Shear-Wave Radiation Patterns from Explosive and Earthquake Sources in Scattering, Heterogeneous Media
DOI:
https://doi.org/10.26443/seismica.v4i2.1123Keywords:
explosion monitoringAbstract
Distinguishing whether a seismic event is an earthquake or an explosion is a core problem in explosion monitoring. For simplistic models, earthquakes produce a predictable S-wavefield based on their radiation pattern, while an explosion produces no S-wavefield. However, observations from nuclear tests show that explosions can produce significant S-wave energy on both horizontal components. We perform numerical experiments using SPECFEM to constrain when an S-wavefield generated from an explosion might differ from one produced by an earthquake. We generate the S-wavefield for our explosions by placing the source location within a small region consisting of large velocity heterogeneities. For the 2D cases investigated here, a crucial condition is that the size of the region of heterogeneities must be much smaller (approximately 1/12th) than the minimum wavelength of the wavefield for our simulation setups. We investigate both isotropic heterogeneities and anisotropic heterogeneities. Initial results demonstrate that the heterogeneous region lowers the P/S amplitude ratios of an explosion. The presence of strong anisotropic heterogeneities near the source can also produce an S-wavefield with similar amplitudes to the P-wavefield. Lastly, we show that S-wave polarization angles vary as a function of azimuth and distance for explosive sources in the presence of small-scale heterogeneities.
References
Aki, K., Reasenberg, P., DeFazio, T., & Tsai, Y. B. (1969). Near-field and far-field seismic evidences for triggering of an earthquake by the Benham explosion. Bulletin of the Seismological Society of America, 59(6), 2197–2207. https://doi.org/10.1785/BSSA0590062197
Aki, K., & Richards, P. G. (2002). Quantitative seismology.
Anderson, D. L. (1961). Elastic wave propagation in layered anisotropic media. Journal of Geophysical Research, 66(9), 2953–2963. https://doi.org/10.1029/jz066i009p02953
Backus, G. (1962). Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11). https://doi.org/10.1002/2015JB012641
Baker, G. E., Stevens, J. L., & Xu, H. (2012). Explosion Shear-Wave Generation in High-Velocity Source Media. Bulletin of the Seismological Society of America, 102(4), 1301–1319. https://doi.org/10.1785/0120110119
Ben-Menahem, A., Gibson Jr, R. L., & Sena, A. G. (1991). Green’s tensor and radiation patterns of point sources in general anisotropic inhomogeneous elastic media. Geophysical Journal International, 107(2). https://doi.org/10.1111/j.1365-246X.1991.tb00827.x
Ben‐Menahem, A., & Sena, A. G. (1990). Seismic source theory in stratified anisotropic media. Journal of Geophysical Research: Solid Earth, 95(B10), 15395–15427. https://doi.org/10.1029/jb095ib10p15395
Blandford, R. R. (1981). Seismic Discrimination Problems at Regional Distances. In Identification of Seismic Sources — Earthquake or Underground Explosion (pp. 695–740). Springer Netherlands. https://doi.org/10.1007/978-94-009-8531-5_38
Bowers, D., & Selby, N. D. (2009). Forensic Seismology and the Comprehensive Nuclear-Test-Ban Treaty. Annual Review of Earth and Planetary Sciences, 37(1), 209–236. https://doi.org/10.1146/annurev.earth.36.031207.124143
Brownlee, S. J., Schulte‐Pelkum, V., Raju, A., Mahan, K., Condit, C., & Orlandini, O. F. (2017). Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics, 36(9), 1835–1857. https://doi.org/10.1002/2017tc004625
Brune, J. N., & Pomeroy, P. W. (1963). Surface wave radiation patterns for underground nuclear explosions and small-magnitude earthquakes. Journal of Geophysical Research, 68(17), 5005–5028. https://doi.org/10.1029/jz068i017p05005
Burgos, G., Capdeville, Y., & Guillot, L. (2016). Homogenized moment tensor and the effect of near‐field heterogeneities on nonisotropic radiation in nuclear explosion. Journal of Geophysical Research: Solid Earth, 121(6), 4366–4389. https://doi.org/10.1002/2015jb012744
Capdeville, Y. (2021). Homogenization of seismic point and extended sources. Geophysical Journal International, 226(2), 1390–1416. https://doi.org/10.1093/gji/ggab178
Capdeville, Y., Cupillard, P., & Singh, S. (2020). An introduction to the two-scale homogenization method for seismology. In Advances in Geophysics (Vol. 61, pp. 217–306).
