Detection of slow slip events along the southern Peru - northern Chile subduction zone

Authors

DOI:

https://doi.org/10.26443/seismica.v3i1.980

Keywords:

Transient Deformation, Subduction Zone, GNSS, Interseismic Coupling

Abstract

Detections of slow slip events (SSEs) are now common along most plate boundary fault systems at the global scale. However, no such event has been described in the south Peru - north Chile subduction zone so far, except for the early preparatory phase of the 2014 Iquique earthquake. We use geodetic template matching on GNSS-derived time series of surface motion in Northern Chile to extract SSEs hidden within the geodetic noise. We detect 33 events with durations ranging from 9 to 40 days and magnitudes from Mw 5.6 to 6.2. The moment released by these aseismic events seems to scale with the cube of their duration, suggesting a dynamic comparable to that of earthquakes. We compare the distribution of SSEs with the distribution of coupling along the megathrust derived using Bayesian inference on GNSS- and InSAR-derived interseismic velocities. From this comparison, we obtain that most SSEs occur in regions of intermediate coupling where the megathrust transitions from locked to creeping or where geometrical complexities of the interplate region have been proposed. We finally discuss the potential role of fluids as a triggering mechanism for SSEs in the area.

References

Altamimi, Z., Collilieux, X., & Métivier, L. (2011). ITRF2008: An improved solution of the international terrestrial reference frame. Journal of Geodesy, 85(8), 457–473. https://doi.org/10.1007/s00190-011-0444-4 DOI: https://doi.org/10.1007/s00190-011-0444-4

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109–6131. https://doi.org/10.1002/2016JB013098 DOI: https://doi.org/10.1002/2016JB013098

Ambraseys, N. N. (1970). Some characteristic features of the Anatolian fault zone. Tectonophysics, 9(2–3), 143–165. https://doi.org/10.1016/0040-1951(70)90014-4 DOI: https://doi.org/10.1016/0040-1951(70)90014-4

Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., Ide, S., & Davis, E. (2017). Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 356(6343), 1157–1160. https://doi.org/10.1126/science.aan3120 DOI: https://doi.org/10.1126/science.aan3120

Armijo, R., & Thiele, R. (1990). Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary? Earth and Planetary Science Letters, 98(1), 40–61. https://doi.org/10.1016/0012-821X(90)90087-E DOI: https://doi.org/10.1016/0012-821X(90)90087-E

Avouac, J.-P. (2015). From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annual Review of Earth and Planetary Sciences, 43(1), 233–271. https://doi.org/10.1146/annurev-earth-060614-105302 DOI: https://doi.org/10.1146/annurev-earth-060614-105302

Báez, J. C., Leyton, F., Troncoso, C., del Campo, F., Bevis, M., Vigny, C., Moreno, M., Simons, M., Kendrick, E., Parra, H., & Blume, F. (2018). The Chilean GNSS Network: Current Status and Progress toward Early Warning Applications. Seismological Research Letters, 89(4), 1546–1554. https://doi.org/10.1785/0220180011 DOI: https://doi.org/10.1785/0220180011

Bayart, E., Svetlizky, I., & Fineberg, J. (2016). Slippery but Tough: The Rapid Fracture of Lubricated Frictional Interfaces. Physical Review Letters, 116(19), 194301. https://doi.org/10.1103/PhysRevLett.116.194301 DOI: https://doi.org/10.1103/PhysRevLett.116.194301

Beck, S. L., & Ruff, L. J. (1989). Great earthquakes and subduction along the Peru trench. Physics of the Earth and Planetary Interiors, 57(3–4), 199–224. https://doi.org/10.1016/0031-9201(89)90112-X DOI: https://doi.org/10.1016/0031-9201(89)90112-X

Behr, W. M., & Bürgmann, R. (2021). What’s down there? The structures, materials and environment of deep-seated slow slip and tremor. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20200218. https://doi.org/10.1098/rsta.2020.0218 DOI: https://doi.org/10.1098/rsta.2020.0218

Béjar-Pizarro, M., Carrizo, D., Socquet, A., Armijo, R., Barrientos, S., Bondoux, F., Bonvalot, S., Campos, J., Comte, D., De Chabalier, J. B., & others. (2010). Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophysical Journal International, 183(1), 390–406. https://doi.org/10.1111/j.1365-246X.2010.04748.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04748.x

Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., & Simons, M. (2013). Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience, 6(6), 462–467. https://doi.org/10.1038/ngeo1802 DOI: https://doi.org/10.1038/ngeo1802

Bevis, M., & Brown, A. (2014). Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy, 88(3), 283–311. https://doi.org/10.1007/s00190-013-0685-5 DOI: https://doi.org/10.1007/s00190-013-0685-5

Bock, Y., & Melgar, D. (2016). Physical applications of GPS geodesy: A review. Reports on Progress in Physics, 79(10), 106801. https://doi.org/10.1088/0034-4885/79/10/106801 DOI: https://doi.org/10.1088/0034-4885/79/10/106801

Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth, 111(2). https://doi.org/10.1029/2005JB003629 DOI: https://doi.org/10.1029/2005JB003629

Bouchon, M., Marsan, D., Durand, V., Campillo, M., Perfettini, H., Madariaga, R., & Gardonio, B. (2016). Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geoscience, 9(5), 380–383. https://doi.org/10.1038/ngeo2701 DOI: https://doi.org/10.1038/ngeo2701

Bouchon, M., Marsan, D., Jara, J., Socquet, A., Campillo, M., & Perfettini, H. (2018). Suspected Deep Interaction and Triggering Between Giant Earthquakes in the Chilean Subduction Zone. Geophysical Research Letters, 45(11), 5454–5460. https://doi.org/10.1029/2018GL078350 DOI: https://doi.org/10.1029/2018GL078350

