Red-light thresholds for induced seismicity in the UK

Authors

DOI:

https://doi.org/10.26443/seismica.v2i2.1086

Keywords:

Induced Seismicity, hydraulic fracturing, seismic hazard, seismic risk, traffic light protocol, red-light

Abstract

Induced earthquakes pose a serious hurdle to subsurface energy development. Concerns about induced seismicity led to terminal public opposition of hydraulic fracturing in the UK. Traffic light protocols (TLPs) are typically used to manage these risks, with the red-light designed as the last-possible stopping-point before exceeding a risk tolerance.  We simulate trailing earthquake scenarios for the UK, focusing on three risk metrics: nuisance, damage, and local personal risk (LPR) – the likelihood of building collapse fatality for an individual.  The severity of these risks can spatially vary (by orders-of-magnitude), depending on exposure.  Estimated risks from the Preston New Road earthquakes are used to calibrate our UK earthquake risk tolerances, which we find to be comparable to Albertan (Canadian) tolerances.  We find that nuisance and damage concerns supersede those from fatality and that the safest regions for Bowland Shale development would be along the east coast.  A retrospective comparison of our TLP result with the Preston New Road case highlights the importance of red-light thresholds that adapt to new information.  Overall, our findings provide recommendations for red-light thresholds (ML 2-2.5) and proactive management of induced seismicity – regardless of anthropogenic source.

References

Ader, T., Chendorain, M., Free, M., Saarno, T., Heikkinen, P., Malin, P. E., Leary, P., Kwiatek, G., Dresen, G., Bluemle, F., & Vuorinen, T. (2019). Design and implementation of a traffic light system for deep geothermal well stimulation in Finland. Journal of Seismology, 24(5), 991–1014. https://doi.org/10.1007/s10950-019-09853-y DOI: https://doi.org/10.1007/s10950-019-09853-y

Andrews, I. J. (2013). The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change, 64.

Andrews, I. J. (2014). The Jurassic shales of the Weald Basin: geology and shale oil and shale gas resource estimation. British Geological Survey for Department of Energy and Climate Change, 89.

Atkinson, G. M. (2015). Ground-Motion Prediction Equation for Small-to-Moderate Events at Short Hypocentral Distances, with Application to Induced-Seismicity Hazards. Bulletin of the Seismological Society of America, 105(2A), 981–992. https://doi.org/10.1785/0120140142 DOI: https://doi.org/10.1785/0120140142

Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R. M., Liu, Y., van der Baan, M., & Kao, H. (2016). Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters, 87(3), 631–647. https://doi.org/10.1785/0220150263 DOI: https://doi.org/10.1785/0220150263

Atkinson, G. M., Eaton, D. W., & Igonin, N. (2020). Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 1(5), 264–277. https://doi.org/10.1038/s43017-020-0049-7 DOI: https://doi.org/10.1038/s43017-020-0049-7

Baath, M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophysics, 2(6), 483–514. https://doi.org/10.1016/0040-1951(65)90003-x DOI: https://doi.org/10.1016/0040-1951(65)90003-X

Baisch, S., Koch, C., & Muntendam-Bos, A. (2019). Traffic Light Systems: To What Extent Can Induced Seismicity Be Controlled? Seismological Research Letters, 90(3), 1145–1154. https://doi.org/10.1785/0220180337 DOI: https://doi.org/10.1785/0220180337

Baptie, B., Luckett, R., Butcher, A., & Werner, M. J. (2020). Robust relationships for magnitude conversion of PNR seismicity catalogues. British Geological Survey Open‐File Report, 20(42), 32.

Baptie, B., Segou, M., Hough, E., & Hennissen, J. A. I. (2022). Recent scientific advances in the understanding of induced seismicity from hydraulic fracturing of shales. British Geological Survey Open Report, 22(50), 51.

BEIS, D. for B., Energy, & Strategy, I. (2013). Regulatory Roadmap: Onshore oil and gas exploration in the UK regulation and best practice. https://www.gov.uk/government/publications/regulatory-roadmap-onshore-oil-and-gas-

Bickle, M., Goodman, D., Mair, R., Roberts, J., Selley, R., Shipton, Z., & Younger, P. L. (2012). Shale gas extraction in the UK: a review of hydraulic fracturing. In The Royal Society and The Royal Academy of Engineering Report (p. 76).

