Seismology in the cloud: guidance for the individual researcher




The commercial cloud offers on-demand computational resources that could be revolutionary for the seismological community, especially as seismic datasets continue to grow. However, there are few educational examples for cloud use that target individual seismological researchers. Here, we present a reproducible earthquake detection and association workflow that runs on Microsoft Azure. The Python-based workflow runs on continuous time-series data using both template matching and machine learning. We provide tutorials for constructing cloud resources (both storage and computing) through a desktop portal and deploying the code both locally and remotely on the cloud resources. We report on scaling of compute times and costs to show that CPU-only processing is generally inexpensive, and is faster and simpler than using GPUs. When the workflow is applied to one year of continuous data from a mid-ocean ridge, the resulting earthquake catalogs suggest that template matching and machine learning are complementary methods whose relative performance is dependent on site-specific tectonic characteristics. Overall, we find that the commercial cloud presents a steep learning curve but is cost-effective. This report is intended as an informative starting point for any researcher considering migrating their own processing to the commercial cloud.


Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., & Magnani, M. B. (2022). Big Data Seismology. Reviews of Geophysics, 60(2), 2021 000769. DOI:

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2022). Introducing the FAIR Principles for research software. Scientific Data, 9(1), 1. DOI:

Beaucé, E., Frank, W. B., & Romanenko, A. (2017). Fast Matched Filter (FMF): An Efficient Seismic Matched‐Filter Search for Both CPU and GPU Architectures. Seismological Research Letters, 89(1), 165–172. DOI:

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. DOI:

Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren‐Smith, E., Chambers, D., Chu, S. X., Michailos, K., & Townend, J. (2017). EQcorrscan: Repeating and Near‐Repeating Earthquake Detection and Analysis in Python. Seismological Research Letters, 89(1), 173–181. DOI:

Clements, T., & Denolle, M. A. (2023). The Seismic Signature of California’s Earthquakes, Droughts, and Floods. Journal of Geophysical Research: Solid Earth, 128(1), 2022 025553. DOI:

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., & Lumsdaine, A. (2004). Open MPI: Goals, concept, and design of a next generation MPI implementation. Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19-22, 2004, Proceedings 11, 97–104. DOI:

Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1), 149–166. DOI:

Heesemann, M., Insua, T. L., Scherwath, M., Juniper, K. S., & Moran, K. (2014). Ocean Networks Canada: From geohazards research laboratories to smart ocean systems. Oceanography, 27(2), 151–153. DOI:

Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 7044. DOI:

Jiang, C., Zhang, P., White, M. C. A., Pickle, R., & Miller, M. S. (2022). A Detailed Earthquake Catalog for Banda Arc–Australian Plate Collision Zone Using Machine‐Learning Phase Picker and an Automated Workflow. The Seismic Record, 2(1), 1–10. DOI:

Krauss, Z., Ni, Y., & Henderson, S. (2023). v2.0 Denolle-Lab/seismicloud: Notebooks, Tutorials and Code for “Seismology in the cloud: guidance for the individual researcher.”

Krauss, Z., & Wilcock, W. (2021). Microseismicity earthquake catalog, Endeavour Segment, Juan de Fuca ridge, 1995–2021 [Dataset. IEDA.

Krauss, Z., & Wilcock, W. S. (2022). Investigating microearthquake multiplets using ocean bottom seismometers in a mid-ocean ridge hydrothermal field. In AGU Fall Meeting Abstracts (pp. 45–09).

Krauss, Z., Wilcock, W. S. D., Heesemann, M., Schlesinger, A., Kukovica, J., & Farrugia, J. J. (2023). A Long-Term Earthquake Catalog for the Endeavour Segment: Constraints on the Extensional Cycle and Evidence for Hydrothermal Venting Supported by Propagating Rifts. Journal of Geophysical Research: Solid Earth, 123, 2022 025662. DOI:

Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., & Ajo-Franklin, J. B. (2017). Fiber-optic network observations of earthquake wavefields. Geophysical Research Letters, 44(23), 11–792. DOI:

MacCarthy, J., Marcillo, O., & Trabant, C. (2020). Seismology in the cloud: A new streaming workflow. Seismological Research Letters, 91(3), 1804–1812. DOI:

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE – the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. DOI:

Morris, K. (2020). Infrastructure as Code. O’Reilly Media, Inc.

