Detection of slow slip events along the southern Peru - northern Chile subduction zone




Transient Deformation, Subduction Zone, GNSS, Interseismic Coupling


Detections of slow slip events (SSEs) are now common along most plate boundary fault systems at the global scale. However, no such event has been described in the south Peru - north Chile subduction zone so far, except for the early preparatory phase of the 2014 Iquique earthquake. We use geodetic template matching on GNSS-derived time series of surface motion in Northern Chile to extract SSEs hidden within the geodetic noise. We detect 33 events with durations ranging from 9 to 40 days and magnitudes from Mw 5.6 to 6.2. The moment released by these aseismic events seems to scale with the cube of their duration, suggesting a dynamic comparable to that of earthquakes. We compare the distribution of SSEs with the distribution of coupling along the megathrust derived using Bayesian inference on GNSS- and InSAR-derived interseismic velocities. From this comparison, we obtain that most SSEs occur in regions of intermediate coupling where the megathrust transitions from locked to creeping or where geometrical complexities of the interplate region have been proposed. We finally discuss the potential role of fluids as a triggering mechanism for SSEs in the area.


Altamimi, Z., Collilieux, X., & Métivier, L. (2011). ITRF2008: An improved solution of the international terrestrial reference frame. Journal of Geodesy, 85(8), 457–473. DOI:

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109–6131. DOI:

Ambraseys, N. N. (1970). Some characteristic features of the Anatolian fault zone. Tectonophysics, 9(2–3), 143–165. DOI:

Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., Ide, S., & Davis, E. (2017). Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 356(6343), 1157–1160. DOI:

Armijo, R., & Thiele, R. (1990). Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary? Earth and Planetary Science Letters, 98(1), 40–61. DOI:

Avouac, J.-P. (2015). From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annual Review of Earth and Planetary Sciences, 43(1), 233–271. DOI:

Báez, J. C., Leyton, F., Troncoso, C., del Campo, F., Bevis, M., Vigny, C., Moreno, M., Simons, M., Kendrick, E., Parra, H., & Blume, F. (2018). The Chilean GNSS Network: Current Status and Progress toward Early Warning Applications. Seismological Research Letters, 89(4), 1546–1554. DOI:

Bayart, E., Svetlizky, I., & Fineberg, J. (2016). Slippery but Tough: The Rapid Fracture of Lubricated Frictional Interfaces. Physical Review Letters, 116(19), 194301. DOI:

Beck, S. L., & Ruff, L. J. (1989). Great earthquakes and subduction along the Peru trench. Physics of the Earth and Planetary Interiors, 57(3–4), 199–224. DOI:

Behr, W. M., & Bürgmann, R. (2021). What’s down there? The structures, materials and environment of deep-seated slow slip and tremor. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20200218. DOI:

Béjar-Pizarro, M., Carrizo, D., Socquet, A., Armijo, R., Barrientos, S., Bondoux, F., Bonvalot, S., Campos, J., Comte, D., De Chabalier, J. B., & others. (2010). Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophysical Journal International, 183(1), 390–406. DOI:

Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., & Simons, M. (2013). Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience, 6(6), 462–467. DOI:

Bevis, M., & Brown, A. (2014). Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy, 88(3), 283–311. DOI:

Bock, Y., & Melgar, D. (2016). Physical applications of GPS geodesy: A review. Reports on Progress in Physics, 79(10), 106801. DOI:

Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth, 111(2). DOI:

Bouchon, M., Marsan, D., Durand, V., Campillo, M., Perfettini, H., Madariaga, R., & Gardonio, B. (2016). Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geoscience, 9(5), 380–383. DOI:

Bouchon, M., Marsan, D., Jara, J., Socquet, A., Campillo, M., & Perfettini, H. (2018). Suspected Deep Interaction and Triggering Between Giant Earthquakes in the Chilean Subduction Zone. Geophysical Research Letters, 45(11), 5454–5460. DOI:

