waveforms from Real-time GPS Networks. Seismological Research Letters, 80(5), 772–782. https://doi.org/10.1785/gssrl.80.5.772 DOI: https://doi.org/10.1785/gssrl.80.5.772

Crowell, Brendan W. (2021). Near-Field Strong Ground Motions from GPS-Derived Velocities for 2020 Intermountain Western United States Earthquakes. Seismological Research Letters, 92(2A), 840–848. https://doi.org/10.1785/0220200325 DOI: https://doi.org/10.1785/0220200325

Dittmann, T., Liu, Y., Morton, Y., & Mencin, D. (2022). Supervised Machine Learning of High Rate GNSS Velocities for Earthquake Strong Motion Signals. Journal of Geophysical Research: Solid Earth, 127(11). https://doi.org/10.1029/2022jb024854 DOI: https://doi.org/10.1029/2022JB024854

Dittmann, Tim, Hodgkinson, K., Morton, J., Mencin, D., & Mattioli, G. S. (2022). Comparing Sensitivities of Geodetic Processing Methods for Rapid Earthquake Magnitude Estimation. Seismological Research Letters, 93(3), 1497–1509. https://doi.org/10.1785/0220210265 DOI: https://doi.org/10.1785/0220210265

Dittmann, Timothy. (2022). High Rate GNSS Velocities for Earthquake Strong Motion Signals. Zenodo. https://doi.org/10.5281/ZENODO.6588601 DOI: https://doi.org/10.1002/essoar.10511532.1

Dittmann, Timothy, Morton, J., Crowell, B., Melgar, D., DeGrande, J., & Mencin, D. (2023). Real and Psuedosynthetic timeseries used in “Characterizing High Rate GNSS Velocity Noise for Synthesizing a GNSS Strong Motion Learning Catalog.” Zenodo. https://doi.org/10.5281/ZENODO.7909327

Ebinuma, T., & Kato, T. (2012). Dynamic characteristics of very-high-rate GPS observations for seismology. Earth, Planets and Space, 64(5), 369–377. https://doi.org/10.5047/eps.2011.11.005 DOI: https://doi.org/10.5047/eps.2011.11.005

Fang, R., Zheng, J., Geng, J., Shu, Y., Shi, C., & Liu, J. (2020). Earthquake Magnitude Scaling Using Peak Ground Velocity Derived from High-Rate GNSS Observations. Seismological Research Letters, 92(1), 227–237. https://doi.org/10.1785/0220190347 DOI: https://doi.org/10.1785/0220190347

Fratarcangeli, F., Ravanelli, M., Mazzoni, A., Colosimo, G., Benedetti, E., Branzanti, M., Savastano, G., Verkhoglyadova, O., Komjathy, A., & Crespi, M. (2018). The variometric approach to real-time high-frequency geodesy. Rendiconti Lincei. Scienze Fisiche e Naturali, 29(S1), 95–108. https://doi.org/10.1007/s12210-018-0708-5 DOI: https://doi.org/10.1007/s12210-018-0708-5

Geng, J., Pan, Y., Li, X., Guo, J., Liu, J., Chen, X., & Zhang, Y. (2018). Noise Characteristics of High-Rate Multi-GNSS for Subdaily Crustal Deformation Monitoring. Journal of Geophysical Research: Solid Earth, 123(2), 1987–2002. https://doi.org/10.1002/2018jb015527 DOI: https://doi.org/10.1002/2018JB015527

Genrich, J. F., & Bock, Y. (2006). Instantaneous geodetic positioning with 10-50 Hz GPS measurements: Noise characteristics and implications for monitoring networks. Journal of Geophysical Research: Solid Earth, 111(B3). https://doi.org/10.1029/2005jb003617 DOI: https://doi.org/10.1029/2005JB003617

GRAAS, F. V., & SOLOVIEV, A. (2004). Precise Velocity Estimation Using a Stand-Alone GPS Receiver. Navigation, 51(4), 283–292. https://doi.org/10.1002/j.2161-4296.2004.tb00359.x DOI: https://doi.org/10.1002/j.2161-4296.2004.tb00359.x

