The SCEC/USGS Community Stress Drop Validation Study Using the 2019 Ridgecrest Earthquake Sequence
DOI:
https://doi.org/10.26443/seismica.v3i1.1009Keywords:
earthquake stress drop, earthquake source physics, community studyAbstract
We introduce a community stress drop validation study using the 2019 Ridgecrest, California, earthquake sequence, in which researchers are invited to use a common dataset to independently estimate comparable measurements using a variety of methods. Stress drop is the change in average shear stress on a fault during earthquake rupture, and as such is a key parameter in many ground motion, rupture simulation, and source physics problems in earthquake science. Spectral stress drop is commonly estimated by fitting the shape of the radiated energy spectrum, yet estimates for an individual earthquake made by different studies can vary hugely. In this community study, sponsored jointly by the U. S. Geological Survey and Southern/Statewide California Earthquake Center, we seek to understand the sources of variability and uncertainty in earthquake stress drop through quantitative comparison of submitted stress drops. The publicly available dataset consists of nearly 13,000 earthquakes of M1 to 7 from two weeks of the 2019 Ridgecrest sequence recorded on stations within 1-degree. As a community study, findings are shared through workshops and meetings and all are invited to join at any time, at any interest level.
References
Abercrombie, R. E. (1995). Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5‐km depth. Journal of Geophysical Research: Solid Earth, 100(B12), 24015–24036. https://doi.org/10.1029/95jb02397 DOI: https://doi.org/10.1029/95JB02397
Abercrombie, R. E. (2013). Comparison of direct and coda wave stress drop measurements for the Wells, Nevada, earthquake sequence. Journal of Geophysical Research: Solid Earth, 118(4), 1458–1470. https://doi.org/10.1029/2012jb009638 DOI: https://doi.org/10.1029/2012JB009638
Abercrombie, R. E. (2015). Investigating uncertainties in empirical Green’s function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth, 120(6), 4263–4277. https://doi.org/10.1002/2015jb011984 DOI: https://doi.org/10.1002/2015JB011984
Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131 DOI: https://doi.org/10.1098/rsta.2020.0131
Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D. (2016). Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand. Geophysical Journal International, 208(1), 306–320. https://doi.org/10.1093/gji/ggw393 DOI: https://doi.org/10.1093/gji/ggw393
Abercrombie, R. E., Chen, X., & Zhang, J. (2020). Repeating Earthquakes With Remarkably Repeatable Ruptures on the San Andreas Fault at Parkfield. Geophysical Research Letters, 47(23). https://doi.org/10.1029/2020gl089820 DOI: https://doi.org/10.1029/2020GL089820
Abercrombie, R. E., Trugman, D. T., Shearer, P. M., Chen, X., Zhang, J., Pennington, C. N., Hardebeck, J. L., Goebel, T. H. W., & Ruhl, C. J. (2021). Does Earthquake Stress Drop Increase With Depth in the Crust? Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022314 DOI: https://doi.org/10.1029/2021JB022314
Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72(4), 1217–1231. https://doi.org/10.1029/jz072i004p01217 DOI: https://doi.org/10.1029/JZ072i004p01217
Albuquerque Seismological Laboratory. (1980). GS, International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GS
Al-Ismail, F., Ellsworth, W. L., & Beroza, G. C. (2023). A Time-Domain Approach for Accurate Spectral Source Estimation with Application to Ridgecrest, California, Earthquakes. Bulletin of the Seismological Society of America, 113(3), 1091–1101. https://doi.org/10.1785/0120220228 DOI: https://doi.org/10.1785/0120220228
Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005821 DOI: https://doi.org/10.1029/2008JB005821
Atkinson, G. M., & Beresnev, I. (1997). Don’t Call it Stress Drop. Seismological Research Letters, 68(1), 3–4. https://doi.org/10.1785/gssrl.68.1.3 DOI: https://doi.org/10.1785/gssrl.68.1.3
Baltay, A., Ide, S., Prieto, G., & Beroza, G. (2011). Variability in earthquake stress drop and apparent stress. Geophysical Research Letters, 38(6). https://doi.org/10.1029/2011gl046698 DOI: https://doi.org/10.1029/2011GL046698
Baltay, A., Prieto, G., & Beroza, G. C. (2010). Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. Journal of Geophysical Research: Solid Earth, 115(B8). https://doi.org/10.1029/2009jb006736 DOI: https://doi.org/10.1029/2009JB006736
Baltay, Annemarie S., Hanks, T. C., & Abrahamson, N. A. (2019). Earthquake Stress Drop and Arias Intensity. Journal of Geophysical Research: Solid Earth, 124(4), 3838–3852. https://doi.org/10.1029/2018jb016753 DOI: https://doi.org/10.1029/2018JB016753
Baltay, A.S., Ellsworth, W. L., Schoenball, M., & Beroza, G. C. (2017). Proposed Community Stress Drop Validation Experiment. SCEC Annual Meeting.