Capdeville, Y., Guillot, L., & Marigo, J.-J. (2010). 2-D non-periodic homogenization to upscale elastic media for P–SV waves. Geophysical Journal International, 182(2), 903–922. https://doi.org/10.1111/j.1365-246x.2010.04636.x
Coyne, J., Bobrov, D., Bormann, P., Duran, E., Grenard, P., Haralabus, G., Kitov, I., & Starovoit, Y. (2012). CTBTO: Goals, networks, data analysis and data availability. In New manual of seismological observatory practice 2 (NMSOP-2). Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.NMSOP-2_ch15
Denny, M. D., & Goodman, D. M. (1990). A case study of the seismic source function: Salmon and sterling reevaluated. Journal of Geophysical Research: Solid Earth, 95(B12), 19705–19723. https://doi.org/10.1029/jb095ib12p19705
Ekström, G., & Richards, P. G. (1994). Empirical Measurements of Tectonic Moment Release In Nuclear Explosions From Teleseismic Surface Waves and Body Waves. Geophysical Journal International, 117(1), 120–140. https://doi.org/10.1111/j.1365-246x.1994.tb03307.x
Gajewski, D. (1993). Radiation from point sources in general anisotropic media. Geophysical Journal International, 113(2), 299–317. https://doi.org/10.1111/j.1365-246x.1993.tb00889.x
Gualtieri, L., Stutzmann, E., Juretzek, C., Hadziioannou, C., & Ardhuin, F. (2019). Global scale analysis and modelling of primary microseisms. Geophysical Journal International, 218(1), 560–572. https://doi.org/10.1093/gji/ggz161
Gupta, I. N., Chan, W. W., & Wagner, R. A. (1992). A comparison of regional phases from underground nuclear explosions at east Kazakh and Nevada test sites. Bulletin of the Seismological Society of America, 82(1), 352–382. https://doi.org/10.1785/BSSA0820010352
Hartse, H. E., Taylor, S. R., Phillips, W. S., & Randall, G. E. (1997). A preliminary study of regional seismic discrimination in central Asia with emphasis on western China. Bulletin of the Seismological Society of America, 87(3), 551–568. https://doi.org/10.1785/bssa0870030551
Healy, J. H., King, C.-Y., & O’Neill, M. E. (1971). Source parameters of the Salmon and Sterling Nuclear Explosions from seismic measurements. Journal of Geophysical Research, 76(14), 3344–3355. https://doi.org/10.1029/jb076i014p03344
Hirakawa, E., Pitarka, A., & Mellors, R. (2016). Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media. Bulletin of the Seismological Society of America, 106(5), 2313–2319. https://doi.org/10.1785/0120150243
Houng, S. E. (2017). Discrimination between Natural Earthquakes and Explosions Based on the Azimuthal Distribution of S/P Amplitude Ratios. Bulletin of the Seismological Society of America, 108(1), 218–229. https://doi.org/10.1785/0120160322
Hudson, J. (1980). Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88(2). https://doi.org/10.1017/S0305004100057674
Jenkins, R. D., & Sereno, T. J., Jr. (2001). Calibration of regional S/P amplitude-ratio discriminants. Pure and Applied Geophysics, 158, 1279–1300. https://doi.org/10.1007/PL00001223
Jordan, T. (2015). An effective medium theory for three-dimensional elastic heterogeneities. Geophysical Journal International, 203(2). https://doi.org/10.1093/gji/ggv355
Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x
Komatitsch, D., Erlebacher, G., Göddeke, D., & Michéa, D. (2010). High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. Journal of Computational Physics, 229(20), 7692–7714. https://doi.org/10.1016/j.jcp.2010.06.024
Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation-I. Validation. Geophysical Journal International, 149(2), 390–412. https://doi.org/10.1046/j.1365-246x.2002.01653.x
Komatitsch, D., & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303–318. https://doi.org/10.1046/j.1365-246x.2002.01716.x
Komatitsch, D., & Vilotte, J.-P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368–392. https://doi.org/10.1785/bssa0880020368