Bommer, J. J. (2022). Earthquake hazard and risk analysis for natural and induced seismicity: towards objective assessments in the face of uncertainty. Bulletin of Earthquake Engineering, 20(6), 2825–3069. https://doi.org/10.1007/s10518-022-01357-4 DOI: https://doi.org/10.1007/s10518-022-01357-4

Bommer, J. J., Oates, S., Cepeda, J. M., Lindholm, C., Bird, J., Torres, R., Marroquı́n, G., & Rivas, J. (2006). Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Engineering Geology, 83(4), 287–306. https://doi.org/10.1016/j.enggeo.2005.11.002 DOI: https://doi.org/10.1016/j.enggeo.2005.11.002

Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113eqs184m DOI: https://doi.org/10.1193/070113EQS184M

Browitt, C. W. A. (1991). UK Earthquake Monitoring 1989/90. British Geological Survey Technical Report WL/SO/13, 36.

Butcher, A., Luckett, R., Verdon, J. P., Kendall, J.-M., Baptie, B., & Wookey, J. (2017). Local Magnitude Discrepancies for Near-Event Receivers: Implications for the U.K. Traffic-Light Scheme. Bulletin of the Seismological Society of America, 107(2), 532–541. https://doi.org/10.1785/0120160225 DOI: https://doi.org/10.1785/0120160225

Caprio, M., Tarigan, B., Worden, C. B., Wiemer, S., & Wald, D. J. (2015). Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency. Bulletin of the Seismological Society of America, 105(3), 1476–1490. https://doi.org/10.1785/0120140286 DOI: https://doi.org/10.1785/0120140286

Clarke, H., Eisner, L., Styles, P., & Turner, P. (2014). Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe. Geophysical Research Letters, 41(23), 8308–8314. https://doi.org/10.1002/2014gl062047 DOI: https://doi.org/10.1002/2014GL062047

Clarke, H., Verdon, J. P., Kettlety, T., Baird, A. F., & Kendall, J.-M. (2019). Real-Time Imaging, Forecasting, and Management of Human-Induced Seismicity at Preston New Road, Lancashire, England. Seismological Research Letters. https://doi.org/10.1785/0220190110 DOI: https://doi.org/10.1785/0220190110

Commissie-Meijdam. (2015). Eindadvies Handelingsperspectief voor Groningen Ad- viescommissie ‘Omgaan met risico’s van geïnduceerde aardbevingen’ (p. 37).

Cremen, G., & Werner, M. J. (2020). A novel approach to assessing nuisance risk from seismicity induced by UK shale gas development, with implications for future policy design. Natural Hazards and Earth System Sciences, 20(10), 2701–2719. https://doi.org/10.5194/nhess-20-2701-2020 DOI: https://doi.org/10.5194/nhess-20-2701-2020

Cremen, G., Werner, M. J., & Baptie, B. (2020). A New Procedure for Evaluating Ground-Motion Models, with Application to Hydraulic-Fracture-Induced Seismicity in the United Kingdom. Bulletin of the Seismological Society of America, 110(5), 2380–2397. https://doi.org/10.1785/0120190238 DOI: https://doi.org/10.1785/0120190238

Crowley, H., & Pinho, R. (2020). Report on the Fragility and Consequence Models for the Groningen Field (Version 7 (p. 83). NAM Report. https://nam-onderzoeksrapporten.data-app.nl/reports/download/groningen/en/9d8819b7-f0c5-4089-a036-71e755fda328.

Crowley, Helen, Polidoro, B., Pinho, R., & van Elk, J. (2017). Framework for Developing Fragility and Consequence Models for Local Personal Risk. Earthquake Spectra, 33(4), 1325–1345. https://doi.org/10.1193/083116eqs140m DOI: https://doi.org/10.1193/083116eqs140m

Cuadrilla Resources Ltd. (2019). Hydraulic Fracture Plan PNR 2, URL. https://consult.environment-agency.gov.uk/onshore-

Cypser, D. A., & Davis, S. D. (1998). Induced seismicity and the potential for liability under U.S. law. Tectonophysics, 289(1–3), 239–255. https://doi.org/10.1016/s0040-1951(97)00318-1 DOI: https://doi.org/10.1016/S0040-1951(97)00318-1

de Jonge-Anderson, I., & Underhill, J. R. (2020). Structural constraints on Lower Carboniferous shale gas exploration in the Craven Basin, NW England. Petroleum Geoscience, 26(2), 303–324. https://doi.org/10.1144/petgeo2019-125 DOI: https://doi.org/10.1144/petgeo2019-125

