Seismology in the cloud: guidance for the individual researcher

Authors

DOI:

https://doi.org/10.26443/seismica.v2i2.979

Abstract

The commercial cloud offers on-demand computational resources that could be revolutionary for the seismological community, especially as seismic datasets continue to grow. However, there are few educational examples for cloud use that target individual seismological researchers. Here, we present a reproducible earthquake detection and association workflow that runs on Microsoft Azure. The Python-based workflow runs on continuous time-series data using both template matching and machine learning. We provide tutorials for constructing cloud resources (both storage and computing) through a desktop portal and deploying the code both locally and remotely on the cloud resources. We report on scaling of compute times and costs to show that CPU-only processing is generally inexpensive, and is faster and simpler than using GPUs. When the workflow is applied to one year of continuous data from a mid-ocean ridge, the resulting earthquake catalogs suggest that template matching and machine learning are complementary methods whose relative performance is dependent on site-specific tectonic characteristics. Overall, we find that the commercial cloud presents a steep learning curve but is cost-effective. This report is intended as an informative starting point for any researcher considering migrating their own processing to the commercial cloud.

References

Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., & Magnani, M. B. (2022). Big Data Seismology. Reviews of Geophysics, 60(2), 2021 000769. https://doi.org/10.1029/2021RG000769 DOI: https://doi.org/10.1029/2021RG000769

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2022). Introducing the FAIR Principles for research software. Scientific Data, 9(1), 1. https://doi.org/10.1038/s41597-022-01710-x DOI: https://doi.org/10.1038/s41597-022-01710-x

Beaucé, E., Frank, W. B., & Romanenko, A. (2017). Fast Matched Filter (FMF): An Efficient Seismic Matched‐Filter Search for Both CPU and GPU Architectures. Seismological Research Letters, 89(1), 165–172. https://doi.org/10.1785/0220170181 DOI: https://doi.org/10.1785/0220170181

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530

Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren‐Smith, E., Chambers, D., Chu, S. X., Michailos, K., & Townend, J. (2017). EQcorrscan: Repeating and Near‐Repeating Earthquake Detection and Analysis in Python. Seismological Research Letters, 89(1), 173–181. https://doi.org/10.1785/0220170151 DOI: https://doi.org/10.1785/0220170151

Clements, T., & Denolle, M. A. (2023). The Seismic Signature of California’s Earthquakes, Droughts, and Floods. Journal of Geophysical Research: Solid Earth, 128(1), 2022 025553. https://doi.org/10.1029/2022JB025553 DOI: https://doi.org/10.1029/2022JB025553

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., & Lumsdaine, A. (2004). Open MPI: Goals, concept, and design of a next generation MPI implementation. Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19-22, 2004, Proceedings 11, 97–104. https://doi.org/10.1007/978-3-540-30218-6_19 DOI: https://doi.org/10.1007/978-3-540-30218-6_19

Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1), 149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x DOI: https://doi.org/10.1111/j.1365-246X.2006.02865.x

Heesemann, M., Insua, T. L., Scherwath, M., Juniper, K. S., & Moran, K. (2014). Ocean Networks Canada: From geohazards research laboratories to smart ocean systems. Oceanography, 27(2), 151–153. https://doi.org/10.5670/oceanog.2014.50 DOI: https://doi.org/10.5670/oceanog.2014.50

Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 7044. https://doi.org/10.1038/nature03675 DOI: https://doi.org/10.1038/nature03675

Jiang, C., Zhang, P., White, M. C. A., Pickle, R., & Miller, M. S. (2022). A Detailed Earthquake Catalog for Banda Arc–Australian Plate Collision Zone Using Machine‐Learning Phase Picker and an Automated Workflow. The Seismic Record, 2(1), 1–10. https://doi.org/10.1785/0320210041 DOI: https://doi.org/10.1785/0320210041

Krauss, Z., Ni, Y., & Henderson, S. (2023). v2.0 Denolle-Lab/seismicloud: Notebooks, Tutorials and Code for “Seismology in the cloud: guidance for the individual researcher.” https://doi.org/10.5281/zenodo.7948849

Krauss, Z., & Wilcock, W. (2021). Microseismicity earthquake catalog, Endeavour Segment, Juan de Fuca ridge, 1995–2021 [Dataset. IEDA. https://doi.org/10.26022/IEDA/330498

Krauss, Z., & Wilcock, W. S. (2022). Investigating microearthquake multiplets using ocean bottom seismometers in a mid-ocean ridge hydrothermal field. In AGU Fall Meeting Abstracts (pp. 45–09).