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. DOI:

Mousavi, S. M., Sheng, Y., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI. IEEE Access, 7, 179464–179476. DOI:

Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., & Jozinović, D. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), 2021 023499. DOI:

Ni, Y., Hutko, A., Skene, F., Denolle, M., Malone, S., Bodin, P., Hartog, R., & Wright, A. (2023). Curated Pacific Northwest AI-ready Seismic Dataset. Seismica, 2(1), 1. DOI:

Norman, M., Kellen, V., Smallen, S., DeMeulle, B., Strande, S., Lazowska, E., Alterman, N., Fatland, R., Stone, S., Tan, A., Yelick, K., Dusen, E., & Mitchell, J. (2021). CloudBank: Managed Services to Simplify Cloud Access for Computer Science Research and Education. Practice and Experience in Advanced Research Computing, 1–4. DOI:

Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296(5573), 1679–1681. DOI:

Park, Y., Beroza, G. C., & Ellsworth, W. L. (2023). A Mitigation Strategy for the Prediction Inconsistency of Neural Phase Pickers. Seismological Research Letters, 94(3), 1603–1612. DOI:

Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2), 1700578. DOI:

Quinteros, J., Carter, J. A., Schaeffer, J., Trabant, C., & Pedersen, H. A. (2021). Exploring Approaches for Large Data in Seismology: User and Data Repository Perspectives. Seismological Research Letters, 92(3), 1531–1540. DOI:

Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300(5627), 1942–1943. DOI:

Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767–771. DOI:

Schorlemmer, D., Euchner, F., Kästli, P., Saul, J., & Group, Q. W. (2011). QuakeML: Status of the XML-based seismological data exchange format. Annals of Geophysics, 54(1). DOI:

Schovanec, H., Haynie, K., & Hearne, M. (2021). Development of Cloud Computing Infrastructure for the Automated Creation and Delivery of Near-Real-Time Earthquake Impact Products. AGU Fall Meeting Abstracts, 33–02.

Scotto di Uccio, F., Scala, A., Festa, G., Picozzi, M., & Beroza, G. C. (2023). Comparing and integrating artificial intelligence and similarity search detection techniques: Application to seismic sequences in Southern Italy. Geophysical Journal International, 233(2), 861–874. DOI:

Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. DOI:

Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133), 305–307. DOI:

Shi, P., Grigoli, F., Lanza, F., Beroza, G. C., Scarabello, L., & Wiemer, S. (2022). MALMI: An Automated Earthquake Detection and Location Workflow Based on Machine Learning and Waveform Migration. Seismological Research Letters, 93(5), 2467–2483. DOI:

Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine‐Learning‐Based High‐Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 1(1), 11–19. DOI:

Trabant, C., Hutko, A. R., Bahavar, M., Karstens, R., Ahern, T., & Aster, R. (2012). Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications. Seismological Research Letters, 83(5), 846–854. DOI:

Turin, G. (1960). An introduction to matched filters. IRE Transactions on Information Theory, 6(3), 311–329. DOI:

Walter, J. I., Ogwari, P., Thiel, A., Ferrer, F., & Woelfel, I. (2021). easyQuake: Putting Machine Learning to Work for Your Regional Seismic Network or Local Earthquake Study. Seismological Research Letters, 92(1), 555–563. DOI:

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 1. DOI:

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. DOI:

Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. In D. Feitelson, L. Rudolph, & U. Schwiegelshohn (Eds.), Job Scheduling Strategies for Parallel Processing (pp. 44–60). Springer. DOI:

Yoon, C. E., O’Reilly, O., Bergen, K. J., & Beroza, G. C. (2015). Earthquake detection through computationally efficient similarity search. Science Advances, 1(11), 1501057. DOI:

Yu, E., Bhaskaran, A., Chen, S., Ross, Z. E., Hauksson, E., & Clayton, R. W. (2021). Southern California Earthquake Data Now Available in the AWS Cloud. Seismological Research Letters, 92(5), 3238–3247. DOI:

Yu, Z., Wang, W., & Chen, Y. (2023). Benchmark on the accuracy and efficiency of several neural network based phase pickers using datasets from China Seismic Network. Earthquake Science, 36(2), 113–131. DOI:

Zhang, M., Liu, M., Feng, T., Wang, R., & Zhu, W. (2022). LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow. Seismological Research Letters, 93(5), 2426–2438. DOI:

Zhou, Y., Ghosh, A., Fang, L., Yue, H., Zhou, S., & Su, Y. (2021). A high-resolution seismic catalog for the 2021 MS6.4/MW6.1 Yangbi earthquake sequence. Earthquake Science, 34(5), 390–398. DOI:

Zhu, W., Hou, A. B., Yang, R., Datta, A., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2023). QuakeFlow: A scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophysical Journal International, 232(1), 684–693. DOI:

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5), 2021 023249. DOI:

Additional Files



How to Cite

Krauss, Z., Ni, Y., Henderson, S., & Denolle, M. (2023). Seismology in the cloud: guidance for the individual researcher. Seismica, 2(2).



Reports (excl. Fast Reports)

Funding data