Leavy, D. (1993). Scattering of elastic waves near an explosion. Bulletin of the Seismological Society of America, 83(4), 1277–1293. https://doi.org/10.1785/bssa0830041277
Leng, K., Korenaga, J., & Nissen-Meyer, T. (2020). 3-D scattering of elastic waves by small-scale heterogeneities in the Earth’s mantle. Geophysical Journal International, 223(1), 502–525. https://doi.org/10.1093/gji/ggaa331
Li, H., Qu, K., Rong, W., Tuo, X., Lu, J., Wang, R., Wang, X., & Courtois, J. (2021). PolarGUI: A MATLAB-Based Tool for Polarization Analysis of the Three-Component Seismic Data Using Different Algorithms. Seismological Research Letters, 92(6), 3821–3831. https://doi.org/10.1785/0220200439
Mancinelli, N., Shearer, P., & Liu, Q. (2016). Constraints on the heterogeneity spectrum of Earth’s upper mantle. Journal of Geophysical Research: Solid Earth, 121(5). https://doi.org/10.1002/2015JB012641
Mandal, B., & Toksöz, M. N. (1990). Computation of complete waveforms in general anisotropic media-results from an explosion source in an anisotropic medium. Geophysical Journal International, 103(1), 33–45. https://doi.org/10.1111/j.1365-246x.1990.tb01750.x
Martynov, V. N., & Mikhailenko, B. G. (1984). Numerical modelling of propagation of elastic waves in anisotropic inhomogeneous media for the half-space and the sphere. Geophysical Journal International, 76(1), 53–63. https://doi.org/10.1111/j.1365-246x.1984.tb05021.x
Maupin, V. (1990). Modeling of three-component Lg waves in anisotropic crustal models. Bulletin of the Seismological Society of America, 80(5), 1311–1325. https://doi.org/10.1785/BSSA0800051311
McSkimin, H. J., Andreatch, P., & Thurston, R. N. (1965). Elastic Moduli of Quartz versus Hydrostatic Pressure at 25° and − 195.8°C. Journal of Applied Physics, 36(5), 1624–1632. https://doi.org/10.1063/1.1703099
Mellors, R., Myers, S., Ford, S., Walter, W., Hauk, T., Ruppert, S., & Pitarka, A. (2012). SPE3 Far-field Quicklook (Techreport LLNL-TR-586676). Office of Scientific. https://doi.org/10.2172/1053657
Moschetti, M. P., Ritzwoller, M. H., Lin, F., & Yang, Y. (2010). Seismic evidence for widespread western-US deep-crustal deformation caused by extension. Nature, 464(7290), 885–889. https://doi.org/10.1038/nature08951
Myers, S. C., Walter, W. R., Mayeda, K., & Glenn, L. (1999). Observations in support of Rg scattering as a source for explosion S waves: Regional and local recordings of the 1997 Kazakhstan depth of burial experiment. Bulletin of the Seismological Society of America, 89(2), 544–549. https://doi.org/10.1785/bssa0890020544
Mykkeltveit, S., & Husebye, E. S. (1981). Lg Wave Propagation in Eurasia. In Identification of Seismic Sources — Earthquake or Underground Explosion (pp. 421–451). Springer Netherlands. https://doi.org/10.1007/978-94-009-8531-5_21
Nelson, P., & Creasy, N. (2025). Shear-Wave Radiation Patterns from Explosive and Earthquaker Sources in Scattering, Heterogeneous Media (Version 2) [Dataset]. Mendeley Data. https://doi.org/10.17632/54kkx44886.2
Nelson, P. L., Modrak, R. T., Phillips, W. S., & Begnaud, M. (2023). Finite-Frequency Kernels for Pg Wavetrains. Bulletin of the Seismological Society of America, 113(3), 1039–1053. https://doi.org/10.1785/0120220162
Nuttli, O. W. (1986). Lg magnitudes of selected East Kazakhstan underground explosions. Bulletin of the Seismological Society of America, 76(5), 1241–1251. https://doi.org/10.1785/bssa0760051241
O’Rourke, C. T., Baker, G. E., & Sheehan, A. F. (2016). Using P/S amplitude ratios for seismic discrimination at local distances. Bulletin of the Seismological Society of America, 106(5), 2320–2331. https://doi.org/10.1785/0120160035
