Detection of Hidden Low-Frequency Earthquakes in Southern Vancouver Island with Deep Learning

Authors

  • Jiun-Ting Lin Lawrence Livermore National Laboratory, Livermore, CA, USA
  • Amanda Thomas Department of Earth Sciences, University of Oregon, Eugene, OR, USA
  • Loïc Bachelot Department of Earth Sciences, University of Oregon, Eugene, OR, USA
  • Douglas Toomey Department of Earth Sciences, University of Oregon, Eugene, OR, USA
  • Jake Searcy School of Computer and Data Sciences, University of Oregon, Eugene, OR, USA
  • Diego Melgar Department of Earth Sciences, University of Oregon, Eugene, OR, USA

DOI:

https://doi.org/10.26443/seismica.v2i4.1134

Keywords:

Low frequency earthquake, deep learning, slow slip event, Cascadia Subduction Zone, Tremor

Abstract

Low-frequency earthquakes (LFEs) are small-magnitude earthquakes that are depleted in high-frequency content relative to traditional earthquakes of the same magnitude. These events occur in conjunction with slow slip events (SSEs) and can be used to infer the space and time evolution of SSEs. However, because LFEs have weak signals, and the methods used to identify them are computationally expensive, LFEs are not routinely cataloged in most places. Here, we develop a deep-learning model that learns from an existing LFE catalog to detect LFEs in 14 years of continuous waveform data in southern Vancouver Island. The result shows significant increases in detection rates at individual stations. We associate the detections and locate them using a grid search approach in a 3D regional velocity model, resulting in over 1 million LFEs during the performing period. Our resulting catalog is consistent with a widely used tremor catalog during periods of large-magnitude SSEs. However, there are time periods where it registers far more LFEs than the tremor catalog. We highlight a 16-day period in May 2010, when our model detects nearly 3,000 LFEs, whereas the tremor catalog contains only one tremor detection in the same region. This suggests the possibility of hidden small-magnitude SSEs that are undetected by current approaches. Our approach improves the temporal and spatial resolution of the LFE activities and provides new opportunities to understand deep subduction zone processes in this region.

References

Armbruster, J. G., Kim, W., & Rubin, A. M. (2014). Accurate tremor locations from coherent S and P waves. Journal of Geophysical Research: Solid Earth, 119(6), 5000–5013. https://doi.org/10.1002/2014jb011133 DOI: https://doi.org/10.1002/2014JB011133

Behr, W. M., & Bürgmann, R. (2021). What’s down there? The structures, materials and environment of deep-seated slow slip and tremor. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20200218. https://doi.org/10.1098/rsta.2020.0218 DOI: https://doi.org/10.1098/rsta.2020.0218

Beroza, G. C., & Ide, S. (2011). Slow Earthquakes and Nonvolcanic Tremor. Annual Review of Earth and Planetary Sciences, 39(1), 271–296. https://doi.org/10.1146/annurev-earth-040809-152531 DOI: https://doi.org/10.1146/annurev-earth-040809-152531

Bombardier, M., Dosso, S. E., Cassidy, J. F., & Kao, H. (2023). Tackling the challenges of tectonic tremor localization using differential traveltimes and Bayesian inversion. Geophysical Journal International, 234(1), 479–493. https://doi.org/10.1093/gji/ggad086 DOI: https://doi.org/10.1093/gji/ggad086

Bostock, M. G., Royer, A. A., Hearn, E. H., & Peacock, S. M. (2012). Low frequency earthquakes below southern Vancouver Island. Geochemistry, Geophysics, Geosystems, 13(11). https://doi.org/10.1029/2012gc004391 DOI: https://doi.org/10.1029/2012GC004391

Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L., & Rubin, A. M. (2015). Magnitudes and moment‐duration scaling of low‐frequency earthquakes beneath southern Vancouver Island. Journal of Geophysical Research: Solid Earth, 120(9), 6329–6350. https://doi.org/10.1002/2015jb012195 DOI: https://doi.org/10.1002/2015JB012195

Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112–134. https://doi.org/10.1016/j.epsl.2018.04.062 DOI: https://doi.org/10.1016/j.epsl.2018.04.062

Calvert, A. J., Bostock, M. G., Savard, G., & Unsworth, M. J. (2020). Cascadia low frequency earthquakes at the base of an overpressured subduction shear zone. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17609-3 DOI: https://doi.org/10.1038/s41467-020-17609-3

Chai, C., Maceira, M., Santos‐Villalobos, H. J., Venkatakrishnan, S. V., Schoenball, M., Zhu, W., Beroza, G. C., & Thurber, C. (2020). Using a Deep Neural Network and Transfer Learning to Bridge Scales for Seismic Phase Picking. Geophysical Research Letters, 47(16). https://doi.org/10.1029/2020gl088651 DOI: https://doi.org/10.1029/2020GL088651

Chamberlain, C. J., Shelly, D. R., Townend, J., & Stern, T. A. (2014). Low‐frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 15(7), 2984–2999. https://doi.org/10.1002/2014gc005436 DOI: https://doi.org/10.1002/2014GC005436

Delph, J. R., Thomas, A. M., & Levander, A. (2021). Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth and Planetary Science Letters, 556, 116724. https://doi.org/10.1016/j.epsl.2020.116724 DOI: https://doi.org/10.1016/j.epsl.2020.116724

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 226–231.