Eads, L., Miranda, E., & Lignos, D. G. (2015). Average spectral acceleration as an intensity measure for collapse risk assessment. Earthquake Engineering & Structural Dynamics, 44(12), 2057–2073. https://doi.org/10.1002/eqe.2575 DOI: https://doi.org/10.1002/eqe.2575

Edwards, B., Crowley, H., Pinho, R., & Bommer, J. J. (2021). Seismic Hazard and Risk Due to Induced Earthquakes at a Shale Gas Site. Bulletin of the Seismological Society of America, 111(2), 875–897. https://doi.org/10.1785/0120200234 DOI: https://doi.org/10.1785/0120200234

Esposito, S., & Iervolino, I. (2012). Spatial Correlation of Spectral Acceleration in European Data. Bulletin of the Seismological Society of America, 102(6), 2781–2788. https://doi.org/10.1785/0120120068 DOI: https://doi.org/10.1785/0120120068

Evensen, D., Varley, A., Whitmarsh, L., Devine-Wright, P., Dickie, J., Bartie, P., Napier, H., Mosca, I., Foad, C., & Ryder, S. (2022). Effect of linguistic framing and information provision on attitudes towards induced seismicity and seismicity regulation. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15448-4 DOI: https://doi.org/10.1038/s41598-022-15448-4

Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008 DOI: https://doi.org/10.1016/j.earscirev.2017.07.008

Green, C. A., Styles, P., & Baptie, B. J. (2012). Preese Hall Shale Gas Fracturing Review and Recommendations for Induced Seismic Mitigation, Induced Seismicity (p. 26) [Mitigation Report,]. Department of Energy.

Heath, D. C., Wald, D. J., Worden, C. B., Thompson, E. M., & Smoczyk, G. M. (2020). A global hybrid Vs30 map with a topographic slope–based default and regional map insets. Earthquake Spectra, 36(3), 1570–1584. https://doi.org/10.1177/8755293020911137 DOI: https://doi.org/10.1177/8755293020911137

Hicks, S. P., Goes, S., Whittaker, A. C., & Stafford, P. J. (2021). Multivariate Statistical Appraisal of Regional Susceptibility to Induced Seismicity: Application to the Permian Basin, SW United States. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022768 DOI: https://doi.org/10.1029/2021JB022768

Hicks, S. P., Verdon, J., Baptie, B., Luckett, R., Mildon, Z. K., & Gernon, T. (2019). A shallow earthquake swarm close to hydrocarbon activities: Discriminating between natural and induced causes for the 2018–2019 Surrey, United Kingdom, earthquake sequence. Seismological Research Letters, 90(6), 2095–2110. https://doi.org/10.1785/0220190125 DOI: https://doi.org/10.1785/0220190125

Jaiswal, K., Wald, D. J., & Hearne, M. (2009). Estimating casualties for large earthquakes worldwide using an empirical approach (p. 78) [U.S Geological Survey Open-File Report, OF 2009-1136,]. DOI: https://doi.org/10.3133/ofr20091136

Jaiswal, Kishor, & Wald, D. (2010). An Empirical Model for Global Earthquake Fatality Estimation. Earthquake Spectra, 26(4), 1017–1037. https://doi.org/10.1193/1.3480331 DOI: https://doi.org/10.1193/1.3480331

Kettlety, T., Verdon, J. P., Butcher, A., Hampson, M., & Craddock, L. (2020). High‐resolution imaging of the ML 2.9 August 2019 earthquake in Lancashire, United Kingdom, induced by hydraulic fracturing during Preston New Road PNR‐2 operations. Seismological Research Letters, 92(1), 151–169. https://doi.org/10.1785/0220200187 DOI: https://doi.org/10.1785/0220200187

Korswagen, P. A., Longo, M., & Rots, J. G. (2022). Fragility curves for light damage of clay masonry walls subjected to seismic vibrations. Bulletin of Earthquake Engineering, 20(11), 6193–6227. https://doi.org/10.1007/s10518-022-01404-0 DOI: https://doi.org/10.1007/s10518-022-01404-0

Korswagen, P., Longo, M., Meulman, E., Licciardello, L., & Sousamli, M. (2019). Damage Sensitivity of Groningen Masonry – Experimental and Computational Studies (Part 2 (p. 31 69 0-12, 512). NAM Report by Delft University of Technology.