Beeler, N., Kilgore, B., McGarr, A., Fletcher, J., Evans, J., & Baker, S. R. (2012). Observed source parameters for dynamic rupture with non-uniform initial stress and relatively high fracture energy. Journal of Structural Geology, 38, 77–89. https://doi.org/10.1016/j.jsg.2011.11.013 DOI: https://doi.org/10.1016/j.jsg.2011.11.013
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., & Mayeda, K. (2023). The Community Stress‐Drop Validation Study—Part I: Source, Propagation, and Site Decomposition of Fourier Spectra. Seismological Research Letters, 94(4). https://doi.org/10.1785/0220230019 DOI: https://doi.org/10.1785/0220230019
Bindi, Dino, Spallarossa, D., Picozzi, M., & Morasca, P. (2020). Reliability of Source Parameters for Small Events in Central Italy: Insights from Spectral Decomposition Analysis Applied to Both Synthetic and Real Data. Bulletin of the Seismological Society of America, 110(6), 3139–3157. https://doi.org/10.1785/0120200126 DOI: https://doi.org/10.1785/0120200126
Bindi, Dino, Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., & Mayeda, K. (2023). The Community Stress-Drop Validation Study—Part II: Uncertainties of the Source Parameters and Stress Drop Analysis. Seismological Research Letters. https://doi.org/10.1785/0220230020 DOI: https://doi.org/10.1785/0220230020
Bindi, Dino, Zaccarelli, R., & Kotha, S. R. (2021). Local and Moment Magnitude Analysis in the Ridgecrest Region, California: Impact on Interevent Ground-Motion Variability. Bulletin of the Seismological Society of America, 111(1). https://doi.org/10.1785/0120200227 DOI: https://doi.org/10.1785/0120200227
Blanke, A., Kwiatek, G., Goebel, T. H. W., Bohnhoff, M., & Dresen, G. (2021). Stress drop–magnitude dependence of acoustic emissions during laboratory stick-slip. Geophysical Journal International, 224(2). https://doi.org/10.1093/gji/ggaa524 DOI: https://doi.org/10.1093/gji/ggaa524
Boatwright, J. (1978). Detailed Spectra Analysis of Two Small New York State Earthquakes. Bulletin of the Seismological Society of America, 68(4). https://doi.org/10.1785/BSSA0680041117
Boyd, O. S., McNamara, D. E., Hartzell, S., & Choy, G. (2017). Influence of Lithostatic Stress on Earthquake Stress Drops in North America. Bulletin of the Seismological Society of America, 107(2), 856–868. https://doi.org/10.1785/0120160219 DOI: https://doi.org/10.1785/0120160219
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/jb075i026p04997 DOI: https://doi.org/10.1029/JB075i026p04997
California Geological Survey. (1972). California Strong Motion Instrumentation Program. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/B34Q-BB70
California Institute of Technology, & United States Geological Survey Pasadena. (1926). CI, International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI
Chen, X., & Abercrombie, R. E. (2020). Improved approach for stress drop estimation and its application to an induced earthquake sequence in Oklahoma. Geophysical Journal International, 223(1), 233–253. https://doi.org/10.1093/gji/ggaa316 DOI: https://doi.org/10.1093/gji/ggaa316
Chen, X., & Shearer, P. M. (2011). Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California. Journal of Geophysical Research, 116(B9). https://doi.org/10.1029/2011jb008263 DOI: https://doi.org/10.1029/2011JB008263
Cocco, M., Tinti, E., & Cirella, A. (2016). On the scale dependence of earthquake stress drop. Journal of Seismology, 20(4), 1151–1170. https://doi.org/10.1007/s10950-016-9594-4 DOI: https://doi.org/10.1007/s10950-016-9594-4
Cochran, E. S., Wolin, E., McNamara, D. E., Yong, A., Wilson, D., Alvarez, M., van der Elst, N., McClain, A., & Steidl, J. (2020). The U.S. Geological Survey’s Rapid Seismic Array Deployment for the 2019 Ridgecrest Earthquake Sequence. Seismological Research Letters, 91(4), 1952–1960. https://doi.org/10.1785/0220190296 DOI: https://doi.org/10.1785/0220190296
Collins, D. S., & Young, R. P. (2000). Lithological Controls on Seismicity in Granitic Rocks. Bulletin of the Seismological Society of America, 90(3), 709–723. https://doi.org/10.1785/0119990142 DOI: https://doi.org/10.1785/0119990142
Cotton, F., Archuleta, R., & Causse, M. (2013). What is Sigma of the Stress Drop? Seismological Research Letters, 84(1), 42–48. https://doi.org/10.1785/0220120087 DOI: https://doi.org/10.1785/0220120087
Denolle, M. A., & Shearer, P. M. (2016). New perspectives on self‐similarity for shallow thrust earthquakes. Journal of Geophysical Research: Solid Earth, 121(9), 6533–6565. https://doi.org/10.1002/2016jb013105 DOI: https://doi.org/10.1002/2016JB013105
Devin, E., Parker, G., Baltay, A., Nye, T., & Sahakian, V. (2021). Stress Drop in Ridgecrest Sequence Events from the Generalized Inversion Technique [LA and online, abstract S45A-0293]. AGU 2021 Fall Meeting, 13–17.
Dreger, D., Malagnini, L., Magana, J., & Taira, T. (2021). Comparing Finite-Source and Corner Frequency Based Stress Drop for the Ridgecrest Sequence [LA and online, abstract S45A-0288]. AGU 2021 Fall Meeting, 13–17.
E.C.G.S. Workshop. (2012). Earthquake source physics on various scales (A. O. Mayeda & L. Rivera, Eds.). http://www.ecgs.lu/source2012
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London Series A, 241(1226). https://doi.org/10.1098/rspa.1957.0133 DOI: https://doi.org/10.1098/rspa.1957.0133
Eulenfeld, T., Dahm, T., Heimann, S., & Wegler, U. (2021). Fast and Robust Earthquake Source Spectra and Moment Magnitudes from Envelope Inversion. Bulletin of the Seismological Society of America, 112(2), 878–893. https://doi.org/10.1785/0120210200 DOI: https://doi.org/10.1785/0120210200
Fan, W., Meng, H., Trugman, D. T., McGuire, J. J., & Cochran, E. S. (2022). Finite-source Attributes of M4 to 5.5 Ridgecrest, California Earthquakes. AGU 2022 Fall Meeting, 11-15.