Boudin, F., Bernard, P., Meneses, G., Vigny, C., Olcay, M., Tassara, C., Boy, J. P., Aissaoui, E., Métois, M., Satriano, C., Esnoult, M.-F., Nercessian, A., Vallée, M., Vilotte, J.-P., & Brunet, C. (2021). Slow slip events precursory to the 2014 Iquique Earthquake, revisited with long-base tilt and GPS records. Geophysical Journal International, 228(3), 2092–2121. https://doi.org/10.1093/gji/ggab425 DOI: https://doi.org/10.1093/gji/ggab425

Brace, W. F., & Byerlee, J. D. (1966). Stick-Slip as a Mechanism for Earthquakes. Science, 153(3739), 990–992. https://doi.org/10.1126/science.153.3739.990 DOI: https://doi.org/10.1126/science.153.3739.990

Bürgmann, R., Kogan, M. G., Levin, V. E., Scholz, C. H., King, R. W., & Steblov, G. M. (2001). Rapid aseismic moment release following the 5 December, 1997 Kronotsky, Kamchatka, earthquake. Geophysical Research Letters, 28(7), 1331–1334. https://doi.org/10.1029/2000GL012350 DOI: https://doi.org/10.1029/2000GL012350

Bürgmann, Roland. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112–134. https://doi.org/10.1016/j.epsl.2018.04.062 DOI: https://doi.org/10.1016/j.epsl.2018.04.062

Bürgmann, Roland, Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., & Apel, E. (2005). Interseismic coupling and asperity distribution along the Kamchatka subduction zone. Journal of Geophysical Research: Solid Earth, 110(7), 1–17. https://doi.org/10.1029/2005JB003648 DOI: https://doi.org/10.1029/2005JB003648

Cheloni, D., D’Agostino, N., Selvaggi, G., Avallone, A., Fornaro, G., Giuliani, R., Reale, Di., Sansosti, E., & Tizzani, P. (2017). Aseismic transient during the 2010–2014 seismic swarm: evidence for longer recurrence of M > 6.5 earthquakes in the Pollino gap (Southern Italy)? Scientific Reports, 7(1), 576. https://doi.org/10.1038/s41598-017-00649-z DOI: https://doi.org/10.1038/s41598-017-00649-z

Chlieh, M., De Chabalier, J. B., Ruegg, J. C., Armijo, R., Dmowska, R., Campos, J., & Feigl, K. L. (2004). Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. Geophysical Journal International, 158(2), 695–711. https://doi.org/10.1111/j.1365-246X.2004.02326.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02326.x

Chlieh, Mohamed, Perfettini, H., Tavera, H., Avouac, J. P., Remy, D., Nocquet, J. M., Rolandone, F., Bondoux, F., Gabalda, G., & Bonvalot, S. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research: Solid Earth, 116(12). https://doi.org/10.1029/2010JB008166 DOI: https://doi.org/10.1029/2010JB008166

Comte, D., Carrizo, D., Roecker, S., Ortega-Culaciati, F., & Peyrat, S. (2016). Three-dimensional elastic wave speeds in the northern Chile subduction zone: Variations in hydration in the supraslab mantle. Geophysical Journal International, 207(2), 1080–1105. https://doi.org/10.1093/gji/ggw318 DOI: https://doi.org/10.1093/gji/ggw318

Comte, D., & Pardo, M. (1991). Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4(1), 23–44. https://doi.org/10.1007/BF00126557 DOI: https://doi.org/10.1007/BF00126557

Contreras-Reyes, E., Díaz, D., Bello-González, J. P., Slezak, K., Potin, B., Comte, D., Maksymowicz, A., Ruiz, J. A., Osses, A., & Ruiz, S. (2021). Subduction zone fluids and arc magmas conducted by lithospheric deformed regions beneath the central Andes. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-02430-9 DOI: https://doi.org/10.1038/s41598-021-02430-9

Dal Zilio, L., Jolivet, R., & van Dinther, Y. (2020). Segmentation of the Main Himalayan Thrust Illuminated by Bayesian Inference of Interseismic Coupling. Geophysical Research Letters, 47(4), 1–10. https://doi.org/10.1029/2019GL086424 DOI: https://doi.org/10.1029/2019GL086424

Dal Zilio, L., Lapusta, N., & Avouac, J. P. (2020). Unraveling Scaling Properties of Slow-Slip Events. Geophysical Research Letters, 47(10). https://doi.org/10.1029/2020GL087477 DOI: https://doi.org/10.1029/2020GL087477

Delouis, B., Monfret, T., Dorbath, L., Pardo, M., Rivera, L., Comte, D., Haessler, H., Caminade, J. P., Ponce, L., Kausel, E., & Cisternas, A. (1997). The Mw= 8.0 antofagasta (northern Chile) earthquake of 30 July 1995: A precursor to the end of the large 1877 gap. Bulletin of the Seismological Society of America, 87(2), 427–445. DOI: https://doi.org/10.1785/BSSA0870020427

Dorbath, L., Cisternas, A., & Dorbath, C. (1990). Assessment of the size of large and great historical earthquakes in Peru. Bulletin of the Seismological Society of America, 80(3), 551–576.