Krauss, Z., Wilcock, W. S. D., Heesemann, M., Schlesinger, A., Kukovica, J., & Farrugia, J. J. (2023). A Long-Term Earthquake Catalog for the Endeavour Segment: Constraints on the Extensional Cycle and Evidence for Hydrothermal Venting Supported by Propagating Rifts. Journal of Geophysical Research: Solid Earth, 123, 2022 025662. https://doi.org/10.1029/2022JB025662 DOI: https://doi.org/10.1002/essoar.10512473.1

Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., & Ajo-Franklin, J. B. (2017). Fiber-optic network observations of earthquake wavefields. Geophysical Research Letters, 44(23), 11–792. https://doi.org/10.1002/2017GL075722 DOI: https://doi.org/10.1002/2017GL075722

MacCarthy, J., Marcillo, O., & Trabant, C. (2020). Seismology in the cloud: A new streaming workflow. Seismological Research Letters, 91(3), 1804–1812. https://doi.org/10.1785/0220190357 DOI: https://doi.org/10.1785/0220190357

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE – the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/10.5194/essd-13-5509-2021 DOI: https://doi.org/10.5194/essd-13-5509-2021

Morris, K. (2020). Infrastructure as Code. O’Reilly Media, Inc.

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w

Mousavi, S. M., Sheng, Y., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI. IEEE Access, 7, 179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848 DOI: https://doi.org/10.1109/ACCESS.2019.2947848

Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., & Jozinović, D. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), 2021 023499. https://doi.org/10.1029/2021JB023499 DOI: https://doi.org/10.1029/2021JB023499

Ni, Y., Hutko, A., Skene, F., Denolle, M., Malone, S., Bodin, P., Hartog, R., & Wright, A. (2023). Curated Pacific Northwest AI-ready Seismic Dataset. Seismica, 2(1), 1. https://doi.org/10.26443/seismica.v2i1.368 DOI: https://doi.org/10.26443/seismica.v2i1.368

Norman, M., Kellen, V., Smallen, S., DeMeulle, B., Strande, S., Lazowska, E., Alterman, N., Fatland, R., Stone, S., Tan, A., Yelick, K., Dusen, E., & Mitchell, J. (2021). CloudBank: Managed Services to Simplify Cloud Access for Computer Science Research and Education. Practice and Experience in Advanced Research Computing, 1–4. https://doi.org/10.1145/3437359.3465586 DOI: https://doi.org/10.1145/3437359.3465586

Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378 DOI: https://doi.org/10.1126/science.1070378

Park, Y., Beroza, G. C., & Ellsworth, W. L. (2023). A Mitigation Strategy for the Prediction Inconsistency of Neural Phase Pickers. Seismological Research Letters, 94(3), 1603–1612. https://doi.org/10.1785/0220230003 DOI: https://doi.org/10.1785/0220230003

Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2), 1700578. https://doi.org/10.1126/sciadv.1700578 DOI: https://doi.org/10.1126/sciadv.1700578

Quinteros, J., Carter, J. A., Schaeffer, J., Trabant, C., & Pedersen, H. A. (2021). Exploring Approaches for Large Data in Seismology: User and Data Repository Perspectives. Seismological Research Letters, 92(3), 1531–1540. https://doi.org/10.1785/0220200390 DOI: https://doi.org/10.1785/0220200390

Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783 DOI: https://doi.org/10.1126/science.1084783

Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767–771. https://doi.org/10.1126/science.aaw6888 DOI: https://doi.org/10.1126/science.aaw6888

Schorlemmer, D., Euchner, F., Kästli, P., Saul, J., & Group, Q. W. (2011). QuakeML: Status of the XML-based seismological data exchange format. Annals of Geophysics, 54(1). https://doi.org/10.4401/ag DOI: https://doi.org/10.4401/ag-4874

Schovanec, H., Haynie, K., & Hearne, M. (2021). Development of Cloud Computing Infrastructure for the Automated Creation and Delivery of Near-Real-Time Earthquake Impact Products. AGU Fall Meeting Abstracts, 33–02.