Gibowicz, S. J., Young, R. P., Talebi, S., & Rawlence, D. J. (1991). Source parameters of seismic events at the Underground Research Laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than −2. Bulletin of the Seismological Society of America, 81(4), 1157–1182. https://doi.org/10.1785/BSSA0810041157
Goertz-Allmann, B. P., & Edwards, B. (2013). Constraints on crustal attenuation and three-dimensional spatial distribution of stress drop in Switzerland. Geophysical Journal International, 196(1), 493–509. https://doi.org/10.1093/gji/ggt384 DOI: https://doi.org/10.1093/gji/ggt384
Goodfellow, S. D., & Young, R. P. (2014). A laboratory acoustic emission experiment under in situ conditions. Geophysical Research Letters, 41(10), 3422–3430. https://doi.org/10.1002/2014gl059965 DOI: https://doi.org/10.1002/2014GL059965
Hanks, T.C., & Boore, D. M. (1984). Moment-magnitude relations in theory and practice. Journal of Geophysical Research, 89(B7). https://doi.org/10.1029/JB089iB07p06229. DOI: https://doi.org/10.1029/JB089iB07p06229
Hanks, Thomas C. (1977). Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions. Pure and Applied Geophysics PAGEOPH, 115(1–2), 441–458. https://doi.org/10.1007/bf01637120 DOI: https://doi.org/10.1007/BF01637120
Hanks, Thomas C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/jb084ib05p02348 DOI: https://doi.org/10.1029/JB084iB05p02348
Hardebeck, J. L., & Aron, A. (2009). Earthquake Stress Drops and Inferred Fault Strength on the Hayward Fault, East San Francisco Bay, California. Bulletin of the Seismological Society of America, 99(3), 1801–1814. https://doi.org/10.1785/0120080242 DOI: https://doi.org/10.1785/0120080242
Heath, D. C., Wald, D. J., Worden, C. B., Thompson, E. M., & Smoczyk, G. M. (2020). A global hybrid VS30 map with a topographic slope–based default and regional map insets. Earthquake Spectra, 36(3), 1570–1584. https://doi.org/10.1177/8755293020911137 DOI: https://doi.org/10.1177/8755293020911137
Huang, Y., Ellsworth, W. L., & Beroza, G. C. (2017). Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science Advances, 3(8). https://doi.org/10.1126/sciadv.1700772 DOI: https://doi.org/10.1126/sciadv.1700772
Ide, S., & Beroza, G. C. (2001). Does apparent stress vary with earthquake size? Geophysical Research Letters, 28(17), 3349–3352. https://doi.org/10.1029/2001gl013106 DOI: https://doi.org/10.1029/2001GL013106
Ide, S., Beroza, G. C., Prejean, S. G., & Ellsworth, W. L. (2003). Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research: Solid Earth, 108(B5). https://doi.org/10.1029/2001jb001617 DOI: https://doi.org/10.1029/2001JB001617
Imanishi, K., & Ellsworth, W. L. (2006). Source scaling relationships of microearthquakes at Parkfield, CA, determined using the SAFOD Pilot Hole Seismic Array. In Geophysical Monograph Series (pp. 81–90). American Geophysical Union. https://doi.org/10.1029/170gm10 DOI: https://doi.org/10.1029/170GM10
Ji, C., Archuleta, R. J., & Wang, Y. (2022). Variability of Spectral Estimates of Stress Drop Reconciled by Radiated Energy. Bulletin of the Seismological Society of America, 112(4), 1871–1885. https://doi.org/10.1785/0120210321 DOI: https://doi.org/10.1785/0120210321
Kaneko, Y., & Shearer, P. M. (2015). Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive‐zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research: Solid Earth, 120(2), 1053–1079. https://doi.org/10.1002/2014jb011642 DOI: https://doi.org/10.1002/2014JB011642
Kemna, K. B., Verdecchia, A., & Harrington, R. M. (2021). Spatio‐Temporal Evolution of Earthquake Static Stress Drop Values in the 2016–2017 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022566 DOI: https://doi.org/10.1029/2021JB022566