Dragert, H., Wang, K., & James, T. S. (2001). A Silent Slip Event on the Deeper Cascadia Subduction Interface. Science, 292(5521), 1525–1528. https://doi.org/10.1126/science.1060152 DOI: https://doi.org/10.1126/science.1060152

Ducellier, A., Creager, K. C., & Schmidt, D. A. (2022). Detection of Slow Slip Events Using Wavelet Analysis of GNSS Recordings. Bulletin of the Seismological Society of America, 112(5), 2408–2424. https://doi.org/10.1785/0120210289 DOI: https://doi.org/10.1785/0120210289

Duputel, Z., Jiang, J., Jolivet, R., Simons, M., Rivera, L., Ampuero, J. P., Riel, B., Owen, S. E., Moore, A. W., Samsonov, S. V., Ortega Culaciati, F., & Minson, S. E. (2015). The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophysical Research Letters, 42(19), 7949–7957. https://doi.org/10.1002/2015GL065402 DOI: https://doi.org/10.1002/2015GL065402

Duputel, Zacharie, Agram, P. S., Simons, M., Minson, S. E., & Beck, J. L. (2014). Accounting for prediction uncertainty when inferring subsurface fault slip. Geophysical Journal International, 197(1), 464–482. https://doi.org/10.1093/gji/ggt517 DOI: https://doi.org/10.1093/gji/ggt517

Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825 DOI: https://doi.org/10.1029/JB086iB04p02825

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002 DOI: https://doi.org/10.1016/j.pepi.2012.04.002

Essing, D., & Poli, P. (2022). Spatiotemporal Evolution of the Seismicity in the Alto Tiberina Fault System Revealed by a High‐Resolution Template Matching Catalog. Journal of Geophysical Research: Solid Earth, 127(10). https://doi.org/10.1029/2022JB024845 DOI: https://doi.org/10.1029/2022JB024845

Frank, W. B. (2016). Slow slip hidden in the noise: The intermittence of tectonic release. Geophysical Research Letters, 43(19), 125–10. https://doi.org/10.1002/2016GL069537 DOI: https://doi.org/10.1002/2016GL069537

Frank, W. B., & Brodsky, E. E. (2019). Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling. Science Advances, 5(10), eaaw9386. https://doi.org/10.1126/sciadv.aaw9386 DOI: https://doi.org/10.1126/sciadv.aaw9386

Gardonio, B., Marsan, D., Socquet, A., Bouchon, M., Jara, J., Sun, Q., Cotte, N., & Campillo, M. (2018). Revisiting Slow Slip Events Occurrence in Boso Peninsula, Japan, Combining GPS Data and Repeating Earthquakes Analysis. Journal of Geophysical Research: Solid Earth, 123(2), 1502–1515. https://doi.org/10.1002/2017JB014469 DOI: https://doi.org/10.1002/2017JB014469

Gomberg, J., Wech, A., Creager, K., Obara, K., & Agnew, D. (2016). Reconsidering earthquake scaling. Geophysical Research Letters, 43(12), 6243–6251. https://doi.org/10.1002/2016GL069967 DOI: https://doi.org/10.1002/2016GL069967

Graham, S., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Rousset, B., Walpersdorf, A., Cotte, N., Lasserre, C., McCaffrey, R., & Salazar-Tlaczani, L. (2016). Slow Slip History for the MEXICO Subduction Zone: 2005 Through 2011. Pure and Applied Geophysics, 173(10–11), 3445–3465. https://doi.org/10.1007/s00024-015-1211-x DOI: https://doi.org/10.1007/s00024-015-1211-x

Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M. E., & Avouac, J.-P. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 44(15), 7706–7714. https://doi.org/10.1002/2017GL073687 DOI: https://doi.org/10.1002/2017GL073687

Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169–198. https://doi.org/10.1002/2016RG000539 DOI: https://doi.org/10.1002/2016RG000539

Hartzell, S., & Langer, C. (1993). Importance of model parameterization in finite fault inversions: application to the 1974 MW 8.0 Peru earthquake. Journal of Geophysical Research, 98(B12). https://doi.org/10.1029/93jb02453 DOI: https://doi.org/10.1029/93JB02453

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723 DOI: https://doi.org/10.1126/science.aat4723

Heki, K., Miyazaki, S., & Tsuji, H. (1997). Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature, 386(6625), 595–598. https://doi.org/10.1038/386595a0 DOI: https://doi.org/10.1038/386595a0

Herring, T. A., King, R. W., Floyd, M. A., & McClusky, S. C. (2015). GAMIT Reference Manual. GPS Analysis at MIT GLOBK, Release 10.6 (p. 168).

Hetland, E. A., & Simons, M. (2010). Post-seismic and interseismic fault creep II: Transient creep and interseismic stress shadows on megathrusts. Geophysical Journal International, 181(1), 99–112. https://doi.org/10.1111/j.1365-246X.2009.04482.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04482.x

Hino, R., Inazu, D., Ohta, Y., Ito, Y., Suzuki, S., Iinuma, T., Osada, Y., Kido, M., Fujimoto, H., & Kaneda, Y. (2014). Was the 2011 Tohoku-Oki earthquake preceded by aseismic preslip? Examination of seafloor vertical deformation data near the epicenter. Marine Geophysical Research, 35(3), 181–190. https://doi.org/10.1007/s11001-013-9208-2 DOI: https://doi.org/10.1007/s11001-013-9208-2

Hirose, H., Hirahara, K., Kimata, F., Fujii, N., & Miyazaki, S. (1999). A slow thrust slip event following the two 1996 Hyuganada Earthquakes beneath the Bungo Channel, southwest Japan. Geophysical Research Letters, 26(21), 3237–3240. https://doi.org/10.1029/1999GL010999 DOI: https://doi.org/10.1029/1999GL010999

Hoffmann, F., Metzger, S., Moreno, M., Deng, Z., Sippl, C., Ortega-Culaciati, F., & Oncken, O. (2018). Characterizing Afterslip and Ground Displacement Rate Increase Following the 2014 Iquique-Pisagua Mw8.1 Earthquake, Northern Chile. Journal of Geophysical Research: Solid Earth, 123(5), 4171–4192. https://doi.org/10.1002/2017JB014970 DOI: https://doi.org/10.1002/2017JB014970

Hsu, Y. J., Simons, M., Avouac, J. P., Galeteka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., & Bock, Y. (2006). Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science, 312(5782), 1921–1926. https://doi.org/10.1126/science.1126960 DOI: https://doi.org/10.1126/science.1126960