Boudin, F., Bernard, P., Meneses, G., Vigny, C., Olcay, M., Tassara, C., Boy, J. P., Aissaoui, E., Métois, M., Satriano, C., Esnoult, M.-F., Nercessian, A., Vallée, M., Vilotte, J.-P., & Brunet, C. (2021). Slow slip events precursory to the 2014 Iquique Earthquake, revisited with long-base tilt and GPS records. Geophysical Journal International, 228(3), 2092–2121. DOI:

Brace, W. F., & Byerlee, J. D. (1966). Stick-Slip as a Mechanism for Earthquakes. Science, 153(3739), 990–992. DOI:

Bürgmann, R., Kogan, M. G., Levin, V. E., Scholz, C. H., King, R. W., & Steblov, G. M. (2001). Rapid aseismic moment release following the 5 December, 1997 Kronotsky, Kamchatka, earthquake. Geophysical Research Letters, 28(7), 1331–1334. DOI:

Bürgmann, Roland. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112–134. DOI:

Bürgmann, Roland, Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., & Apel, E. (2005). Interseismic coupling and asperity distribution along the Kamchatka subduction zone. Journal of Geophysical Research: Solid Earth, 110(7), 1–17. DOI:

Cheloni, D., D’Agostino, N., Selvaggi, G., Avallone, A., Fornaro, G., Giuliani, R., Reale, Di., Sansosti, E., & Tizzani, P. (2017). Aseismic transient during the 2010–2014 seismic swarm: evidence for longer recurrence of M > 6.5 earthquakes in the Pollino gap (Southern Italy)? Scientific Reports, 7(1), 576. DOI:

Chlieh, M., De Chabalier, J. B., Ruegg, J. C., Armijo, R., Dmowska, R., Campos, J., & Feigl, K. L. (2004). Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. Geophysical Journal International, 158(2), 695–711. DOI:

Chlieh, Mohamed, Perfettini, H., Tavera, H., Avouac, J. P., Remy, D., Nocquet, J. M., Rolandone, F., Bondoux, F., Gabalda, G., & Bonvalot, S. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research: Solid Earth, 116(12). DOI:

Comte, D., Carrizo, D., Roecker, S., Ortega-Culaciati, F., & Peyrat, S. (2016). Three-dimensional elastic wave speeds in the northern Chile subduction zone: Variations in hydration in the supraslab mantle. Geophysical Journal International, 207(2), 1080–1105. DOI:

Comte, D., & Pardo, M. (1991). Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4(1), 23–44. DOI:

Contreras-Reyes, E., Díaz, D., Bello-González, J. P., Slezak, K., Potin, B., Comte, D., Maksymowicz, A., Ruiz, J. A., Osses, A., & Ruiz, S. (2021). Subduction zone fluids and arc magmas conducted by lithospheric deformed regions beneath the central Andes. Scientific Reports, 11(1), 1–12. DOI:

Dal Zilio, L., Jolivet, R., & van Dinther, Y. (2020). Segmentation of the Main Himalayan Thrust Illuminated by Bayesian Inference of Interseismic Coupling. Geophysical Research Letters, 47(4), 1–10. DOI:

Dal Zilio, L., Lapusta, N., & Avouac, J. P. (2020). Unraveling Scaling Properties of Slow-Slip Events. Geophysical Research Letters, 47(10). DOI:

Delouis, B., Monfret, T., Dorbath, L., Pardo, M., Rivera, L., Comte, D., Haessler, H., Caminade, J. P., Ponce, L., Kausel, E., & Cisternas, A. (1997). The Mw= 8.0 antofagasta (northern Chile) earthquake of 30 July 1995: A precursor to the end of the large 1877 gap. Bulletin of the Seismological Society of America, 87(2), 427–445. DOI:

Dorbath, L., Cisternas, A., & Dorbath, C. (1990). Assessment of the size of large and great historical earthquakes in Peru. Bulletin of the Seismological Society of America, 80(3), 551–576.