Lei, X., Wang, Z., & Su, J. (2019). The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan basin induced by shale gas hydraulic fracturing. Seismological Research Letters, 90(3), 1099–1110. https://doi.org/10.1785/0220190029 DOI: https://doi.org/10.1785/0220190029

Luckett, R., Ottemöller, L., Butcher, A., & Baptie, B. (2018). Extending local magnitude ML to short distances. Geophysical Journal International, 216(2), 1145–1156. https://doi.org/10.1093/gji/ggy484 DOI: https://doi.org/10.1093/gji/ggy484

Majer, E., Nelson, J., Robertson-Tait, A., Savy, J., & Wong, I. (2012). Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems [Techreport]. Office of Scientific. https://doi.org/10.2172/1219482 DOI: https://doi.org/10.2172/1219482

Mancini, S., Werner, M. J., Segou, M., & Baptie, B. (2021). Probabilistic Forecasting of Hydraulic Fracturing-Induced Seismicity Using an Injection-Rate Driven ETAS Model. Seismological Research Letters, 92(6), 3471–3481. https://doi.org/10.1785/0220200454 DOI: https://doi.org/10.1785/0220200454

Marzocchi, W., Iervolino, I., Giorgio, M., & Falcone, G. (2015). When Is the Probability of a Large Earthquake Too Small? Seismological Research Letters, 86(6), 1674–1678. https://doi.org/10.1785/0220150129 DOI: https://doi.org/10.1785/0220150129

Mignan, A., Broccardo, M., Wiemer, S., & Giardini, D. (2017). Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13585-9 DOI: https://doi.org/10.1038/s41598-017-13585-9

Monaghan, A. A. (2014). The Carboniferous shales of the Midland Valley of Scotland: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change, 105.

Mosca, I., Sargeant, S., Baptie, B., Musson, R. M. W., & Pharaoh, T. C. (2022). The 2020 national seismic hazard model for the United Kingdom. Bulletin of Earthquake Engineering, 20(2), 633–675. https://doi.org/10.1007/s10518-021-01281-z DOI: https://doi.org/10.1007/s10518-021-01281-z

Muntendam-Bos, A. G., Roest, J. P. A., & de Waal, J. A. (2015). A guideline for assessing seismic risk induced by gas extraction in the Netherlands. The Leading Edge, 34(6), 672–677. https://doi.org/10.1190/tle34060672.1 DOI: https://doi.org/10.1190/tle34060672.1

Musson, R. M. W. (2004). A critical history of British earthquakes. Annals of Geophysics, 47(2–3). https://doi.org/10.4401/ag-3325 DOI: https://doi.org/10.4401/ag-3325

Musson, R. M. W. (2007). British earthquakes. Proceedings of the Geologists’ Association, 118(4), 305–337. https://doi.org/10.1016/s0016-7878(07)80001-0 DOI: https://doi.org/10.1016/S0016-7878(07)80001-0

Nantanoi, S., Rodrı́guez-Pradilla, G., & Verdon, J. (2021). 3D seismic interpretation and fault slip potential analysis from hydraulic fracturing in the Bowland Shale, UK. Petroleum Geoscience, 28(2). https://doi.org/10.1144/petgeo2021-057 DOI: https://doi.org/10.1144/petgeo2021-057

Nievas, C. I., Bommer, J. J., Crowley, H., & van Elk, J. (2019). Global occurrence and impact of small-to-medium magnitude earthquakes: a statistical analysis. Bulletin of Earthquake Engineering, 18(1), 1–35. https://doi.org/10.1007/s10518-019-00718-w DOI: https://doi.org/10.1007/s10518-019-00718-w

Oil and Gas Authority. (2018). Consolidated Onshore Guidance, Version 2.2, North Sea Transition Authority Report. https://www.nstauthority.co.uk/media/4908/consolidated-onshore-guidance-compendium_vfinal12062018.pdf

Oil and Gas Authority. (2019). Summary report of the scientific analysis of the data gathered from Cuadrilla’s PNR2 hydraulic fracturing operations at Preston New Road, 12pp. https://www.nstauthority.co.uk/media/6970/oga-summary-of-pnr2-studies-final.pdf.

Pater, C. J., & Baisch, S. (2011). Geomechanical study of Bowland Shale seismicity. 71.