Hsu, Y.-J., Bechor, N., Segall, P., Yu, S.-B., Kuo, L.-C., & Ma, K.-F. (2002). Rapid afterslip following the 1999 Chi-Chi, Taiwan Earthquake. Geophysical Research Letters, 29(16), 1–4. https://doi.org/10.1029/2002GL014967 DOI: https://doi.org/10.1029/2002GL014967

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55

Husen, S., Kissling, E., Flueh, E., & Asch, G. (1999). Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network. Geophysical Journal International, 138(3), 687–701. https://doi.org/10.1046/j.1365-246X.1999.00893.x DOI: https://doi.org/10.1046/j.1365-246x.1999.00893.x

Ide, S., & Beroza, G. C. (2023). Slow earthquake scaling reconsidered as a boundary between distinct modes of rupture propagation. Proceedings of the National Academy of Sciences, 120(32), 2017. https://doi.org/10.1073/pnas.2222102120 DOI: https://doi.org/10.1073/pnas.2222102120

Ide, S., Beroza, G. C., Shelly, D. R., & Uchide, T. (2007). A scaling law for slow earthquakes. Nature, 447(7140), 76–79. https://doi.org/10.1038/nature05780 DOI: https://doi.org/10.1038/nature05780

International Seismological Centre. (2016). On-line Bulletin. Internatl. Seismol. Cent. https://doi.org/https://doi.org/10.31905/D808B830 DOI: https://doi.org/10.31905/D808B830

Itoh, Y., Aoki, Y., & Fukuda, J. (2022). Imaging evolution of Cascadia slow-slip event using high-rate GPS. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-10957-8 DOI: https://doi.org/10.1038/s41598-022-10957-8

Jara, J., Sánchez-Reyes, H., Socquet, A., Cotton, F., Virieux, J., Maksymowicz, A., Díaz-Mojica, J., Walpersdorf, A., Ruiz, J., Cotte, N., & Norabuena, E. (2018). Kinematic study of Iquique 2014 M w 8.1 earthquake: Understanding the segmentation of the seismogenic zone. Earth and Planetary Science Letters, 503, 131–143. https://doi.org/10.1016/j.epsl.2018.09.025 DOI: https://doi.org/10.1016/j.epsl.2018.09.025

Jara, J., Socquet, A., Marsan, D., & Bouchon, M. (2017). Long-Term Interactions Between Intermediate Depth and Shallow Seismicity in North Chile Subduction Zone. Geophysical Research Letters, 44(18), 9283–9292. https://doi.org/10.1002/2017GL075029 DOI: https://doi.org/10.1002/2017GL075029

Jolivet, R., Candela, T., Lasserre, C., Renard, F., Klinger, Y., & Doin, M. ‐P. (2015). The Burst‐Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China. Bulletin of the Seismological Society of America, 105(1), 480–488. https://doi.org/10.1785/0120140237 DOI: https://doi.org/10.1785/0120140237

Jolivet, R., & Frank, W. B. (2020). The Transient and Intermittent Nature of Slow Slip. AGU Advances, 1(1). https://doi.org/10.1029/2019av000126 DOI: https://doi.org/10.1029/2019AV000126

Jolivet, R., & Simons, M. (2018). A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors. Geophysical Research Letters, 45(4), 1814–1824. https://doi.org/10.1002/2017GL076533 DOI: https://doi.org/10.1002/2017GL076533

Jolivet, R., Simons, M., Agram, P. S., Duputel, Z., & Shen, Z. K. (2015). Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophysical Research Letters, 42(2), 297–306. https://doi.org/10.1002/2014GL062222 DOI: https://doi.org/10.1002/2014GL062222

Jolivet, R., Simons, M., Duputel, Z., Olive, J. A., Bhat, H. S., & Bletery, Q. (2020). Interseismic Loading of Subduction Megathrust Drives Long-Term Uplift in Northern Chile. Geophysical Research Letters, 47(8), 1–11. https://doi.org/10.1029/2019GL085377 DOI: https://doi.org/10.1029/2019GL085377

Kanamori, H. (1981). The Nature of Seismicity Patterns Before Large Earthquakes. In Earthquake Prediction (pp. 1–19). Wiley Online Library. https://doi.org/10.1029/ME004p0001 DOI: https://doi.org/10.1029/ME004p0001

Kato, A., & Ben-Zion, Y. (2021). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. https://doi.org/10.1038/s43017-020-00108-w DOI: https://doi.org/10.1038/s43017-020-00108-w

Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(15), 5420–5427. https://doi.org/10.1002/2014GL061138 DOI: https://doi.org/10.1002/2014GL061138

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 Mw9.0 Tohoku-Oki earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141 DOI: https://doi.org/10.1126/science.1215141

Kausel, E. (1986). Los terremotos de agosto de 1868 y mayo de 1877 que afectaron el sur del Perú y norte de Chile. Boletín de La Academia Chilena de Ciencias, 3(1), 8–13.

Khoshmanesh, M., & Shirzaei, M. (2018). Episodic creep events on the San Andreas Fault caused by pore pressure variations. Nature Geoscience, 11(8), 610–614. https://doi.org/10.1038/s41561-018-0160-2 DOI: https://doi.org/10.1038/s41561-018-0160-2

Klein, E., Vigny, C., Nocquet, J. M., & Boulze, H. (2022). A 20 year-long GNSS solution across South-America with focus in Chile. BSGF - Earth Sciences Bulletin, 193. https://doi.org/10.1051/bsgf/2022005 DOI: https://doi.org/10.1051/bsgf/2022005

Klotz, J., Deng, Z., Moreno, M., Asch, G., Bartsch, M., & Ramatschi, M. (2017). IPOC cGPS - Continuous Mode GPS data in the IPOC Region, Northern Chile [Techreport]. GFZ Data Services. https://doi.org/10.5880/GFZ.1.1.2017.001