Dragert, H., Wang, K., & James, T. S. (2001). A Silent Slip Event on the Deeper Cascadia Subduction Interface. Science, 292(5521), 1525–1528. DOI:

Ducellier, A., Creager, K. C., & Schmidt, D. A. (2022). Detection of Slow Slip Events Using Wavelet Analysis of GNSS Recordings. Bulletin of the Seismological Society of America, 112(5), 2408–2424. DOI:

Duputel, Z., Jiang, J., Jolivet, R., Simons, M., Rivera, L., Ampuero, J. P., Riel, B., Owen, S. E., Moore, A. W., Samsonov, S. V., Ortega Culaciati, F., & Minson, S. E. (2015). The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophysical Research Letters, 42(19), 7949–7957. DOI:

Duputel, Zacharie, Agram, P. S., Simons, M., Minson, S. E., & Beck, J. L. (2014). Accounting for prediction uncertainty when inferring subsurface fault slip. Geophysical Journal International, 197(1), 464–482. DOI:

Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. DOI:

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. DOI:

Essing, D., & Poli, P. (2022). Spatiotemporal Evolution of the Seismicity in the Alto Tiberina Fault System Revealed by a High‐Resolution Template Matching Catalog. Journal of Geophysical Research: Solid Earth, 127(10). DOI:

Frank, W. B. (2016). Slow slip hidden in the noise: The intermittence of tectonic release. Geophysical Research Letters, 43(19), 125–10. DOI:

Frank, W. B., & Brodsky, E. E. (2019). Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling. Science Advances, 5(10), eaaw9386. DOI:

Gardonio, B., Marsan, D., Socquet, A., Bouchon, M., Jara, J., Sun, Q., Cotte, N., & Campillo, M. (2018). Revisiting Slow Slip Events Occurrence in Boso Peninsula, Japan, Combining GPS Data and Repeating Earthquakes Analysis. Journal of Geophysical Research: Solid Earth, 123(2), 1502–1515. DOI:

Gomberg, J., Wech, A., Creager, K., Obara, K., & Agnew, D. (2016). Reconsidering earthquake scaling. Geophysical Research Letters, 43(12), 6243–6251. DOI:

Graham, S., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Rousset, B., Walpersdorf, A., Cotte, N., Lasserre, C., McCaffrey, R., & Salazar-Tlaczani, L. (2016). Slow Slip History for the MEXICO Subduction Zone: 2005 Through 2011. Pure and Applied Geophysics, 173(10–11), 3445–3465. DOI:

Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M. E., & Avouac, J.-P. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 44(15), 7706–7714. DOI:

Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169–198. DOI:

Hartzell, S., & Langer, C. (1993). Importance of model parameterization in finite fault inversions: application to the 1974 MW 8.0 Peru earthquake. Journal of Geophysical Research, 98(B12). DOI:

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. DOI:

Heki, K., Miyazaki, S., & Tsuji, H. (1997). Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature, 386(6625), 595–598. DOI:

Herring, T. A., King, R. W., Floyd, M. A., & McClusky, S. C. (2015). GAMIT Reference Manual. GPS Analysis at MIT GLOBK, Release 10.6 (p. 168).

Hetland, E. A., & Simons, M. (2010). Post-seismic and interseismic fault creep II: Transient creep and interseismic stress shadows on megathrusts. Geophysical Journal International, 181(1), 99–112. DOI:

Hino, R., Inazu, D., Ohta, Y., Ito, Y., Suzuki, S., Iinuma, T., Osada, Y., Kido, M., Fujimoto, H., & Kaneda, Y. (2014). Was the 2011 Tohoku-Oki earthquake preceded by aseismic preslip? Examination of seafloor vertical deformation data near the epicenter. Marine Geophysical Research, 35(3), 181–190. DOI:

Hirose, H., Hirahara, K., Kimata, F., Fujii, N., & Miyazaki, S. (1999). A slow thrust slip event following the two 1996 Hyuganada Earthquakes beneath the Bungo Channel, southwest Japan. Geophysical Research Letters, 26(21), 3237–3240. DOI:

Hoffmann, F., Metzger, S., Moreno, M., Deng, Z., Sippl, C., Ortega-Culaciati, F., & Oncken, O. (2018). Characterizing Afterslip and Ground Displacement Rate Increase Following the 2014 Iquique-Pisagua Mw8.1 Earthquake, Northern Chile. Journal of Geophysical Research: Solid Earth, 123(5), 4171–4192. DOI:

Hsu, Y. J., Simons, M., Avouac, J. P., Galeteka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., & Bock, Y. (2006). Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science, 312(5782), 1921–1926. DOI:

Hsu, Y.-J., Bechor, N., Segall, P., Yu, S.-B., Kuo, L.-C., & Ma, K.-F. (2002). Rapid afterslip following the 1999 Chi-Chi, Taiwan Earthquake. Geophysical Research Letters, 29(16), 1–4. DOI:

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. DOI:

Husen, S., Kissling, E., Flueh, E., & Asch, G. (1999). Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network. Geophysical Journal International, 138(3), 687–701. DOI:

Ide, S., & Beroza, G. C. (2023). Slow earthquake scaling reconsidered as a boundary between distinct modes of rupture propagation. Proceedings of the National Academy of Sciences, 120(32), 2017. DOI:

Ide, S., Beroza, G. C., Shelly, D. R., & Uchide, T. (2007). A scaling law for slow earthquakes. Nature, 447(7140), 76–79. DOI:

International Seismological Centre. (2016). On-line Bulletin. Internatl. Seismol. Cent. DOI:

Itoh, Y., Aoki, Y., & Fukuda, J. (2022). Imaging evolution of Cascadia slow-slip event using high-rate GPS. Scientific Reports, 12(1), 1–12. DOI:

Jara, J., Sánchez-Reyes, H., Socquet, A., Cotton, F., Virieux, J., Maksymowicz, A., Díaz-Mojica, J., Walpersdorf, A., Ruiz, J., Cotte, N., & Norabuena, E. (2018). Kinematic study of Iquique 2014 M w 8.1 earthquake: Understanding the segmentation of the seismogenic zone. Earth and Planetary Science Letters, 503, 131–143. DOI:

Jara, J., Socquet, A., Marsan, D., & Bouchon, M. (2017). Long-Term Interactions Between Intermediate Depth and Shallow Seismicity in North Chile Subduction Zone. Geophysical Research Letters, 44(18), 9283–9292. DOI:

Jolivet, R., Candela, T., Lasserre, C., Renard, F., Klinger, Y., & Doin, M. ‐P. (2015). The Burst‐Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China. Bulletin of the Seismological Society of America, 105(1), 480–488. DOI:

Jolivet, R., & Frank, W. B. (2020). The Transient and Intermittent Nature of Slow Slip. AGU Advances, 1(1). DOI:

Jolivet, R., & Simons, M. (2018). A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors. Geophysical Research Letters, 45(4), 1814–1824. DOI:

Jolivet, R., Simons, M., Agram, P. S., Duputel, Z., & Shen, Z. K. (2015). Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophysical Research Letters, 42(2), 297–306. DOI:

Jolivet, R., Simons, M., Duputel, Z., Olive, J. A., Bhat, H. S., & Bletery, Q. (2020). Interseismic Loading of Subduction Megathrust Drives Long-Term Uplift in Northern Chile. Geophysical Research Letters, 47(8), 1–11. DOI:

Kanamori, H. (1981). The Nature of Seismicity Patterns Before Large Earthquakes. In Earthquake Prediction (pp. 1–19). Wiley Online Library. DOI:

Kato, A., & Ben-Zion, Y. (2021). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. DOI:

Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(15), 5420–5427. DOI:

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 Mw9.0 Tohoku-Oki earthquake. Science, 335(6069), 705–708. DOI:

Kausel, E. (1986). Los terremotos de agosto de 1868 y mayo de 1877 que afectaron el sur del Perú y norte de Chile. Boletín de La Academia Chilena de Ciencias, 3(1), 8–13.

Khoshmanesh, M., & Shirzaei, M. (2018). Episodic creep events on the San Andreas Fault caused by pore pressure variations. Nature Geoscience, 11(8), 610–614. DOI:

Klein, E., Vigny, C., Nocquet, J. M., & Boulze, H. (2022). A 20 year-long GNSS solution across South-America with focus in Chile. BSGF - Earth Sciences Bulletin, 193. DOI:

Klotz, J., Deng, Z., Moreno, M., Asch, G., Bartsch, M., & Ramatschi, M. (2017). IPOC cGPS - Continuous Mode GPS data in the IPOC Region, Northern Chile [Techreport]. GFZ Data Services.