Pawley, S., Schultz, R., Playter, T., Corlett, H., Shipman, T., Lyster, S., & Hauck, T. (2018). The Geological Susceptibility of Induced Earthquakes in the Duvernay Play. Geophysical Research Letters, 45(4), 1786–1793. https://doi.org/10.1002/2017gl076100 DOI: https://doi.org/10.1002/2017GL076100

Redmayne, D. W. (1988). Mining induced seismicity in UK coalfields identified on the BGS National Seismograph Network. Geological Society, London, Engineering Geology Special Publications, 5(1), 405–413. https://doi.org/10.1144/gsl.eng.1988.005.01.45 DOI: https://doi.org/10.1144/GSL.ENG.1988.005.01.45

Redmayne, D. W., Richards, J. A., & Wild, P. W. (1998). Mining-induced earthquakes monitored during pit closure in the Midlothian Coalfield. Quarterly Journal of Engineering Geology, 31(1), 21–36. https://doi.org/10.1144/gsl.qjeg.1998.031.p1.03 DOI: https://doi.org/10.1144/GSL.QJEG.1998.031.P1.03

Rose, A. N., McKee, J., Urban, M. L., Bright, E. A., & Sims, K. M. (2019). LandScan 2018 High-Resolution Global Population Data Set (No. In LandScan 2018 High-Resolution Global Population Da; 005854MLTPL00). Oak Ridge National Laboratory (ORNL.

Roy, C., Nowacki, A., Zhang, X., Curtis, A., & Baptie, B. (2021). Accounting for Natural Uncertainty Within Monitoring Systems for Induced Seismicity Based on Earthquake Magnitudes. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.634688 DOI: https://doi.org/10.3389/feart.2021.634688

Schultz, R., Atkinson, G., Eaton, D. W., Gu, Y. J., & Kao, H. (2018). Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science, 359(6373), 304–308. https://doi.org/10.1126/science.aao0159 DOI: https://doi.org/10.1126/science.aao0159

Schultz, Ryan, Beroza, G. C., & Ellsworth, W. L. (2021a). A risk-based approach for managing hydraulic fracturing-induced seismicity. Science, 372(6541), 504–507. https://doi.org/10.1126/science.abg5451 DOI: https://doi.org/10.1126/science.abg5451

Schultz, Ryan, Beroza, G. C., & Ellsworth, W. L. (2021b). A Strategy for Choosing Red-Light Thresholds to Manage Hydraulic Fracturing Induced Seismicity in North America. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022340 DOI: https://doi.org/10.1029/2021JB022340

Schultz, Ryan, Beroza, G., Ellsworth, W., & Baker, J. (2020). Risk-informed recommendations for managing hydraulic fracturing induced seismicity via traffic light protocols. Bulletin of the Seismological Society of America, 110(5), 2411–2422. https://doi.org/10.1785/0120200016 DOI: https://doi.org/10.1785/0120200016

Schultz, Ryan, Ellsworth, W. L., & Beroza, G. C. (2022). Statistical bounds on how induced seismicity stops. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05216-9 DOI: https://doi.org/10.1038/s41598-022-05216-9

Schultz, Ryan, Muntendam-Bos, A., Zhou, W., Beroza, G. C., & Ellsworth, W. L. (2022). Induced seismicity red-light thresholds for enhanced geothermal prospects in the Netherlands. Geothermics, 106, 102580. https://doi.org/10.1016/j.geothermics.2022.102580 DOI: https://doi.org/10.1016/j.geothermics.2022.102580

Schultz, Ryan, Quitoriano, V., Wald, D. J., & Beroza, G. C. (2021). Quantifying nuisance ground motion thresholds for induced earthquakes. Earthquake Spectra, 37(2), 789–802. https://doi.org/10.1177/8755293020988025 DOI: https://doi.org/10.1177/8755293020988025

Schultz, Ryan, Skoumal, R. J., Brudzinski, M. R., Eaton, D., Baptie, B., & Ellsworth, W. (2020). Hydraulic Fracturing-Induced Seismicity. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019rg000695 DOI: https://doi.org/10.1029/2019RG000695

Smith, D. C., & Richards, J. M. (2015). Social License to Operate: Hydraulic Fracturing-Related Challenges Facing the Oil & Gas Industry. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2591988 DOI: https://doi.org/10.2139/ssrn.2591988

Smith, N., Turner, P., & Williams, G. (2010). UK data and analysis for shale gas prospectivity. Geological Society, London, Petroleum Geology Conference Series, 7(1), 1087–1098. https://doi.org/10.1144/0071087 DOI: https://doi.org/10.1144/0071087

SodM, Staatstoezicht op de Mijnen. (2014). Risico analyse aardgasbevingen Groningen (Risk assessment gas-earthquakes Groningen, in Dutch) (p. 19).