Lay, T. (2015). The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters, 409(October 2016), 133–146. https://doi.org/10.1016/j.epsl.2014.10.047 DOI: https://doi.org/10.1016/j.epsl.2014.10.047

Li, Y., Nocquet, J. M., Shan, X., & Song, X. (2021). Geodetic Observations of Shallow Creep on the Laohushan-Haiyuan Fault, Northeastern Tibet. Journal of Geophysical Research: Solid Earth, 126(6), 1–18. https://doi.org/10.1029/2020JB021576 DOI: https://doi.org/10.1029/2020JB021576

Lindsey, E. O., Mallick, R., Hubbard, J. A., Bradley, K. E., Almeida, R. V., Moore, J. D. P., Bürgmann, R., & Hill, E. M. (2021). Slip rate deficit and earthquake potential on shallow megathrusts. Nature Geoscience, 14(5), 321–326. https://doi.org/10.1038/s41561-021-00736-x DOI: https://doi.org/10.1038/s41561-021-00736-x

Liu, Y., & Rice, J. R. (2005). Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. Journal of Geophysical Research: Solid Earth, 110(8), 1–14. https://doi.org/10.1029/2004JB003424 DOI: https://doi.org/10.1029/2004JB003424

Liu, Y., & Rice, J. R. (2007). Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical Research: Solid Earth, 112(9). https://doi.org/10.1029/2007JB004930 DOI: https://doi.org/10.1029/2007JB004930

Louderback, G. (1942). Faults and Eartquakes. Bulletin of Seismological Society of America, 32(4), 305–330. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/32/4/305/115396/Faults-and-earthquakes?redirectedFrom=fulltext DOI: https://doi.org/10.1785/BSSA0320040305

Loveless, J. P., & Meade, B. J. (2010). Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. Journal of Geophysical Research, 115(B2), B02410. https://doi.org/10.1029/2008JB006248 DOI: https://doi.org/10.1029/2008JB006248

Lovery, B., Chlieh, M., Norabuena, E., Villegas‐Lanza, J. C., Radiguet, M., Cotte, N., Tsapong‐Tsague, A., Quiroz, W., Sierra Farfán, C., Simons, M., Nocquet, J. M., Tavera, H., & Socquet, A. (2024). Heterogeneous Locking and Earthquake Potential on the South Peru Megathrust From Dense GNSS Network. Journal of Geophysical Research: Solid Earth, 129(2). https://doi.org/10.1029/2023JB027114 DOI: https://doi.org/10.1029/2023JB027114

Marsan, D., Bouchon, M., Gardonio, B., Perfettini, H., Socquet, A., & Enescu, B. (2017). Change in seismicity along the Japan trench, 1990-2011, and its relationship with seismic coupling. Journal of Geophysical Research: Solid Earth, 122(6), 4645–4659. https://doi.org/10.1002/2016JB013715 DOI: https://doi.org/10.1002/2016JB013715

Marsan, D., Reverso, T., Helmstetter, A., & Enescu, B. (2013). Slow slip and aseismic deformation episodes associated with the subducting Pacific plate offshore Japan, revealed by changes in seismicity. Journal of Geophysical Research E: Planets, 118(9), 4900–4909. https://doi.org/10.1002/jgrb.50323 DOI: https://doi.org/10.1002/jgrb.50323

Materna, K., Bartlow, N., Wech, A., Williams, C., & Bürgmann, R. (2019). Dynamically Triggered Changes of Plate Interface Coupling in Southern Cascadia. Geophysical Research Letters, 46(22), 12890–12899. https://doi.org/10.1029/2019GL084395 DOI: https://doi.org/10.1029/2019GL084395

Mazzotti, S. S., Le Pichon, X., Henry, P., & Miyazaki, S.-I. (2000). Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS. Journal of Geophysical Research: Solid Earth, 105(B6), 13159–13177. https://doi.org/10.1029/2000jb900060 DOI: https://doi.org/10.1029/2000JB900060

McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904. https://doi.org/10.1029/2019JB018363 DOI: https://doi.org/10.1029/2019JB018363

Melbourne, T. I. (2002). Precursory transient slip during the 2001 M w = 8.4 Peru earthquake sequence from continuous GPS. Geophysical Research Letters, 29(21), 2032. https://doi.org/10.1029/2002GL015533 DOI: https://doi.org/10.1029/2002GL015533

Melnick, D., Moreno, M., Quinteros, J., Baez, J. C., Deng, Z., Li, S., & Oncken, O. (2017). The super-interseismic phase of the megathrust earthquake cycle in Chile. Geophysical Research Letters, 44(2), 784–791. https://doi.org/10.1002/2016gl071845 DOI: https://doi.org/10.1002/2016GL071845

Meng, L., Huang, H., Bürgmann, R., Ampuero, J. P., & Strader, A. (2015). Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth and Planetary Science Letters, 411, 177–187. https://doi.org/10.1016/j.epsl.2014.11.041 DOI: https://doi.org/10.1016/j.epsl.2014.11.041

Métois, M., Vigny, C., & Socquet, A. (2016). Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms Along the Chilean Subduction Zone (38circ–18circS). Pure and Applied Geophysics, 173(5), 1431–1449. https://doi.org/10.1007/s00024-016-1280-5 DOI: https://doi.org/10.1007/s00024-016-1280-5

Michel, S., Gualandi, A., & Avouac, J. P. (2019a). Interseismic Coupling and Slow Slip Events on the Cascadia Megathrust. Pure and Applied Geophysics, 176(9), 3867–3891. https://doi.org/10.1007/s00024-018-1991-x DOI: https://doi.org/10.1007/s00024-018-1991-x

Michel, S., Gualandi, A., & Avouac, J.-P. (2019b). Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature, 574(7779), 522–526. https://doi.org/10.1038/s41586-019-1673-6 DOI: https://doi.org/10.1038/s41586-019-1673-6