Grapenthin, R., West, M., & Freymueller, J. (2017). The Utility of GNSS for Earthquake Early Warning in Regions with Sparse Seismic Networks. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120160317 DOI: https://doi.org/10.1785/0120160317

Grapenthin, R., West, M., Tape, C., Gardine, M., & Freymueller, J. (2018). Single-Frequency Instantaneous GNSS Velocities Resolve Dynamic Ground Motion of the 2016 Mw 7.1 Iniskin, Alaska, Earthquake. Seismological Research Letters, 89(3), 1040–1048. https://doi.org/10.1785/0220170235 DOI: https://doi.org/10.1785/0220170235

Graves, R. W., & Pitarka, A. (2010). Broadband Ground-Motion Simulation Using a Hybrid Approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123. https://doi.org/10.1785/0120100057 DOI: https://doi.org/10.1785/0120100057

Grisel, O., Mueller, A., Lars, Gramfort, A., Louppe, G., Prettenhofer, P., Blondel, M., Niculae, V., Nothman, J., Joly, A., Fan, T. J., Vanderplas, J., manoj kumar, Lemaitre, G., Qin, H., Hug, N., Estève, L., Varoquaux, N., Layton, R., … Eustache. (2021). scikit-learn/scikit-learn: scikit-learn 1.0.1. Zenodo. https://doi.org/10.5281/ZENODO.5596244

Häberling, S., Rothacher, M., Zhang, Y., Clinton, J. F., & Geiger, A. (2015). Assessment of high-rate GPS using a single-axis shake table. Journal of Geodesy, 89(7), 697–709. https://doi.org/10.1007/s00190-015-0808-2 DOI: https://doi.org/10.1007/s00190-015-0808-2

Hodgkinson, K. M., Mencin, D. J., Feaux, K., Sievers, C., & Mattioli, G. S. (2020). Evaluation of Earthquake Magnitude Estimation and Event Detection Thresholds for Real-Time GNSS Networks: Examples from Recent Events Captured by the Network of the Americas. Seismological Research Letters, 91(3), 1628–1645. https://doi.org/10.1785/0220190269 DOI: https://doi.org/10.1785/0220190269

Hoffmann, J., Bar-Sinai, Y., Lee, L. M., Andrejevic, J., Mishra, S., Rubinstein, S. M., & Rycroft, C. H. (2019). Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers order in crumpled sheets. Science Advances, 5(4). https://doi.org/10.1126/sciadv.aau6792 DOI: https://doi.org/10.1126/sciadv.aau6792

Hohensinn, R., & Geiger, A. (2018). Stand-Alone GNSS Sensors as Velocity Seismometers: Real-Time Monitoring and Earthquake Detection. Sensors, 18(11), 3712. https://doi.org/10.3390/s18113712 DOI: https://doi.org/10.3390/s18113712

Hohensinn, R., Häberling, S., & Geiger, A. (2020). Dynamic displacements from high-rate GNSS: Error modeling and vibration detection. Measurement, 157, 107655. https://doi.org/10.1016/j.measurement.2020.107655 DOI: https://doi.org/10.1016/j.measurement.2020.107655

Iwana, B. K., & Uchida, S. (2021). An empirical survey of data augmentation for time series classification with neural networks. PLOS ONE, 16(7), e0254841. https://doi.org/10.1371/journal.pone.0254841 DOI: https://doi.org/10.1371/journal.pone.0254841

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P. (2018). Machine Learning in Seismology: Turning Data into Insights. Seismological Research Letters, 90(1), 3–14. https://doi.org/10.1785/0220180259 DOI: https://doi.org/10.1785/0220180259

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003

Langbein, J., & Bock, Y. (2004). High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements. Geophysical Research Letters, 31(15). https://doi.org/10.1029/2003gl019408 DOI: https://doi.org/10.1029/2003GL019408