Patton, H. J. (1991). Seismic moment estimation and the scaling of the long-period explosion source spectrum. In Explosion Source Phenomenology (pp. 171–183). American Geophysical Union. https://doi.org/10.1029/gm065p0171
Perret, W. R. (1968). Shear waves from a nuclear explosion in a salt cavity. Bulletin of the Seismological Society of America, 58(6), 2043–2051. https://doi.org/10.1785/bssa0580062043
Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., Le Loher, P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T., Basini, P., & Tromp, J. (2011). Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes: SPECFEM3D Version 2.0 ‘Sesame.’ Geophysical Journal International, 186(2), 721–739. https://doi.org/10.1111/j.1365-246x.2011.05044.x
Pienkowska, M., Monteiller, V., & Nissen-Meyer, T. (2020). High-frequency global wavefields for local 3-D structures by wavefield injection and extrapolation. Geophysical Journal International, 225(3), 1782–1798. https://doi.org/10.1093/gji/ggaa563
Press, F., & Archambeau, C. (1962). Release of tectonic strain by underground nuclear explosions. Journal of Geophysical Research, 67(1), 337–343. https://doi.org/10.1029/jz067i001p00337
Priestley, K. F., Walter, W. R., Martynov, V., & Rozhkov, M. V. (1990). Regional seismic recordings of the Soviet nuclear explosion of the Joint Verification Experiment. Geophysical Research Letters, 17(2), 179–182. https://doi.org/10.1029/gl017i002p00179
Richards, P. G., & Kim, W.-Y. (1997). Testing the nuclear test-ban treaty. Nature, 389(6653), 781–782. https://doi.org/10.1038/39720
Richards, P. G., & Zavales, J. (1990). SEISMIC DISCRIMINATION OF NUCLEAR EXPLOSIONS. Annual Review of Earth and Planetary Sciences, 18(1), 257–286. https://doi.org/10.1146/annurev.ea.18.050190.001353
Rodgers, A. J., Petersson, N. A., & Sjogreen, B. (2010). Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation. Journal of Geophysical Research: Solid Earth, 115(B11). https://doi.org/10.1029/2010jb007707
Sato, H. (2009). Retrieval of Green’s function having coda from the cross-correlation function in a scattering medium illuminated by surrounding noise sources on the basis of the first order Born approximation. Geophysical Journal International, 179(1). https://doi.org/10.1111/j.1365-246X.2009.04296.x
Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23029-5
Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37(1), 65–106. https://doi.org/10.1029/98rg02075
Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10), 16429–16454. https://doi.org/10.1029/91jb00899
Singh, S., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research: Solid Earth, 88(B1), 527–538. https://doi.org/10.1029/jb088ib01p00527
Snelson, C. M., Abbott, R. E., Broome, S. T., Mellors, R. J., Patton, H. J., Sussman, A. J., Townsend, M. J., & Walter, W. R. (2013). Chemical Explosion Experiments to Improve Nuclear Test Monitoring. Eos, Transactions American Geophysical Union, 94(27), 237–239. https://doi.org/10.1002/2013eo270002
Stroujkova, A., Bonner, J. L., Leidig, M., Boyd, P., & Martin, R. J. (2012). Shear Waves from Explosions in Granite Revisited: Lessons Learned from the New England Damage Experiment. Bulletin of the Seismological Society of America, 102(5), 1913–1926. https://doi.org/10.1785/0120110204
Tatham, D. J., Lloyd, G. E., Butler, R. W. H., & Casey, M. (2008). Amphibole and lower crustal seismic properties. Earth and Planetary Science Letters, 267(1–2), 118–128. https://doi.org/10.1016/j.epsl.2007.11.042
Taylor, S. R., Denny, M. D., Vergino, E. S., & Glaser, R. E. (1989). Regional discrimination between NTS explosions and western U.S. earthquakes. Bulletin of the Seismological Society of America, 79(4), 1142–1176. https://doi.org/10.1785/bssa0790041142
Tromp, J., Komatitsch, D., & Liu, Q. (2008). Spectral-element and adjoint methods in seismology. Communications in Computational Physics, 3(1), 1–32.