Michel, S., Jolivet, R., Lengliné, O., Gualandi, A., Larochelle, S., & Gardonio, B. (2022). Searching for Transient Slow Slips Along the San Andreas Fault Near Parkfield Using Independent Component Analysis. Journal of Geophysical Research: Solid Earth, 127(6), 1–19. https://doi.org/10.1029/2021JB023201 DOI: https://doi.org/10.1029/2021JB023201

Minson, S. E., Simons, M., & Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I-theory and algorithm. Geophysical Journal International, 194(3), 1701–1726. https://doi.org/10.1093/gji/ggt180 DOI: https://doi.org/10.1093/gji/ggt180

Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(4). https://doi.org/10.1029/2007GC001743 DOI: https://doi.org/10.1029/2007GC001743

Nishikawa, T., Matsuzawa, T., Ohta, K., Uchida, N., Nishimura, T., & Ide, S. (2019). The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science, 365(6455), 808–813. https://doi.org/10.1126/science.aax5618 DOI: https://doi.org/10.1126/science.aax5618

Nishimura, T. (2014). Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS. Progress in Earth and Planetary Science, 1(1), 1–13. https://doi.org/10.1186/s40645-014-0022-5 DOI: https://doi.org/10.1186/s40645-014-0022-5

Nishimura, T., Matsuzawa, T., & Obara, K. (2013). Detection of short-term slow slip events along the Nankai Trough, southwest Japan, using GNSS data. Journal of Geophysical Research: Solid Earth, 118(6), 3112–3125. https://doi.org/10.1002/jgrb.50222 DOI: https://doi.org/10.1002/jgrb.50222

Nocquet, J. M., Villegas-Lanza, J. C., Chlieh, M., Mothes, P. A., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., Martin, X., Font, Y., Régnier, M., Vallée, M., Tran, T., Beauval, C., Maguiña Mendoza, J. M., Martinez, W., Tavera, H., & Yepes, H. (2014). Motion of continental slivers and creeping subduction in the northern Andes. Nature Geoscience, 7(4), 287–291. https://doi.org/10.1038/ngeo2099 DOI: https://doi.org/10.1038/ngeo2099

Nocquet, Jean Mathieu. (2018). PYACS: A set of Python tools for GPS analysis and tectonic modelling. PYACS: A Set of Python Tools for GPS Analysis and Tectonic Modelling.

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science (New York, N.Y.), 353(6296), 253–257. https://doi.org/10.1126/science.aaf1512 DOI: https://doi.org/10.1126/science.aaf1512

Office, M. (2010). Cartopy: a cartographic python library with a Matplotlib interface.

Peacock, S. M. (2001). Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29(4), 299–302. https://doi.org/10.1130/0091-7613(2001)029<0299:ATLPOD>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0299:ATLPOD>2.0.CO;2

Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), 599–607. https://doi.org/10.1038/ngeo940 DOI: https://doi.org/10.1038/ngeo940

Perfettini, H., & Ampuero, J. P. (2008). Dynamics of a velocity strengthening fault region: Implications for slow earthquakes and postseismic slip. Journal of Geophysical Research: Solid Earth, 113(9). https://doi.org/10.1029/2007JB005398 DOI: https://doi.org/10.1029/2007JB005398

Perfettini, H., Avouac, J. P., Tavera, H., Kositsky, A., Nocquet, J. M., Bondoux, F., Chlieh, M., Sladen, A., Audin, L., Farber, D. L., & Soler, P. (2010). Seismic and aseismic slip on the Central Peru megathrust. Nature, 465(7294), 78–81. https://doi.org/10.1038/nature09062 DOI: https://doi.org/10.1038/nature09062

Peyrat, S., Campos, J., de Chabalier, J. B., Perez, A., Bonvalot, S., Bouin, M. P., Legrand, D., Nercessian, A., Charade, O., Patau, G., Clévédæ, E., Kausel, E., Bernard, P., & Vilotte, J. P. (2006). Tarapacá intermediate-depth earthquake (Mw 7.7, 2005, northern Chile): A slab-pull event with horizontal fault plane constrained from seismologic and geodetic observations. Geophysical Research Letters, 33(22), 1–6. https://doi.org/10.1029/2006GL027710 DOI: https://doi.org/10.1029/2006GL027710

Peyrat, S., & Favreau, P. (2010). Kinematic and spontaneous rupture models of the 2005 Tarapacá intermediate depth earthquake. Geophysical Journal International, 181(1), 369–381. https://doi.org/10.1111/j.1365-246X.2009.04493.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04493.x

Poli, P., Jeria, A. M., & Ruiz, S. (2017). The M w 8.3 Illapel earthquake (Chile): Preseismic and postseismic activity associated with hydrated slab structures. Geology, 45(3), 247–250. https://doi.org/10.1130/G38522.1 DOI: https://doi.org/10.1130/G38522.1

Pritchard, M. E., Norabuena, E. O., Ji, C., Boroschek, R., Comte, D., Simons, M., Dixon, T. H., & Rosen, P. A. (2007). Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 112(3). https://doi.org/10.1029/2006JB004294 DOI: https://doi.org/10.1029/2006JB004294

Pritchard, M. E., & Simons, M. (2006). An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behavior. Journal of Geophysical Research: Solid Earth, 111(8). https://doi.org/10.1029/2006JB004258 DOI: https://doi.org/10.1029/2006JB004258

Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., & Kostoglodov, V. (2012). Slow slip events and strain accumulation in the Guerrero gap, Mexico. Journal of Geophysical Research: Solid Earth, 117(4). https://doi.org/10.1029/2011JB008801 DOI: https://doi.org/10.1029/2011JB008801

Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Walpersdorf, A., Cabral Cano, E., & Campillo, M. (2016). Triggering of the 2014 Mw7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9(11), 829–833. https://doi.org/10.1038/ngeo2817 DOI: https://doi.org/10.1038/ngeo2817

