Seismology in the cloud: guidance for the individual researcher
DOI:
https://doi.org/10.26443/seismica.v2i2.979Abstract
The commercial cloud offers on-demand computational resources that could be revolutionary for the seismological community, especially as seismic datasets continue to grow. However, there are few educational examples for cloud use that target individual seismological researchers. Here, we present a reproducible earthquake detection and association workflow that runs on Microsoft Azure. The Python-based workflow runs on continuous time-series data using both template matching and machine learning. We provide tutorials for constructing cloud resources (both storage and computing) through a desktop portal and deploying the code both locally and remotely on the cloud resources. We report on scaling of compute times and costs to show that CPU-only processing is generally inexpensive, and is faster and simpler than using GPUs. When the workflow is applied to one year of continuous data from a mid-ocean ridge, the resulting earthquake catalogs suggest that template matching and machine learning are complementary methods whose relative performance is dependent on site-specific tectonic characteristics. Overall, we find that the commercial cloud presents a steep learning curve but is cost-effective. This report is intended as an informative starting point for any researcher considering migrating their own processing to the commercial cloud.References
Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., & Magnani, M. B. (2022). Big Data Seismology. Reviews of Geophysics, 60(2), 2021 000769. https://doi.org/10.1029/2021RG000769 DOI: https://doi.org/10.1029/2021RG000769
Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2022). Introducing the FAIR Principles for research software. Scientific Data, 9(1), 1. https://doi.org/10.1038/s41597-022-01710-x DOI: https://doi.org/10.1038/s41597-022-01710-x
Beaucé, E., Frank, W. B., & Romanenko, A. (2017). Fast Matched Filter (FMF): An Efficient Seismic Matched‐Filter Search for Both CPU and GPU Architectures. Seismological Research Letters, 89(1), 165–172. https://doi.org/10.1785/0220170181 DOI: https://doi.org/10.1785/0220170181
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren‐Smith, E., Chambers, D., Chu, S. X., Michailos, K., & Townend, J. (2017). EQcorrscan: Repeating and Near‐Repeating Earthquake Detection and Analysis in Python. Seismological Research Letters, 89(1), 173–181. https://doi.org/10.1785/0220170151 DOI: https://doi.org/10.1785/0220170151
Clements, T., & Denolle, M. A. (2023). The Seismic Signature of California’s Earthquakes, Droughts, and Floods. Journal of Geophysical Research: Solid Earth, 128(1), 2022 025553. https://doi.org/10.1029/2022JB025553 DOI: https://doi.org/10.1029/2022JB025553
Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., & Lumsdaine, A. (2004). Open MPI: Goals, concept, and design of a next generation MPI implementation. Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19-22, 2004, Proceedings 11, 97–104. https://doi.org/10.1007/978-3-540-30218-6_19 DOI: https://doi.org/10.1007/978-3-540-30218-6_19
Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1), 149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x DOI: https://doi.org/10.1111/j.1365-246X.2006.02865.x
Heesemann, M., Insua, T. L., Scherwath, M., Juniper, K. S., & Moran, K. (2014). Ocean Networks Canada: From geohazards research laboratories to smart ocean systems. Oceanography, 27(2), 151–153. https://doi.org/10.5670/oceanog.2014.50 DOI: https://doi.org/10.5670/oceanog.2014.50
Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 7044. https://doi.org/10.1038/nature03675 DOI: https://doi.org/10.1038/nature03675
Jiang, C., Zhang, P., White, M. C. A., Pickle, R., & Miller, M. S. (2022). A Detailed Earthquake Catalog for Banda Arc–Australian Plate Collision Zone Using Machine‐Learning Phase Picker and an Automated Workflow. The Seismic Record, 2(1), 1–10. https://doi.org/10.1785/0320210041 DOI: https://doi.org/10.1785/0320210041
Krauss, Z., Ni, Y., & Henderson, S. (2023). v2.0 Denolle-Lab/seismicloud: Notebooks, Tutorials and Code for “Seismology in the cloud: guidance for the individual researcher.” https://doi.org/10.5281/zenodo.7948849
Krauss, Z., & Wilcock, W. (2021). Microseismicity earthquake catalog, Endeavour Segment, Juan de Fuca ridge, 1995–2021 [Dataset. IEDA. https://doi.org/10.26022/IEDA/330498
Krauss, Z., & Wilcock, W. S. (2022). Investigating microearthquake multiplets using ocean bottom seismometers in a mid-ocean ridge hydrothermal field. In AGU Fall Meeting Abstracts (pp. 45–09).