Knudson, T. C., Shaw, B., & Beroza, G. C. (2023). Measuring Source Parameters With Filtered Peak S-Wave Amplitudes Using the Asymptotic Spectral Ratio Method. Seismological Research Letters, 94(2B), 1029–1314. https://doi.org/10.1785/0220230054 DOI: https://doi.org/10.1785/0220230054
Ko, Y., Kuo, B., & Hung, S. (2012). Robust determination of earthquake source parameters and mantle attenuation. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011jb008759 DOI: https://doi.org/10.1029/2011JB008759
Kwiatek, G., Plenkers, K., & Dresen, G. (2011). Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations. Bulletin of the Seismological Society of America, 101(6), 2592–2608. https://doi.org/10.1785/0120110094 DOI: https://doi.org/10.1785/0120110094
Lin, G., Shearer, P. M., Hauksson, E., & Thurber, C. H. (2007). A three‐dimensional crustal seismic velocity model for southern California from a composite event method. Journal of Geophysical Research: Solid Earth, 112(B11). https://doi.org/10.1029/2007jb004977 DOI: https://doi.org/10.1029/2007JB004977
Liu, M., Huang, Y., & Ritsema, J. (2020). Stress Drop Variation of Deep‐Focus Earthquakes Based on Empirical Green’s Functions. Geophysical Research Letters, 47(9). https://doi.org/10.1029/2019gl086055 DOI: https://doi.org/10.1029/2019GL086055
Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666. https://doi.org/10.1785/bssa0660030639 DOI: https://doi.org/10.1785/BSSA0660030639
Malagnini, L., Mayeda, K., Nielsen, S., Yoo, S.-H., Munafo’, I., Rawles, C., & Boschi, E. (2013). Scaling Transition in Earthquake Sources: A Possible Link Between Seismic and Laboratory Measurements. Pure and Applied Geophysics, 171(10), 2685–2707. https://doi.org/10.1007/s00024-013-0749-8 DOI: https://doi.org/10.1007/s00024-013-0749-8
Mayeda, K., Hofstetter, A., O’Boyle, J. L., & Walter, W. R. (2003). Stable and Transportable Regional Magnitudes Based on Coda-Derived Moment-Rate Spectra. Bulletin of the Seismological Society of America, 93(1), 224–239. https://doi.org/10.1785/0120020020 DOI: https://doi.org/10.1785/0120020020
Mayeda, Kevin, Malagnini, L., & Walter, W. R. (2007). A new spectral ratio method using narrow band coda envelopes: Evidence for non‐self‐similarity in the Hector Mine sequence. Geophysical Research Letters, 34(11). https://doi.org/10.1029/2007gl030041 DOI: https://doi.org/10.1029/2007GL030041
McLaskey, G.C., Kilgore, B. D., Lockner, D. A., & Beeler, N. M. (2014). Laboratory generated M -6 earthquakes. Pure and Applied Geophyics, 171. https://doi.org/10.1007/s00024-013-0772-9 DOI: https://doi.org/10.1007/s00024-013-0772-9
McLaskey, Gregory C., & Lockner, D. A. (2014). Preslip and cascade processes initiating laboratory stick slip. Journal of Geophysical Research: Solid Earth, 119(8), 6323–6336. https://doi.org/10.1002/2014jb011220 DOI: https://doi.org/10.1002/2014JB011220
Morasca, P., Bindi, D., Mayeda, K., Roman-Nieves, J., Barno, J., Walter, W. R., & Spallarossa, D. (2022). Source scaling comparison and validation in Central Italy: data intensive direct Swaves versus the sparse data coda envelope methodology. Geophysical Journal International, 231(3), 1573–1590. https://doi.org/10.1093/gji/ggac268 DOI: https://doi.org/10.1093/gji/ggac268
Mori, J., Abercrombie, R. E., & Kanamori, H. (2003). Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake. Journal of Geophysical Research: Solid Earth, 108(B11). https://doi.org/10.1029/2001jb000474 DOI: https://doi.org/10.1029/2001JB000474
Nielsen, S., Spagnuolo, E., Smith, S. A. F., Violay, M., Di Toro, G., & Bistacchi, A. (2016). Scaling in natural and laboratory earthquakes. Geophysical Research Letters, 43(4), 1504–1510. https://doi.org/10.1002/2015gl067490 DOI: https://doi.org/10.1002/2015GL067490