Vaughan, M. T., & Guggenheim, S. (1986). Elasticity of muscovite and its relationship to crystal structure. Journal of Geophysical Research: Solid Earth, 91(B5), 4657–4664. https://doi.org/10.1029/jb091ib05p04657
Vavryčuk, V., & Kim, S. G. (2014). Nonisotropic radiation of the 2013 North Korean nuclear explosion. Geophysical Research Letters, 41(20), 7048–7056. https://doi.org/10.1002/2014gl061265
Vorobiev, O. (2022). On various mechanisms of shear wave generation from underground chemical explosions in hard rocks. Geophysical Journal International, 232(3), 2133–2159. https://doi.org/10.1093/gji/ggac442
Walker, A. M., & Wookey, J. (2012). MSAT—A new toolkit for the analysis of elastic and seismic anisotropy. Computers & Geosciences, 49, 81–90. https://doi.org/10.1016/j.cageo.2012.05.031
Walter, W. R., Dodge, D. A., Ichinose, G., Myers, S. C., Pasyanos, M. E., & Ford, S. R. (2018). Body‐Wave Methods of Distinguishing between Explosions, Collapses, and Earthquakes: Application to Recent Events in North Korea. Seismological Research Letters. https://doi.org/10.1785/0220180128
Wang, R., Schmandt, B., & Kiser, E. (2020). Seismic Discrimination of Controlled Explosions and Earthquakes Near Mount St. Helens Using P/S Ratios. Journal of Geophysical Research: Solid Earth, 125(10). https://doi.org/10.1029/2020jb020338
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974
Xie, J., & Patton, H. J. (1999). Regional phase excitation and propagation in the Lop Nor region of central Asia and implications for P/Lg discriminants. Journal of Geophysical Research: Solid Earth, 104(B1), 941–954. https://doi.org/10.1029/1998jb900045
Xie, Z., Komatitsch, D., Martin, R., & Matzen, R. (2014). Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML. Geophysical Journal International, 198(3), 1714–1747. https://doi.org/10.1093/gji/ggu219
Xu, H., Stevens, J. L., & Baker, G. E. (2009). An analysis of shear waves generated by the Sterling explosion. Journal of Geophysical Research: Solid Earth, 114(B3). https://doi.org/10.1029/2008jb005966
Zeiler, C., & Velasco, A. A. (2009). Developing Local to Near-Regional Explosion and Earthquake Discriminants. Bulletin of the Seismological Society of America, 99(1), 24–35. https://doi.org/10.1785/0120080045
Zhang, M. (2023). P/SV Amplitude Ratios of Shallow Isotropic Explosions and Earthquakes Could Be Indistinguishable at Local Distances: Insights from Single‐Station Waveform Simulations. The Seismic Record, 3(1), 48–56. https://doi.org/10.1785/0320220044
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Peter Nelson, Neala Creasy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Nuclear Security Administration
Grant numbers 89233218CNA000001