Krauss, Z., Wilcock, W. S. D., Heesemann, M., Schlesinger, A., Kukovica, J., & Farrugia, J. J. (2023). A Long-Term Earthquake Catalog for the Endeavour Segment: Constraints on the Extensional Cycle and Evidence for Hydrothermal Venting Supported by Propagating Rifts. Journal of Geophysical Research: Solid Earth, 123, 2022 025662. https://doi.org/10.1029/2022JB025662 DOI: https://doi.org/10.1002/essoar.10512473.1
Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., & Ajo-Franklin, J. B. (2017). Fiber-optic network observations of earthquake wavefields. Geophysical Research Letters, 44(23), 11–792. https://doi.org/10.1002/2017GL075722 DOI: https://doi.org/10.1002/2017GL075722
MacCarthy, J., Marcillo, O., & Trabant, C. (2020). Seismology in the cloud: A new streaming workflow. Seismological Research Letters, 91(3), 1804–1812. https://doi.org/10.1785/0220190357 DOI: https://doi.org/10.1785/0220190357
Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE – the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/10.5194/essd-13-5509-2021 DOI: https://doi.org/10.5194/essd-13-5509-2021
Morris, K. (2020). Infrastructure as Code. O’Reilly Media, Inc.
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w
Mousavi, S. M., Sheng, Y., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI. IEEE Access, 7, 179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848 DOI: https://doi.org/10.1109/ACCESS.2019.2947848
Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., & Jozinović, D. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), 2021 023499. https://doi.org/10.1029/2021JB023499 DOI: https://doi.org/10.1029/2021JB023499
Ni, Y., Hutko, A., Skene, F., Denolle, M., Malone, S., Bodin, P., Hartog, R., & Wright, A. (2023). Curated Pacific Northwest AI-ready Seismic Dataset. Seismica, 2(1), 1. https://doi.org/10.26443/seismica.v2i1.368 DOI: https://doi.org/10.26443/seismica.v2i1.368
Norman, M., Kellen, V., Smallen, S., DeMeulle, B., Strande, S., Lazowska, E., Alterman, N., Fatland, R., Stone, S., Tan, A., Yelick, K., Dusen, E., & Mitchell, J. (2021). CloudBank: Managed Services to Simplify Cloud Access for Computer Science Research and Education. Practice and Experience in Advanced Research Computing, 1–4. https://doi.org/10.1145/3437359.3465586 DOI: https://doi.org/10.1145/3437359.3465586
Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378 DOI: https://doi.org/10.1126/science.1070378
Park, Y., Beroza, G. C., & Ellsworth, W. L. (2023). A Mitigation Strategy for the Prediction Inconsistency of Neural Phase Pickers. Seismological Research Letters, 94(3), 1603–1612. https://doi.org/10.1785/0220230003 DOI: https://doi.org/10.1785/0220230003
Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2), 1700578. https://doi.org/10.1126/sciadv.1700578 DOI: https://doi.org/10.1126/sciadv.1700578
Quinteros, J., Carter, J. A., Schaeffer, J., Trabant, C., & Pedersen, H. A. (2021). Exploring Approaches for Large Data in Seismology: User and Data Repository Perspectives. Seismological Research Letters, 92(3), 1531–1540. https://doi.org/10.1785/0220200390 DOI: https://doi.org/10.1785/0220200390
Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783 DOI: https://doi.org/10.1126/science.1084783
Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767–771. https://doi.org/10.1126/science.aaw6888 DOI: https://doi.org/10.1126/science.aaw6888
Schorlemmer, D., Euchner, F., Kästli, P., Saul, J., & Group, Q. W. (2011). QuakeML: Status of the XML-based seismological data exchange format. Annals of Geophysics, 54(1). https://doi.org/10.4401/ag DOI: https://doi.org/10.4401/ag-4874
Schovanec, H., Haynie, K., & Hearne, M. (2021). Development of Cloud Computing Infrastructure for the Automated Creation and Delivery of Near-Real-Time Earthquake Impact Products. AGU Fall Meeting Abstracts, 33–02.