Reid, H. F. (1910). The Mechanism of the Earthquake. The California Earthquake of April 18, 1906: Rep. of the State Investigation Commiss. Vol. 2. P. 1 [Techreport]. Carnigie Institution of Washington. DOI: https://doi.org/10.1086/621732

Remy, D., Perfettini, H., Cotte, N., Avouac, J. P., Chlieh, M., Bondoux, F., Sladen, A., Tavera, H., & Socquet, A. (2016). Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake. Journal of Geophysical Research: Solid Earth, 121(5), 3978–3995. https://doi.org/10.1002/2015JB012417 DOI: https://doi.org/10.1002/2015JB012417

Reverso, T., Marsan, D., Helmstetter, A., & Enescu, B. (2016). Background seismicity in Boso Peninsula, Japan: Long-term acceleration, and relationship with slow slip events. Geophysical Research Letters, 43(11), 5671–5679. https://doi.org/10.1002/2016GL068524 DOI: https://doi.org/10.1002/2016GL068524

Romanet, P., Bhat, H. S., Jolivet, R., & Madariaga, R. (2018). Fast and Slow Slip Events Emerge Due to Fault Geometrical Complexity. Geophysical Research Letters, 45(10), 4809–4819. https://doi.org/10.1029/2018GL077579 DOI: https://doi.org/10.1029/2018GL077579

Rousset, B., Campillo, M., Lasserre, C., Frank, W. B., Cotte, N., Walpersdorf, A., Socquet, A., & Kostoglodov, V. (2017). A geodetic matched filter search for slow slip with application to the Mexico subduction zone. Journal of Geophysical Research: Solid Earth, 122(12), 498–10. https://doi.org/10.1002/2017JB014448 DOI: https://doi.org/10.1002/2017JB014448

Rousset, Baptiste, Bürgmann, R., & Campillo, M. (2019). Slow slip events in the roots of the San Andreas fault. Science Advances, 5(2), eaav3274. https://doi.org/10.1126/sciadv.aav3274 DOI: https://doi.org/10.1126/sciadv.aav3274

Ruegg, J. C., Olcay, M., & Lazo, D. (2001). Co-, Post- and Pre(?)-seismic Displacements Associated with the Mw 8.4 Southern Peru Earthquake of 23 June 2001 from Continuous GPS Measurements. Seismological Research Letters, 72(6), 673–678. https://doi.org/10.1785/gssrl.72.6.673 DOI: https://doi.org/10.1785/gssrl.72.6.673

Ruiz, S., & Madariaga, R. (2018). Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 733(September 2017), 37–56. https://doi.org/10.1016/j.tecto.2018.01.015 DOI: https://doi.org/10.1016/j.tecto.2018.01.015

Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., & Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074 DOI: https://doi.org/10.1126/science.1256074

Ruiz, S., Moreno, M., Melnick, D., del Campo, F., Poli, P., Baez, J. C., Leyton, F., & Madariaga, R. (2017). Reawakening of large earthquakes in south central Chile: The 2016 Mw7.6 Chiloé event. Geophysical Research Letters, 44(13), 6633–6640. https://doi.org/10.1002/2017GL074133 DOI: https://doi.org/10.1002/2017GL074133

Ruiz, Sergio, Klein, E., del Campo, F., Rivera, E., Poli, P., Metois, M., Christophe, V., Baez, J. C., Vargas, G., Leyton, F., Madariaga, R., & Fleitout, L. (2016). The Seismic Sequence of the 16 September 2015 M w 8.3 Illapel, Chile, Earthquake. Seismological Research Letters, 87(4), 789–799. https://doi.org/10.1785/0220150281 DOI: https://doi.org/10.1785/0220150281

Rüpke, L. H., Morgan, J. P., Hort, M., & Connolly, J. A. D. (2004). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223(1–2), 17–34. https://doi.org/10.1016/j.epsl.2004.04.018 DOI: https://doi.org/10.1016/j.epsl.2004.04.018

Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984–4996. https://doi.org/10.1029/JB088iB06p04984 DOI: https://doi.org/10.1029/JB088iB06p04984

Schurr, B., Moreno, M., Tréhu, A. M., Bedford, J., Kummerow, J., Li, S., & Oncken, O. (2020). Forming a Mogi Doughnut in the Years Prior to and Immediately Before the 2014 M8.1 Iquique, Northern Chile, Earthquake. Geophysical Research Letters, 47(16). https://doi.org/10.1029/2020GL088351 DOI: https://doi.org/10.1029/2020GL088351

Schurr, Bernd, Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., Victor, P., Barrientos, S., & Vilotte, J.-P. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512(7514), 299–302. https://doi.org/10.1038/nature13681 DOI: https://doi.org/10.1038/nature13681

Shrivastava, M. N., González, G., Moreno, M., Soto, H., Schurr, B., Salazar, P., & Báez, J. C. (2019). Earthquake segmentation in northern Chile correlates with curved plate geometry. Scientific Reports, 9(1), 4403. https://doi.org/10.1038/s41598-019-40282-6 DOI: https://doi.org/10.1038/s41598-019-40282-6

Simons, M., Galetzka, J. E., Genrich, J. F., Ortega, F., Comte, D., Glass, B., Gonzalez, G., & Norabuena, E. (2010). Central Andean Tectonic Observatory Geodetic Array - GPS/GNSS Observations [Techreport]. Caltech. https://doi.org/10.7283/T50P0X37

Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018). Seismicity Structure of the Northern Chile Forearc From >100,000 Double-Difference Relocated Hypocenters. Journal of Geophysical Research: Solid Earth, 123(5), 4063–4087. https://doi.org/10.1002/2017JB015384 DOI: https://doi.org/10.1002/2017JB015384