Noda, H., Lapusta, N., & Kanamori, H. (2013). Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics. Geophysical Journal International, 193(3), 1691–1712. https://doi.org/10.1093/gji/ggt074 DOI: https://doi.org/10.1093/gji/ggt074
Oye, V., Bungum, H., & Roth, M. (2005). Source Parameters and Scaling Relations for Mining-Related Seismicity within the Pyhäsalmi Ore Mine, Finland. Bulletin of the Seismological Society of America, 95(3), 1011–1026. https://doi.org/10.1785/0120040170 DOI: https://doi.org/10.1785/0120040170
Pennington, C. N., Chen, X., Abercrombie, R. E., & Wu, Q. (2021). Cross Validation of Stress Drop Estimates and Interpretations for the 2011 Prague, OK, Earthquake Sequence Using Multiple Methods. Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020jb020888 DOI: https://doi.org/10.1029/2020JB020888
Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004006 DOI: https://doi.org/10.1029/2005JB004006
Ruhl, C. J., Abercrombie, R. E., & Smith, K. D. (2017). Spatiotemporal Variation of Stress Drop During the 2008 Mogul, Nevada, Earthquake Swarm. Journal of Geophysical Research: Solid Earth, 122(10), 8163–8180. https://doi.org/10.1002/2017jb014601 DOI: https://doi.org/10.1002/2017JB014601
Sato, T., & Hirasawa, T. (1973). Body wave spectra from propagating shear cracks. Journal of Physics of the Earth, 21(4), 415–431. https://doi.org/10.4294/jpe1952.21.415 DOI: https://doi.org/10.4294/jpe1952.21.415
Satriano, C. (2022). SourceSpec – Earthquake source parameters from P- or S-wave displacement. spectra.%20DOI:10.5281/ZENODO.3688587
SCEDC. (2013). Southern California Earthquake Data Center. Caltech. https://doi.org/10.7909/C3WD3XH1
Sellers, E. J., Kataka, M. O., & Linzer, L. M. (2003). Source parameters of acoustic emission events and scaling with mining‐induced seismicity. Journal of Geophysical Research: Solid Earth, 108(B9). https://doi.org/10.1029/2001jb000670 DOI: https://doi.org/10.1029/2001JB000670
Shearer, P. M., Abercrombie, R. E., & Trugman, D. T. (2022). Improved Stress Drop Estimates for M 1.5 to 4 Earthquakes in Southern California From 1996 to 2019. Journal of Geophysical Research: Solid Earth, 127(7). https://doi.org/10.1029/2022jb024243 DOI: https://doi.org/10.1029/2022JB024243
Shearer, P. M., Abercrombie, R. E., Trugman, D. T., & Wang, W. (2019). Comparing EGF Methods for Estimating Corner Frequency and Stress Drop From P Wave Spectra. Journal of Geophysical Research: Solid Earth, 124(4), 3966–3986. https://doi.org/10.1029/2018jb016957 DOI: https://doi.org/10.1029/2018JB016957
Shearer, P. M., Prieto, G. A., & Hauksson, E. (2006). Comprehensive analysis of earthquake source spectra in southern California. Journal of Geophysical Research: Solid Earth, 111(B6). https://doi.org/10.1029/2005jb003979 DOI: https://doi.org/10.1029/2005JB003979
Shible, H., Hollender, F., Bindi, D., Traversa, P., Oth, A., Edwards, B., Klin, P., Kawase, H., Grendas, I., Castro, R. R., Theodoulidis, N., & Gueguen, P. (2022). GITEC: A Generalized Inversion Technique Benchmark. Bulletin of the Seismological Society of America, 112(2), 850–877. https://doi.org/10.1785/0120210242 DOI: https://doi.org/10.1785/0120210242
Spottiswoode, S. M., & McGarr, A. (1975). Source parameters of tremors in a deep-level gold mine. Bulletin of the Seismological Society of America, 65(1), 93–112. https://doi.org/10.1785/BSSA0650010093
Supino, M., Festa, G., & Zollo, A. (2019). A probabilistic method for the estimation of earthquake source parameters from spectral inversion: application to the 2016–2017 Central Italy seismic sequence. Geophysical Journal International, 218(2), 988–1007. https://doi.org/10.1093/gji/ggz206 DOI: https://doi.org/10.1093/gji/ggz206