Scotto di Uccio, F., Scala, A., Festa, G., Picozzi, M., & Beroza, G. C. (2023). Comparing and integrating artificial intelligence and similarity search detection techniques: Application to seismic sequences in Southern Italy. Geophysical Journal International, 233(2), 861–874. https://doi.org/10.1093/gji/ggac487 DOI: https://doi.org/10.1093/gji/ggac487
Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339 DOI: https://doi.org/10.1126/science.1108339
Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666 DOI: https://doi.org/10.1038/nature05666
Shi, P., Grigoli, F., Lanza, F., Beroza, G. C., Scarabello, L., & Wiemer, S. (2022). MALMI: An Automated Earthquake Detection and Location Workflow Based on Machine Learning and Waveform Migration. Seismological Research Letters, 93(5), 2467–2483. https://doi.org/10.1785/0220220071 DOI: https://doi.org/10.1785/0220220071
Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine‐Learning‐Based High‐Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 1(1), 11–19. https://doi.org/10.1785/0320210001 DOI: https://doi.org/10.1785/0320210001
Trabant, C., Hutko, A. R., Bahavar, M., Karstens, R., Ahern, T., & Aster, R. (2012). Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications. Seismological Research Letters, 83(5), 846–854. https://doi.org/10.1785/0220120032 DOI: https://doi.org/10.1785/0220120032
Turin, G. (1960). An introduction to matched filters. IRE Transactions on Information Theory, 6(3), 311–329. https://doi.org/10.1109/TIT.1960.1057571 DOI: https://doi.org/10.1109/TIT.1960.1057571
Walter, J. I., Ogwari, P., Thiel, A., Ferrer, F., & Woelfel, I. (2021). easyQuake: Putting Machine Learning to Work for Your Regional Seismic Network or Local Earthquake Study. Seismological Research Letters, 92(1), 555–563. https://doi.org/10.1785/0220200226 DOI: https://doi.org/10.1785/0220200226
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 1. https://doi.org/10.1038/sdata.2016.18 DOI: https://doi.org/10.1038/sdata.2016.18
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324
Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. In D. Feitelson, L. Rudolph, & U. Schwiegelshohn (Eds.), Job Scheduling Strategies for Parallel Processing (pp. 44–60). Springer. https://doi.org/10.1007/10968987_3 DOI: https://doi.org/10.1007/10968987_3
Yoon, C. E., O’Reilly, O., Bergen, K. J., & Beroza, G. C. (2015). Earthquake detection through computationally efficient similarity search. Science Advances, 1(11), 1501057. https://doi.org/10.1126/sciadv.1501057 DOI: https://doi.org/10.1126/sciadv.1501057
Yu, E., Bhaskaran, A., Chen, S., Ross, Z. E., Hauksson, E., & Clayton, R. W. (2021). Southern California Earthquake Data Now Available in the AWS Cloud. Seismological Research Letters, 92(5), 3238–3247. https://doi.org/10.1785/0220210039 DOI: https://doi.org/10.1785/0220210039
Yu, Z., Wang, W., & Chen, Y. (2023). Benchmark on the accuracy and efficiency of several neural network based phase pickers using datasets from China Seismic Network. Earthquake Science, 36(2), 113–131. https://doi.org/10.1016/j.eqs.2022.10.001 DOI: https://doi.org/10.1016/j.eqs.2022.10.001
Zhang, M., Liu, M., Feng, T., Wang, R., & Zhu, W. (2022). LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow. Seismological Research Letters, 93(5), 2426–2438. https://doi.org/10.1785/0220220019 DOI: https://doi.org/10.1785/0220220019
Zhou, Y., Ghosh, A., Fang, L., Yue, H., Zhou, S., & Su, Y. (2021). A high-resolution seismic catalog for the 2021 MS6.4/MW6.1 Yangbi earthquake sequence. Earthquake Science, 34(5), 390–398. https://doi.org/10.29382/eqs-2021-0031 DOI: https://doi.org/10.29382/eqs-2021-0031
Zhu, W., Hou, A. B., Yang, R., Datta, A., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2023). QuakeFlow: A scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophysical Journal International, 232(1), 684–693. https://doi.org/10.1093/gji/ggac355 DOI: https://doi.org/10.1093/gji/ggac355
Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5), 2021 023249. https://doi.org/10.1029/2021JB023249 DOI: https://doi.org/10.1029/2021JB023249
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Zoe Krauss, Yiyu Ni, Scott Henderson, Marine Denolle
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers EAR-2117834;EAR-2103701 -
National Defense Science and Engineering Graduate