Sippl, Christian, Schurr, B., Münchmeyer, J., Barrientos, S., & Oncken, O. (2023). The Northern Chile forearc constrained by 15 years of permanent seismic monitoring. Journal of South American Earth Sciences, 126(December 2022), 104326. https://doi.org/10.1016/j.jsames.2023.104326 DOI: https://doi.org/10.1016/j.jsames.2023.104326

Sladen, A., Tavera, H., Simons, M., Avouac, J. P., Konca, A. O., Perfettini, H., Audin, L., Fielding, E. J., Ortega, F., & Cavagnoud, R. (2010). Source model of the 2007 Mw8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts. Journal of Geophysical Research: Solid Earth, 115(2). https://doi.org/10.1029/2009JB006429 DOI: https://doi.org/10.1029/2009JB006429

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017GL073023 DOI: https://doi.org/10.1002/2017GL073023

Steinbrugge, K. V., Zacher, E. G., Tocher, D., Whitten, C. A., & Claire, C. N. (1960). Creep on the San Andreas fault. Bulletin of the Seismological Society of America, 50(3), 389–415. DOI: https://doi.org/10.1785/BSSA0500030389

Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., & Obara, K. (2020). Self-similarity of low-frequency earthquakes. Scientific Reports, 10(1), 6523. https://doi.org/10.1038/s41598-020-63584-6 DOI: https://doi.org/10.1038/s41598-020-63584-6

Takagi, R., Uchida, N., & Obara, K. (2019). Along-Strike Variation and Migration of Long-Term Slow Slip Events in the Western Nankai Subduction Zone, Japan. Journal of Geophysical Research: Solid Earth, 124(4), 3853–3880. https://doi.org/10.1029/2018JB016738 DOI: https://doi.org/10.1029/2018JB016738

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM. https://doi.org/10.1137/1.9780898717921 DOI: https://doi.org/10.1137/1.9780898717921

Tassara, A., & Echaurren, A. (2012). Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophysical Journal International, 189(1), 161–168. https://doi.org/10.1111/j.1365-246X.2012.05397.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05397.x

Teunissen, P. J. G., & Montenbruck, O. (Eds.). (2017). Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1 DOI: https://doi.org/10.1007/978-3-319-42928-1

Tissandier, R., Nocquet, J. ‐M., Klein, E., Vigny, C., Ojeda, J., & Ruiz, S. (2023). Afterslip of the M w 8.3 2015 Illapel Earthquake Imaged Through a Time‐Dependent Inversion of Continuous and Survey GNSS Data. Journal of Geophysical Research: Solid Earth, 128(2), 1–21. https://doi.org/10.1029/2022JB024778 DOI: https://doi.org/10.1029/2022JB024778

Twardzik, C., Duputel, Z., Jolivet, R., Klein, E., & Rebischung, P. (2022). Bayesian inference on the initiation phase of the 2014 Iquique, Chile, earthquake. Earth and Planetary Science Letters, 600, 117835. https://doi.org/10.1016/j.epsl.2022.117835 DOI: https://doi.org/10.1016/j.epsl.2022.117835

Uchida, N., Takagi, R., Asano, Y., & Obara, K. (2020). Migration of shallow and deep slow earthquakes toward the locked segment of the Nankai megathrust. Earth and Planetary Science Letters, 531, 115986. https://doi.org/10.1016/j.epsl.2019.115986 DOI: https://doi.org/10.1016/j.epsl.2019.115986

van Rijsingen, E. M., Calais, E., Jolivet, R., de Chabalier, J. ‐B., Jara, J., Symithe, S., Robertson, R., & Ryan, G. A. (2021). Inferring Interseismic Coupling Along the Lesser Antilles Arc: A Bayesian Approach. Journal of Geophysical Research: Solid Earth, 126(2), 1–21. https://doi.org/10.1029/2020JB020677 DOI: https://doi.org/10.1029/2020JB020677

Vigny, C., & Klein, E. (2022). The 1877 megathrust earthquake of North Chile two times smaller than thought? A review of ancient articles. Journal of South American Earth Sciences, 117, 103878. https://doi.org/10.1016/j.jsames.2022.103878 DOI: https://doi.org/10.1016/j.jsames.2022.103878

Villegas-Lanza, J. C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira, J., & Nocquet, J.-M. (2016). Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research: Solid Earth, 121(10), 7371–7394. https://doi.org/10.1002/2016JB013080 DOI: https://doi.org/10.1002/2016JB013080

Voss, N., Dixon, T. H., Liu, Z., Malservisi, R., Protti, M., & Schwartz, S. (2018). Do slow slip events trigger large and great megathrust earthquakes? Science Advances, 4(10), eaat8472. https://doi.org/10.1126/sciadv.aat8472 DOI: https://doi.org/10.1126/sciadv.aat8472

Wallace, L. M. (2020). Slow Slip Events in New Zealand. Annual Review of Earth and Planetary Sciences, 48(1), 175–203. https://doi.org/10.1146/annurev-earth-071719-055104 DOI: https://doi.org/10.1146/annurev-earth-071719-055104

Wang, H., Huismans, R. S., & Rondenay, S. (2019). Water Migration in the Subduction Mantle Wedge: A Two-Phase Flow Approach. Journal of Geophysical Research: Solid Earth, 124(8), 9208–9225. https://doi.org/10.1029/2018JB017097 DOI: https://doi.org/10.1029/2018JB017097

Williams, S. D. P. (2003). The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy, 76(9–10), 483–494. https://doi.org/10.1007/s00190-002-0283-4 DOI: https://doi.org/10.1007/s00190-002-0283-4

Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246X.2002.01610.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01610.x

Published

2024-06-10

How to Cite

Jara, J., Jolivet, R., Socquet, A., Comte, D., & Norabuena, E. (2024). Detection of slow slip events along the southern Peru - northern Chile subduction zone. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.980

Issue

Section

Articles

Funding data