Lin, J.-T., Melgar, D., Thomas, A. M., & Searcy, J. (2021). Early Warning for Great Earthquakes From Characterization of Crustal Deformation Patterns With Deep Learning. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022703 DOI: https://doi.org/10.1029/2021JB022703

McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001 DOI: https://doi.org/10.1785/012003001

Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., Li, Z., Andrews, J., Hauksson, E., & Yue, Y. (2019). Reliable Real-Time Seismic Signal/Noise Discrimination With Machine Learning. Journal of Geophysical Research: Solid Earth, 124(1), 788–800. https://doi.org/10.1029/2018jb016661 DOI: https://doi.org/10.1029/2018JB016661

Melgar, D., Bock, Y., Sanchez, D., & Crowell, B. W. (2013). On robust and reliable automated baseline corrections for strong motion seismology. Journal of Geophysical Research: Solid Earth, 118(3), 1177–1187. https://doi.org/10.1002/jgrb.50135 DOI: https://doi.org/10.1002/jgrb.50135

Melgar, D., Crowell, B. W., Geng, J., Allen, R. M., Bock, Y., Riquelme, S., Hill, E. M., Protti, M., & Ganas, A. (2015). Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13), 5197–5205. https://doi.org/10.1002/2015gl064278 DOI: https://doi.org/10.1002/2015GL064278

Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise Characteristics of Operational Real-Time High-Rate GNSS Positions in a Large Aperture Network. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2019jb019197 DOI: https://doi.org/10.1029/2019JB019197

Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. https://doi.org/10.1002/2016jb013314 DOI: https://doi.org/10.1002/2016JB013314

Moschas, F., & Stiros, S. (2013). Noise characteristics of high-frequency, short-duration GPS records from analysis of identical, collocated instruments. Measurement, 46(4), 1488–1506. https://doi.org/10.1016/j.measurement.2012.12.015 DOI: https://doi.org/10.1016/j.measurement.2012.12.015

Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377(6607). https://doi.org/10.1126/science.abm4470 DOI: https://doi.org/10.1126/science.abm4470

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w

Murray, J. R., Crowell, B. W., Murray, M. H., Ulberg, C. W., McGuire, J. J., Aranha, M. A., & Hagerty, M. T. (2023). Incorporation of Real-Time Earthquake Magnitudes Estimated via Peak Ground Displacement Scaling in the ShakeAlert Earthquake Early Warning System. Bulletin of the Seismological Society of America, 113(3), 1286–1310. https://doi.org/10.1785/0120220181 DOI: https://doi.org/10.1785/0120220181

Parameswaran, R. M., Grapenthin, R., West, M. E., & Fozkos, A. (2023). Interchangeable Use of GNSS and Seismic Data for Rapid Earthquake Characterization: 2021 Chignik, Alaska, Earthquake. Seismological Research Letters. https://doi.org/10.1785/0220220357 DOI: https://doi.org/10.1785/0220220357

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res., 12(null), 2825–2830.

Ruhl, C. J., Melgar, D., Geng, J., Goldberg, D. E., Crowell, B. W., Allen, R. M., Bock, Y., Barrientos, S., Riquelme, S., Baez, J. C., Cabral‐Cano, E., Pérez‐Campos, X., Hill, E. M., Protti, M., Ganas, A., Ruiz, M., Mothes, P., Jarrín, P., Nocquet, J., … D’Anastasio, E. (2018). A Global Database of Strong-Motion Displacement GNSS Recordings and an Example Application to PGD Scaling. Seismological Research Letters, 90(1), 271–279. https://doi.org/10.1785/0220180177 DOI: https://doi.org/10.1785/0220180177

Seydoux, L., Balestriero, R., Poli, P., Hoop, M. de, Campillo, M., & Baraniuk, R. (2020). Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17841-x DOI: https://doi.org/10.1038/s41467-020-17841-x

SHEN, N., CHEN, L., LIU, J., WANG, L., TAO, T., WU, D., & CHEN, R. (2019). A Review of Global Navigation Satellite System (GNSS)-based Dynamic Monitoring Technologies for Structural Health Monitoring. Remote Sensing, 11(9), 1001. https://doi.org/10.3390/rs11091001 DOI: https://doi.org/10.3390/rs11091001