Lay, T. (2015). The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters, 409(October 2016), 133–146. DOI:

Li, Y., Nocquet, J. M., Shan, X., & Song, X. (2021). Geodetic Observations of Shallow Creep on the Laohushan-Haiyuan Fault, Northeastern Tibet. Journal of Geophysical Research: Solid Earth, 126(6), 1–18. DOI:

Lindsey, E. O., Mallick, R., Hubbard, J. A., Bradley, K. E., Almeida, R. V., Moore, J. D. P., Bürgmann, R., & Hill, E. M. (2021). Slip rate deficit and earthquake potential on shallow megathrusts. Nature Geoscience, 14(5), 321–326. DOI:

Liu, Y., & Rice, J. R. (2005). Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. Journal of Geophysical Research: Solid Earth, 110(8), 1–14. DOI:

Liu, Y., & Rice, J. R. (2007). Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical Research: Solid Earth, 112(9). DOI:

Louderback, G. (1942). Faults and Eartquakes. Bulletin of Seismological Society of America, 32(4), 305–330. DOI:

Loveless, J. P., & Meade, B. J. (2010). Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. Journal of Geophysical Research, 115(B2), B02410. DOI:

Lovery, B., Chlieh, M., Norabuena, E., Villegas‐Lanza, J. C., Radiguet, M., Cotte, N., Tsapong‐Tsague, A., Quiroz, W., Sierra Farfán, C., Simons, M., Nocquet, J. M., Tavera, H., & Socquet, A. (2024). Heterogeneous Locking and Earthquake Potential on the South Peru Megathrust From Dense GNSS Network. Journal of Geophysical Research: Solid Earth, 129(2). DOI:

Marsan, D., Bouchon, M., Gardonio, B., Perfettini, H., Socquet, A., & Enescu, B. (2017). Change in seismicity along the Japan trench, 1990-2011, and its relationship with seismic coupling. Journal of Geophysical Research: Solid Earth, 122(6), 4645–4659. DOI:

Marsan, D., Reverso, T., Helmstetter, A., & Enescu, B. (2013). Slow slip and aseismic deformation episodes associated with the subducting Pacific plate offshore Japan, revealed by changes in seismicity. Journal of Geophysical Research E: Planets, 118(9), 4900–4909. DOI:

Materna, K., Bartlow, N., Wech, A., Williams, C., & Bürgmann, R. (2019). Dynamically Triggered Changes of Plate Interface Coupling in Southern Cascadia. Geophysical Research Letters, 46(22), 12890–12899. DOI:

Mazzotti, S. S., Le Pichon, X., Henry, P., & Miyazaki, S.-I. (2000). Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS. Journal of Geophysical Research: Solid Earth, 105(B6), 13159–13177. DOI:

McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904. DOI:

Melbourne, T. I. (2002). Precursory transient slip during the 2001 M w = 8.4 Peru earthquake sequence from continuous GPS. Geophysical Research Letters, 29(21), 2032. DOI:

Melnick, D., Moreno, M., Quinteros, J., Baez, J. C., Deng, Z., Li, S., & Oncken, O. (2017). The super-interseismic phase of the megathrust earthquake cycle in Chile. Geophysical Research Letters, 44(2), 784–791. DOI:

Meng, L., Huang, H., Bürgmann, R., Ampuero, J. P., & Strader, A. (2015). Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth and Planetary Science Letters, 411, 177–187. DOI:

Métois, M., Vigny, C., & Socquet, A. (2016). Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms Along the Chilean Subduction Zone (38circ–18circS). Pure and Applied Geophysics, 173(5), 1431–1449. DOI:

Michel, S., Gualandi, A., & Avouac, J. P. (2019a). Interseismic Coupling and Slow Slip Events on the Cascadia Megathrust. Pure and Applied Geophysics, 176(9), 3867–3891. DOI:

Michel, S., Gualandi, A., & Avouac, J.-P. (2019b). Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature, 574(7779), 522–526. DOI:

Michel, S., Jolivet, R., Lengliné, O., Gualandi, A., Larochelle, S., & Gardonio, B. (2022). Searching for Transient Slow Slips Along the San Andreas Fault Near Parkfield Using Independent Component Analysis. Journal of Geophysical Research: Solid Earth, 127(6), 1–19. DOI:

Minson, S. E., Simons, M., & Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I-theory and algorithm. Geophysical Journal International, 194(3), 1701–1726. DOI:

Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(4). DOI:

Nishikawa, T., Matsuzawa, T., Ohta, K., Uchida, N., Nishimura, T., & Ide, S. (2019). The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science, 365(6455), 808–813. DOI:

Nishimura, T. (2014). Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS. Progress in Earth and Planetary Science, 1(1), 1–13. DOI:

Nishimura, T., Matsuzawa, T., & Obara, K. (2013). Detection of short-term slow slip events along the Nankai Trough, southwest Japan, using GNSS data. Journal of Geophysical Research: Solid Earth, 118(6), 3112–3125. DOI:

Nocquet, J. M., Villegas-Lanza, J. C., Chlieh, M., Mothes, P. A., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., Martin, X., Font, Y., Régnier, M., Vallée, M., Tran, T., Beauval, C., Maguiña Mendoza, J. M., Martinez, W., Tavera, H., & Yepes, H. (2014). Motion of continental slivers and creeping subduction in the northern Andes. Nature Geoscience, 7(4), 287–291. DOI:

Nocquet, Jean Mathieu. (2018). PYACS: A set of Python tools for GPS analysis and tectonic modelling. PYACS: A Set of Python Tools for GPS Analysis and Tectonic Modelling.

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science (New York, N.Y.), 353(6296), 253–257. DOI:

Office, M. (2010). Cartopy: a cartographic python library with a Matplotlib interface.

Peacock, S. M. (2001). Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29(4), 299–302.<0299:ATLPOD>2.0.CO;2 DOI:<0299:ATLPOD>2.0.CO;2

Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), 599–607. DOI:

Perfettini, H., & Ampuero, J. P. (2008). Dynamics of a velocity strengthening fault region: Implications for slow earthquakes and postseismic slip. Journal of Geophysical Research: Solid Earth, 113(9). DOI:

Perfettini, H., Avouac, J. P., Tavera, H., Kositsky, A., Nocquet, J. M., Bondoux, F., Chlieh, M., Sladen, A., Audin, L., Farber, D. L., & Soler, P. (2010). Seismic and aseismic slip on the Central Peru megathrust. Nature, 465(7294), 78–81. DOI:

Peyrat, S., Campos, J., de Chabalier, J. B., Perez, A., Bonvalot, S., Bouin, M. P., Legrand, D., Nercessian, A., Charade, O., Patau, G., Clévédæ, E., Kausel, E., Bernard, P., & Vilotte, J. P. (2006). Tarapacá intermediate-depth earthquake (Mw 7.7, 2005, northern Chile): A slab-pull event with horizontal fault plane constrained from seismologic and geodetic observations. Geophysical Research Letters, 33(22), 1–6. DOI:

Peyrat, S., & Favreau, P. (2010). Kinematic and spontaneous rupture models of the 2005 Tarapacá intermediate depth earthquake. Geophysical Journal International, 181(1), 369–381. DOI:

Poli, P., Jeria, A. M., & Ruiz, S. (2017). The M w 8.3 Illapel earthquake (Chile): Preseismic and postseismic activity associated with hydrated slab structures. Geology, 45(3), 247–250. DOI:

Pritchard, M. E., Norabuena, E. O., Ji, C., Boroschek, R., Comte, D., Simons, M., Dixon, T. H., & Rosen, P. A. (2007). Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 112(3). DOI:

Pritchard, M. E., & Simons, M. (2006). An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behavior. Journal of Geophysical Research: Solid Earth, 111(8). DOI:

Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., & Kostoglodov, V. (2012). Slow slip events and strain accumulation in the Guerrero gap, Mexico. Journal of Geophysical Research: Solid Earth, 117(4). DOI:

Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Walpersdorf, A., Cabral Cano, E., & Campillo, M. (2016). Triggering of the 2014 Mw7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9(11), 829–833. DOI:

Reid, H. F. (1910). The Mechanism of the Earthquake. The California Earthquake of April 18, 1906: Rep. of the State Investigation Commiss. Vol. 2. P. 1 [Techreport]. Carnigie Institution of Washington. DOI:

Remy, D., Perfettini, H., Cotte, N., Avouac, J. P., Chlieh, M., Bondoux, F., Sladen, A., Tavera, H., & Socquet, A. (2016). Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake. Journal of Geophysical Research: Solid Earth, 121(5), 3978–3995. DOI:

Reverso, T., Marsan, D., Helmstetter, A., & Enescu, B. (2016). Background seismicity in Boso Peninsula, Japan: Long-term acceleration, and relationship with slow slip events. Geophysical Research Letters, 43(11), 5671–5679. DOI:

Romanet, P., Bhat, H. S., Jolivet, R., & Madariaga, R. (2018). Fast and Slow Slip Events Emerge Due to Fault Geometrical Complexity. Geophysical Research Letters, 45(10), 4809–4819. DOI:

Rousset, B., Campillo, M., Lasserre, C., Frank, W. B., Cotte, N., Walpersdorf, A., Socquet, A., & Kostoglodov, V. (2017). A geodetic matched filter search for slow slip with application to the Mexico subduction zone. Journal of Geophysical Research: Solid Earth, 122(12), 498–10. DOI:

Rousset, Baptiste, Bürgmann, R., & Campillo, M. (2019). Slow slip events in the roots of the San Andreas fault. Science Advances, 5(2), eaav3274. DOI:

Ruegg, J. C., Olcay, M., & Lazo, D. (2001). Co-, Post- and Pre(?)-seismic Displacements Associated with the Mw 8.4 Southern Peru Earthquake of 23 June 2001 from Continuous GPS Measurements. Seismological Research Letters, 72(6), 673–678. DOI:

Ruiz, S., & Madariaga, R. (2018). Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 733(September 2017), 37–56. DOI:

Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., & Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science, 345(6201), 1165–1169. DOI:

Ruiz, S., Moreno, M., Melnick, D., del Campo, F., Poli, P., Baez, J. C., Leyton, F., & Madariaga, R. (2017). Reawakening of large earthquakes in south central Chile: The 2016 Mw7.6 Chiloé event. Geophysical Research Letters, 44(13), 6633–6640. DOI:

Ruiz, Sergio, Klein, E., del Campo, F., Rivera, E., Poli, P., Metois, M., Christophe, V., Baez, J. C., Vargas, G., Leyton, F., Madariaga, R., & Fleitout, L. (2016). The Seismic Sequence of the 16 September 2015 M w 8.3 Illapel, Chile, Earthquake. Seismological Research Letters, 87(4), 789–799. DOI:

Rüpke, L. H., Morgan, J. P., Hort, M., & Connolly, J. A. D. (2004). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223(1–2), 17–34. DOI:

Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984–4996. DOI:

Schurr, B., Moreno, M., Tréhu, A. M., Bedford, J., Kummerow, J., Li, S., & Oncken, O. (2020). Forming a Mogi Doughnut in the Years Prior to and Immediately Before the 2014 M8.1 Iquique, Northern Chile, Earthquake. Geophysical Research Letters, 47(16). DOI:

Schurr, Bernd, Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., Victor, P., Barrientos, S., & Vilotte, J.-P. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512(7514), 299–302. DOI:

Shrivastava, M. N., González, G., Moreno, M., Soto, H., Schurr, B., Salazar, P., & Báez, J. C. (2019). Earthquake segmentation in northern Chile correlates with curved plate geometry. Scientific Reports, 9(1), 4403. DOI:

Simons, M., Galetzka, J. E., Genrich, J. F., Ortega, F., Comte, D., Glass, B., Gonzalez, G., & Norabuena, E. (2010). Central Andean Tectonic Observatory Geodetic Array - GPS/GNSS Observations [Techreport]. Caltech.

Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018). Seismicity Structure of the Northern Chile Forearc From >100,000 Double-Difference Relocated Hypocenters. Journal of Geophysical Research: Solid Earth, 123(5), 4063–4087. DOI:

Sippl, Christian, Schurr, B., Münchmeyer, J., Barrientos, S., & Oncken, O. (2023). The Northern Chile forearc constrained by 15 years of permanent seismic monitoring. Journal of South American Earth Sciences, 126(December 2022), 104326. DOI:

Sladen, A., Tavera, H., Simons, M., Avouac, J. P., Konca, A. O., Perfettini, H., Audin, L., Fielding, E. J., Ortega, F., & Cavagnoud, R. (2010). Source model of the 2007 Mw8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts. Journal of Geophysical Research: Solid Earth, 115(2). DOI:

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. DOI:

Steinbrugge, K. V., Zacher, E. G., Tocher, D., Whitten, C. A., & Claire, C. N. (1960). Creep on the San Andreas fault. Bulletin of the Seismological Society of America, 50(3), 389–415. DOI:

Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., & Obara, K. (2020). Self-similarity of low-frequency earthquakes. Scientific Reports, 10(1), 6523. DOI:

Takagi, R., Uchida, N., & Obara, K. (2019). Along-Strike Variation and Migration of Long-Term Slow Slip Events in the Western Nankai Subduction Zone, Japan. Journal of Geophysical Research: Solid Earth, 124(4), 3853–3880. DOI:

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM. DOI:

Tassara, A., & Echaurren, A. (2012). Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophysical Journal International, 189(1), 161–168. DOI:

Teunissen, P. J. G., & Montenbruck, O. (Eds.). (2017). Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing. DOI:

Tissandier, R., Nocquet, J. ‐M., Klein, E., Vigny, C., Ojeda, J., & Ruiz, S. (2023). Afterslip of the M w 8.3 2015 Illapel Earthquake Imaged Through a Time‐Dependent Inversion of Continuous and Survey GNSS Data. Journal of Geophysical Research: Solid Earth, 128(2), 1–21. DOI:

Twardzik, C., Duputel, Z., Jolivet, R., Klein, E., & Rebischung, P. (2022). Bayesian inference on the initiation phase of the 2014 Iquique, Chile, earthquake. Earth and Planetary Science Letters, 600, 117835. DOI:

Uchida, N., Takagi, R., Asano, Y., & Obara, K. (2020). Migration of shallow and deep slow earthquakes toward the locked segment of the Nankai megathrust. Earth and Planetary Science Letters, 531, 115986. DOI:

van Rijsingen, E. M., Calais, E., Jolivet, R., de Chabalier, J. ‐B., Jara, J., Symithe, S., Robertson, R., & Ryan, G. A. (2021). Inferring Interseismic Coupling Along the Lesser Antilles Arc: A Bayesian Approach. Journal of Geophysical Research: Solid Earth, 126(2), 1–21. DOI:

Vigny, C., & Klein, E. (2022). The 1877 megathrust earthquake of North Chile two times smaller than thought? A review of ancient articles. Journal of South American Earth Sciences, 117, 103878. DOI:

Villegas-Lanza, J. C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira, J., & Nocquet, J.-M. (2016). Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research: Solid Earth, 121(10), 7371–7394. DOI:

Voss, N., Dixon, T. H., Liu, Z., Malservisi, R., Protti, M., & Schwartz, S. (2018). Do slow slip events trigger large and great megathrust earthquakes? Science Advances, 4(10), eaat8472. DOI:

Wallace, L. M. (2020). Slow Slip Events in New Zealand. Annual Review of Earth and Planetary Sciences, 48(1), 175–203. DOI:

Wang, H., Huismans, R. S., & Rondenay, S. (2019). Water Migration in the Subduction Mantle Wedge: A Two-Phase Flow Approach. Journal of Geophysical Research: Solid Earth, 124(8), 9208–9225. DOI:

Williams, S. D. P. (2003). The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy, 76(9–10), 483–494. DOI:

Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. DOI:



How to Cite

Jara, J., Jolivet, R., Socquet, A., Comte, D., & Norabuena, E. (2024). Detection of slow slip events along the southern Peru - northern Chile subduction zone. Seismica, 3(1).




Funding data