Thomas, M., Partridge, T., Harthorn, B. H., & Pidgeon, N. (2017). Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nature Energy, 2(5). https://doi.org/10.1038/nenergy.2017.54 DOI: https://doi.org/10.1038/nenergy.2017.54

UK Public General Acts. (2015). UK Infrastructure Act 2015. https://www.legislation.gov.uk/ukpga/2015/7/part/6/crossheading/other-provision-about-onshore-petroleum/enacted.

U.N.-P.D. (2022). United Nations Department of Economic and Social Affairs Population Division. https://population.un.org/wpp/.

van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W., & Hosseini, S. M. (2016). Induced earthquake magnitudes are as large as (statistically) expected. Journal of Geophysical Research: Solid Earth, 121(6), 4575–4590. https://doi.org/10.1002/2016jb012818 DOI: https://doi.org/10.1002/2016JB012818

van der Voort, N., & Vanclay, F. (2015). Social impacts of earthquakes caused by gas extraction in the Province of Groningen, The Netherlands. Environmental Impact Assessment Review, 50, 1–15. https://doi.org/10.1016/j.eiar.2014.08.008 DOI: https://doi.org/10.1016/j.eiar.2014.08.008

van Elk, J., Doornhof, D., Bommer, J. J., Bourne, S. J., Oates, S. J., Pinho, R., & Crowley, H. (2017). Hazard and risk assessments for induced seismicity in Groningen. Netherlands Journal of Geosciences, 96(5), s259–s269. https://doi.org/10.1017/njg.2017.37 DOI: https://doi.org/10.1017/njg.2017.37

Verdon, J. P., & Bommer, J. J. (2020). Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. Journal of Seismology, 25(1), 301–326. https://doi.org/10.1007/s10950-020-09966-9 DOI: https://doi.org/10.1007/s10950-020-09966-9

Verdon, J. P., & Rodrı́guez-Pradilla, G. (2023). Assessing the variability in hydraulic fracturing-induced seismicity occurrence between North American shale plays. Tectonophysics, 859, 229898. https://doi.org/10.1016/j.tecto.2023.229898 DOI: https://doi.org/10.1016/j.tecto.2023.229898

Villani, M., Polidoro, B., McCully, R., Ader, T., Edwards, B., Rietbrock, A., Lubkowski, Z., Courtney, T. J., & Walsh, M. (2019). A Selection of GMPEs for the United Kingdom Based on Instrumental and Macroseismic Datasets. Bulletin of the Seismological Society of America, 109(4), 1378–1400. https://doi.org/10.1785/0120180268 DOI: https://doi.org/10.1785/0120180268

Wald, D. J., Quitoriano, V., Worden, C. B., Hopper, M., & Dewey, J. W. (2012). USGS “Did You Feel It?” internet-based macroseismic intensity maps. Annals of Geophysics, 54(6). https://doi.org/10.4401/ag-5354 DOI: https://doi.org/10.4401/ag-5354

Westaway, R., & Younger, P. L. (2014). Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK. Quarterly Journal of Engineering Geology and Hydrogeology, 47(4), 333–350. https://doi.org/10.1144/qjegh2014-011 DOI: https://doi.org/10.1144/qjegh2014-011

Westlake, S., John, C. H. D., & Cox, E. (2023). Perception spillover from fracking onto public perceptions of novel energy technologies. Nature Energy, 8(2), 149–158. https://doi.org/10.1038/s41560-022-01178-4 DOI: https://doi.org/10.1038/s41560-022-01178-4

Williams, L., Macnaghten, P., Davies, R., & Curtis, S. (2016). Framing `fracking’: Exploring public perceptions of hydraulic fracturing in the United Kingdom. Public Understanding of Science, 26(1), 89–104. https://doi.org/10.1177/0963662515595159 DOI: https://doi.org/10.1177/0963662515595159

Wilson, M. P., Davies, R. J., Foulger, G. R., Julian, B. R., Styles, P., Gluyas, J. G., & Almond, S. (2015). Anthropogenic earthquakes in the UK: A national baseline prior to shale exploitation. Marine and Petroleum Geology, 68, 1–17. https://doi.org/10.1016/j.marpetgeo.2015.08.023 DOI: https://doi.org/10.1016/j.marpetgeo.2015.08.023

Published

2023-10-16

How to Cite

Schultz, R., Baptie, B., Edwards, B., & Wiemer, S. (2023). Red-light thresholds for induced seismicity in the UK. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.1086

Issue

Section

Articles