Thatcher, W., & Hanks, T. C. (1973). Source parameters of southern California earthquakes. Journal of Geophysical Research, 78(35), 8547–8576. https://doi.org/10.1029/jb078i035p08547 DOI: https://doi.org/10.1029/JB078i035p08547
Trugman, D. T. (2020). Stress-Drop and Source Scaling of the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4), 1859–1871. https://doi.org/10.1785/0120200009 DOI: https://doi.org/10.1785/0120200009
Trugman, D. T., & Shearer, P. M. (2017). Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 122(4), 2890–2910. https://doi.org/10.1002/2017jb013971 DOI: https://doi.org/10.1002/2017JB013971
University of Nevada, Reno. (1971). NN Seismic Network [Data set]. https://doi.org/10.7914/SN/NN
University of Nevada, Reno. (1992). SN Great Basin Network [Data set]. https://doi.org/10.7914/SN/SN
Urbancic, T. I., Trifu, C.-I., Mercer, R. A., Feustel, A. J., & Alexander, J. A. G. (1996). Automatic time-domain calculation of source parameters for the analysis of induced seismicity. Bulletin of the Seismological Society of America, 86(5), 1627–1633. https://doi.org/10.1785/bssa0860051627 DOI: https://doi.org/10.1785/BSSA0860051627
Urbancic, T. I., & Young, R. P. (1993). Space-time variations in source parameters of mining-induced seismic events with M < 0. Bulletin of the Seismological Society of America, 83(2), 378–397. https://doi.org/10.1785/BSSA0830020378
U.S. Geological Survey. (1931). United States National Strong-Motion Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NP
Vandevert, I., Shearer, P. M., & Fan, W. (2022). Earthquake Source Spectra Estimates Obtained from S-Wave Maximum Amplitudes: Application to the 2019 Ridgecrest Sequence. AGU 2022 Fall Meeting, 11-15.
Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8(11), 875–879. https://doi.org/10.1038/ngeo2554 DOI: https://doi.org/10.1038/ngeo2554
White, M. (2021). Ridgecrest 1D velocity model developed by Malcolm White. https://service.scedc.caltech.edu/ftp/stressdrop-ridgecrest/Ridgecrest_velocity_model.docx
White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., & Ben-Zion, Y. (2021). Detailed traveltime tomography and seismic catalogue around the 2019 Mw7.1 Ridgecrest, California, earthquake using dense rapid-response seismic data. Geophysical Journal International, 227(1), 204–227. https://doi.org/10.1093/gji/ggab224 DOI: https://doi.org/10.1093/gji/ggab224
Yamada, T., Mori, J. J., Ide, S., Abercrombie, R. E., Kawakata, H., Nakatani, M., Iio, Y., & Ogasawara, H. (2007). Stress drops and radiated seismic energies of microearthquakes in a South African gold mine. Journal of Geophysical Research: Solid Earth, 112(B3). https://doi.org/10.1029/2006jb004553 DOI: https://doi.org/10.1029/2006JB004553
Yong, A., Martin, A., Stokoe, K., & Diehl, J. (2013). ARRA-funded VS30 measurements using multi-technique approach at strong-motion stations in California and central-eastern United States. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr20131102 DOI: https://doi.org/10.3133/ofr20131102
Yoshimitsu, N., Kawakata, H., & Takahashi, N. (2014). Magnitude −7 level earthquakes: A new lower limit of self‐similarity in seismic scaling relationships. Geophysical Research Letters, 41(13), 4495–4502. https://doi.org/10.1002/2014gl060306 DOI: https://doi.org/10.1002/2014GL060306
Zhang, Q., & Lin, G. (2014). Three‐dimensional Vp and Vp/Vs models in the Coso geothermal area, California: Seismic characterization of the magmatic system. Journal of Geophysical Research: Solid Earth, 119(6), 4907–4922. https://doi.org/10.1002/2014jb010992 DOI: https://doi.org/10.1002/2014JB010992
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Annemarie Baltay, Rachel Abercrombie, Shanna Chu, Taka'aki Taira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Southern California Earthquake Center
Grant numbers 21083;21114;22101;22042