Frank, W. B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., Romanenko, A., & Campillo, M. (2014). Using systematically characterized low‐frequency earthquakes as a fault probe in Guerrero, Mexico. Journal of Geophysical Research: Solid Earth, 119(10), 7686–7700. https://doi.org/10.1002/2014jb011457 DOI: https://doi.org/10.1002/2014JB011457

Hulbert, C., Jolivet, R., Gardonio, B., Johnson, P. A., Ren, C. X., & Rouet-Leduc, B. (2022). Tremor Waveform Extraction and Automatic Location With Neural Network Interpretation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–9. https://doi.org/10.1109/tgrs.2022.3156125 DOI: https://doi.org/10.1109/TGRS.2022.3156125

Inbal, A., Thomas, A. M., Newton, T., & Bürgmann, R. (2021). Complex Migration of Tremor Near Cholame, CA, Resolved by Seismic Array Analysis. Journal of Geophysical Research: Solid Earth, 126(9). https://doi.org/10.1029/2021jb022174 DOI: https://doi.org/10.1029/2021JB022174

Kano, M., Aso, N., Matsuzawa, T., Ide, S., Annoura, S., Arai, R., Baba, S., Bostock, M., Chao, K., Heki, K., Itaba, S., Ito, Y., Kamaya, N., Maeda, T., Maury, J., Nakamura, M., Nishimura, T., Obana, K., Ohta, K., … Obara, K. (2018). Development of a Slow Earthquake Database. Seismological Research Letters, 89(4), 1566–1575. https://doi.org/10.1785/0220180021 DOI: https://doi.org/10.1785/0220180021

Kao, H., Shan, S. J., & Dragert, H. (2005). A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature, 436, 841–844. https://doi.org/10.1038/nature03903 DOI: https://doi.org/10.1038/nature03903

Kao, Honn, Shan, S., Dragert, H., & Rogers, G. (2009). Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007. Journal of Geophysical Research: Solid Earth, 114(B11). https://doi.org/10.1029/2008jb006046 DOI: https://doi.org/10.1029/2008JB006046

Kao, Honn, & Shan, S.-J. (2004). The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589–594. https://doi.org/10.1111/j.1365-246x.2004.02276.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02276.x

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 DOI: https://doi.org/10.1109/5.726791

Lin, J.-T. (2023a). A Deep Learning-Based Low-Frequency Earthquake Catalog in Southern Vancouver Island. Zenodo. https://doi.org/10.5281/ZENODO.10016020

Lin, J.-T. (2023b). jiunting/Cas_LFE: First release of Cascadia LFE detection scripts. Zenodo. https://doi.org/10.5281/ZENODO.10076720

Lomax, A., Michelini, A., Curtis, A., & Meyers, R. A. (2009). Earthquake Location, Direct, Global-Search Methods. In Encyclopedia of Complexity and Systems Science (pp. 2449–2473). Springer New York. https://doi.org/10.1007/978-0-387-30440-3_150 DOI: https://doi.org/10.1007/978-0-387-30440-3_150

Michel, S., Gualandi, A., & Avouac, J.-P. (2018). Interseismic Coupling and Slow Slip Events on the Cascadia Megathrust. Pure and Applied Geophysics, 176(9), 3867–3891. https://doi.org/10.1007/s00024-018-1991-x DOI: https://doi.org/10.1007/s00024-018-1991-x

Münchmeyer, J., Giffard-Roisin, S., Malfante, M., Frank, W., Poli, P., Marsan, D., & Socquet, A. (2024). Deep learning detects uncataloged low-frequency earthquakes across regions. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1185 DOI: https://doi.org/10.26443/seismica.v3i1.1185

Obara, K. (2002). Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378 DOI: https://doi.org/10.1126/science.1070378

Obara, K., & Hirose, H. (2006). Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone. Tectonophysics, 417(1–2), 33–51. https://doi.org/10.1016/j.tecto.2005.04.013 DOI: https://doi.org/10.1016/j.tecto.2005.04.013

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353(6296), 253–257. https://doi.org/10.1126/science.aaf1512 DOI: https://doi.org/10.1126/science.aaf1512

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.

Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), 599–607. https://doi.org/10.1038/ngeo940 DOI: https://doi.org/10.1038/ngeo940

Rogers, G., & Dragert, H. (2003). Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783 DOI: https://doi.org/10.1126/science.1084783

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28 DOI: https://doi.org/10.1007/978-3-319-24574-4_28

Rouet-Leduc, B., Hulbert, C., & Johnson, P. A. (2018). Continuous chatter of the Cascadia subduction zone revealed by machine learning. Nature Geoscience, 12(1), 75–79. https://doi.org/10.1038/s41561-018-0274-6 DOI: https://doi.org/10.1038/s41561-018-0274-6

Rousset, B., Bürgmann, R., & Campillo, M. (2019). Slow slip events in the roots of the San Andreas fault. Science Advances, 5(2). https://doi.org/10.1126/sciadv.aav3274 DOI: https://doi.org/10.1126/sciadv.aav3274

Royer, A. A., & Bostock, M. G. (2014). A comparative study of low frequency earthquake templates in northern Cascadia. Earth and Planetary Science Letters, 402, 247–256. https://doi.org/10.1016/j.epsl.2013.08.040 DOI: https://doi.org/10.1016/j.epsl.2013.08.040

Rubin, A. M., & Armbruster, J. G. (2013). Imaging slow slip fronts in Cascadia with high precision cross‐station tremor locations. Geochemistry, Geophysics, Geosystems, 14(12), 5371–5392. https://doi.org/10.1002/2013gc005031 DOI: https://doi.org/10.1002/2013GC005031

Saffer, D. M., & Wallace, L. M. (2015). The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nature Geoscience, 8(8), 594–600. https://doi.org/10.1038/ngeo2490 DOI: https://doi.org/10.1038/ngeo2490

Savard, G., & Bostock, M. G. (2015). Detection and Location of Low‐Frequency Earthquakes Using Cross‐Station Correlation. Bulletin of the Seismological Society of America, 105(4), 2128–2142. https://doi.org/10.1785/0120140301 DOI: https://doi.org/10.1785/0120140301

Savard, G., Bostock, M. G., & Christensen, N. I. (2018). Seismicity, Metamorphism, and Fluid Evolution Across the Northern Cascadia Fore Arc. Geochemistry, Geophysics, Geosystems, 19(6), 1881–1897. https://doi.org/10.1029/2017gc007417 DOI: https://doi.org/10.1029/2017GC007417

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Transactions on Database Systems, 42(3), 1–21. https://doi.org/10.1145/3068335 DOI: https://doi.org/10.1145/3068335

Seno, T., & Yamasaki, T. (2003). Low‐frequency tremors, intraslab and interplate earthquakes in Southwest Japan—from a viewpoint of slab dehydration. Geophysical Research Letters, 30(22). https://doi.org/10.1029/2003gl018349 DOI: https://doi.org/10.1029/2003GL018349

Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666 DOI: https://doi.org/10.1038/nature05666

Thomas, A. M., Beeler, N. M., Bletery, Q., Burgmann, R., & Shelly, D. R. (2018). Using Low‐Frequency Earthquake Families on the San Andreas Fault as Deep Creepmeters. Journal of Geophysical Research: Solid Earth, 123(1), 457–475. https://doi.org/10.1002/2017jb014404 DOI: https://doi.org/10.1002/2017JB014404

Thomas, A.M., & Bostock, M. G. (2015). Identifying low-frequency earthquakes in central Cascadia using cross-station correlation. Tectonophysics, 658, 111–116. https://doi.org/10.1016/j.tecto.2015.07.013 DOI: https://doi.org/10.1016/j.tecto.2015.07.013

Thomas, Amanda M., Beroza, G. C., & Shelly, D. R. (2016). Constraints on the source parameters of low‐frequency earthquakes on the San Andreas Fault. Geophysical Research Letters, 43(4), 1464–1471. https://doi.org/10.1002/2015gl067173 DOI: https://doi.org/10.1002/2015GL067173

Thomas, Amanda M., Inbal, A., Searcy, J., Shelly, D. R., & Bürgmann, R. (2021). Identification of Low‐Frequency Earthquakes on the San Andreas Fault With Deep Learning. Geophysical Research Letters, 48(13). https://doi.org/10.1029/2021gl093157 DOI: https://doi.org/10.1029/2021GL093157

Toomey, D. R., Solomon, S. C., & Purdy, G. M. (1994). Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9°30′N. Journal of Geophysical Research: Solid Earth, 99(B12), 24135–24157. https://doi.org/10.1029/94jb01942 DOI: https://doi.org/10.1029/94JB01942

Wech, A. G. (2021). Cataloging Tectonic Tremor Energy Radiation in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022523 DOI: https://doi.org/10.1029/2021JB022523

Wech, A. G., & Bartlow, N. M. (2014). Slip rate and tremor genesis in Cascadia. Geophysical Research Letters, 41(2), 392–398. https://doi.org/10.1002/2013gl058607 DOI: https://doi.org/10.1002/2013GL058607

Wech, A. G., & Creager, K. C. (2008). Automated detection and location of Cascadia tremor. Geophysical Research Letters, 35(20). https://doi.org/10.1029/2008gl035458 DOI: https://doi.org/10.1029/2008GL035458

Zhu, W., & Beroza, G. C. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International. https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423

Published

2024-10-18

How to Cite

Lin, J.-T., Thomas, A., Bachelot, L., Toomey, D., Searcy, J., & Melgar, D. (2024). Detection of Hidden Low-Frequency Earthquakes in Southern Vancouver Island with Deep Learning. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1134

Issue

Section

Special Issue: the Cascadia Subduction Zone

Funding data