Shu, Y., Fang, R., Li, M., Shi, C., Li, M., & Liu, J. (2018). Very high-rate GPS for measuring dynamic seismic displacements without aliasing: performance evaluation of the variometric approach. GPS Solutions, 22(4). https://doi.org/10.1007/s10291-018-0785-z DOI: https://doi.org/10.1007/s10291-018-0785-z

Shu, Y., Fang, R., Liu, Y., Ding, D., Qiao, L., Li, G., & Liu, J. (2020). Precise coseismic displacements from the GPS variometric approach using different precise products: Application to the 2008 MW 7.9 Wenchuan earthquake. Advances in Space Research, 65(10), 2360–2371. https://doi.org/10.1016/j.asr.2020.02.013 DOI: https://doi.org/10.1016/j.asr.2020.02.013

Team, T. O. D. (2020). ObsPy 1.2.1. Zenodo. https://doi.org/10.5281/ZENODO.3706479

Teunissen, P. J. G. (2020). GNSS Precise Point Positioning (pp. 503–528). Wiley. https://doi.org/10.1002/9781119458449.ch20 DOI: https://doi.org/10.1002/9781119458449.ch20

Trnkoczy, A. (2012). Topic Understanding and parameter setting of STA/LTA trigger algorithm 1 Introduction. New Manual of Seismological Observatory Practice 2 (NMSOP-2). https://doi.org/https://doi.org/0.2312/GFZ.NMSOP-2_IS_8.1

Wang, Y., Breitsch, B., & Morton, Y. T. J. (2021). A State-Based Method to Simultaneously Reduce Cycle Slips and Noise in Coherent GNSS-R Phase Measurements From Open-Loop Tracking. IEEE Transactions on Geoscience and Remote Sensing, 59(10), 8873–8884. https://doi.org/10.1109/tgrs.2020.3036031 DOI: https://doi.org/10.1109/TGRS.2020.3036031

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515 DOI: https://doi.org/10.1029/2019GC008515

Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., Miller, M., & Johnson, D. J. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research, 109(B3). https://doi.org/10.1029/2003jb002741 DOI: https://doi.org/10.1029/2003JB002741

Williamson, A. L., Melgar, D., Crowell, B. W., Arcas, D., Melbourne, T. I., Wei, Y., & Kwong, K. (2020). Toward Near-Field Tsunami Forecasting Along the Cascadia Subduction Zone Using Rapid GNSS Source Models. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2020jb019636 DOI: https://doi.org/10.1029/2020JB019636

Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S., & Trujillo, J. (1998). A comparison of select trigger algorithms for automated global seismic phase and event detection. Bulletin of the Seismological Society of America, 88(1), 95–106. https://doi.org/10.1785/bssa0880010095 DOI: https://doi.org/10.1785/BSSA0880010095

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324

Yang, R., Morton, Y., Ling, K.-V., & Poh, E.-K. (2017). Generalized GNSS Signal Carrier Tracking–Part II: Optimization and Implementation. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1798–1811. https://doi.org/10.1109/taes.2017.2674198 DOI: https://doi.org/10.1109/TAES.2017.2674198

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? https://doi.org/10.48550/ARXIV.1411.1792

Zhu, W., Mousavi, S. M., & Beroza, G. C. (2020). Seismic signal augmentation to improve generalization of deep neural networks. In Machine Learning in Geosciences (pp. 151–177). Elsevier. https://doi.org/10.1016/bs.agph.2020.07.003 DOI: https://doi.org/10.1016/bs.agph.2020.07.003

Additional Files

Published

2023-10-05

How to Cite

Dittmann, T., Morton, Y. J., Crowell, B., Melgar, D., DeGrande, J., & Mencin, D. (2023). Characterizing High Rate GNSS Velocity Noise for Synthesizing a GNSS Strong Motion Learning Catalog. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.978

Issue

Section

Articles