Scotto di Uccio, F., Scala, A., Festa, G., Picozzi, M., & Beroza, G. C. (2023). Comparing and integrating artificial intelligence and similarity search detection techniques: Application to seismic sequences in Southern Italy. Geophysical Journal International, 233(2), 861–874. https://doi.org/10.1093/gji/ggac487 DOI: https://doi.org/10.1093/gji/ggac487

Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339 DOI: https://doi.org/10.1126/science.1108339

Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666 DOI: https://doi.org/10.1038/nature05666

Shi, P., Grigoli, F., Lanza, F., Beroza, G. C., Scarabello, L., & Wiemer, S. (2022). MALMI: An Automated Earthquake Detection and Location Workflow Based on Machine Learning and Waveform Migration. Seismological Research Letters, 93(5), 2467–2483. https://doi.org/10.1785/0220220071 DOI: https://doi.org/10.1785/0220220071

Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine‐Learning‐Based High‐Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 1(1), 11–19. https://doi.org/10.1785/0320210001 DOI: https://doi.org/10.1785/0320210001

Trabant, C., Hutko, A. R., Bahavar, M., Karstens, R., Ahern, T., & Aster, R. (2012). Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications. Seismological Research Letters, 83(5), 846–854. https://doi.org/10.1785/0220120032 DOI: https://doi.org/10.1785/0220120032

Turin, G. (1960). An introduction to matched filters. IRE Transactions on Information Theory, 6(3), 311–329. https://doi.org/10.1109/TIT.1960.1057571 DOI: https://doi.org/10.1109/TIT.1960.1057571

Walter, J. I., Ogwari, P., Thiel, A., Ferrer, F., & Woelfel, I. (2021). easyQuake: Putting Machine Learning to Work for Your Regional Seismic Network or Local Earthquake Study. Seismological Research Letters, 92(1), 555–563. https://doi.org/10.1785/0220200226 DOI: https://doi.org/10.1785/0220200226

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 1. https://doi.org/10.1038/sdata.2016.18 DOI: https://doi.org/10.1038/sdata.2016.18

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324

Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. In D. Feitelson, L. Rudolph, & U. Schwiegelshohn (Eds.), Job Scheduling Strategies for Parallel Processing (pp. 44–60). Springer. https://doi.org/10.1007/10968987_3 DOI: https://doi.org/10.1007/10968987_3

Yoon, C. E., O’Reilly, O., Bergen, K. J., & Beroza, G. C. (2015). Earthquake detection through computationally efficient similarity search. Science Advances, 1(11), 1501057. https://doi.org/10.1126/sciadv.1501057 DOI: https://doi.org/10.1126/sciadv.1501057

Yu, E., Bhaskaran, A., Chen, S., Ross, Z. E., Hauksson, E., & Clayton, R. W. (2021). Southern California Earthquake Data Now Available in the AWS Cloud. Seismological Research Letters, 92(5), 3238–3247. https://doi.org/10.1785/0220210039 DOI: https://doi.org/10.1785/0220210039

Yu, Z., Wang, W., & Chen, Y. (2023). Benchmark on the accuracy and efficiency of several neural network based phase pickers using datasets from China Seismic Network. Earthquake Science, 36(2), 113–131. https://doi.org/10.1016/j.eqs.2022.10.001 DOI: https://doi.org/10.1016/j.eqs.2022.10.001

Zhang, M., Liu, M., Feng, T., Wang, R., & Zhu, W. (2022). LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow. Seismological Research Letters, 93(5), 2426–2438. https://doi.org/10.1785/0220220019 DOI: https://doi.org/10.1785/0220220019

Zhou, Y., Ghosh, A., Fang, L., Yue, H., Zhou, S., & Su, Y. (2021). A high-resolution seismic catalog for the 2021 MS6.4/MW6.1 Yangbi earthquake sequence. Earthquake Science, 34(5), 390–398. https://doi.org/10.29382/eqs-2021-0031 DOI: https://doi.org/10.29382/eqs-2021-0031

Zhu, W., Hou, A. B., Yang, R., Datta, A., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2023). QuakeFlow: A scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophysical Journal International, 232(1), 684–693. https://doi.org/10.1093/gji/ggac355 DOI: https://doi.org/10.1093/gji/ggac355

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5), 2021 023249. https://doi.org/10.1029/2021JB023249 DOI: https://doi.org/10.1029/2021JB023249

Additional Files

Published

2023-08-25

How to Cite

Krauss, Z., Ni, Y., Henderson, S., & Denolle, M. (2023). Seismology in the cloud: guidance for the individual researcher. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.979

Issue

Section

Reports (excl. Fast Reports)

Funding data