Modeling ground motions and crustal deformation from tsunami earthquakes: Rupture parameter constraints from the 2010 Mentawai event

Authors

  • Tara Nye Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA https://orcid.org/0000-0003-3210-6013
  • Valerie J. Sahakaian Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA
  • Diego Melgar Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA

DOI:

https://doi.org/10.26443/seismica.v3i2.1152

Keywords:

Earthquake simulation, 2010 Mentawai tsunami earthquake, tsunami early warning

Abstract

We use a combination of near-field simulated and observational data to constrain the rise time, rupture velocity, and high frequency stress parameter for the 2010 M7.8 Mentawai tsunami earthquake. Tsunami earthquakes, which are shallow-rupturing events generating exceptionally large seafloor displacements, are challenging for current tsunami early warning systems. A combination of near-field high-rate GNSS and seismic data can be used for early-discrimination, but the dearth of data from these events limits testing of such an implementation in a real-time scenario. In lieu of near-field data, models with realistic rupture physics can be leveraged to improve local tsunami warning. We develop recommendations for such parameters based on observations of near-field data from the 2010 M7.8 Mentawai earthquake. We find that rise time and rupture velocity covary, and that rise time–rupture velocity combinations ranging from 5.4 s–1.23 km/s to 12 s–1.6 km/s adequately model the long duration of the Mentawai event. We find that a stress parameter of 1.43 MPa best models the high frequency deficiency. We present equations which can be used to determine reasonable parameter values for simulating tsunami earthquakes, and we find that simulated data generated with the recommended parameters capture defining characteristics of tsunami earthquakes.

References

Atkinson, G. M., & Macias, M. (2009). Predicted ground motions for great interface earthquakes in the Cascadia Subduction Zone. Bulletin of the Seismological Society of America, 99(3), 1552–1578. https://doi.org/10.1785/0120080147

Bilek, S. L., & Lay, T. (2002). Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophysical Research Letters, 29(14). https://doi.org/10.1029/2002gl015215

Bilek, Susan L., Engdahl, E. R., DeShon, H. R., & El Hariri, M. (2011). The 25 October 2010 Sumatra tsunami earthquake: Slip in a slow patch. Geophysical Research Letters, 38(14). https://doi.org/10.1029/2011gl047864

Bilek, Susan L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443–446. https://doi.org/10.1038/22739

Bilek, Susan L., Rotman, H. M. M., & Phillips, W. S. (2016). Low stress drop earthquakes in the rupture zone of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016gl070409

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/jb075i026p04997

Clift, P., & Vannucchi, P. (2004). Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42(2). https://doi.org/10.1029/2003rg000127

Collings, R., Lange, D., Rietbrock, A., Tilmann, F., Natawidjaja, D., Suwargadi, B., Miller, M., & Saul, J. (2012). Structure and seismogenic properties of the Mentawai segment of the Sumatra subduction zone revealed by local earthquake traveltime tomography. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011jb008469

Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161

Du, Y., Ma, S., Kubota, T., & Saito, T. (2021). Impulsive tsunami and large runup along the Sanriku coast of Japan produced by an inelastic wedge deformation model. Journal of Geophysical Research: Solid Earth, 126(8). https://doi.org/10.1029/2021jb022098

Duputel, Z., Tsai, V. C., Rivera, L., & Kanamori, H. (2013). Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth and Planetary Science Letters, 374, 92–100. https://doi.org/10.1016/j.epsl.2013.05.024

Eberhart-Phillips, D., & Bannister, S. (2015). 3-D imaging of the northern Hikurangi subduction zone, New Zealand: variations in subducted sediment, slab fluids and slow slip. Geophysical Journal International, 201(2), 838–855. https://doi.org/10.1093/gji/ggv057

Eberhart-Phillips, D., Bannister, S., & Ellis, S. (2014). Imaging P and S attenuation in the termination region of the Hikurangi Subduction Zone, New Zealand. Geophysical Journal International, 198(1), 516–536. https://doi.org/10.1093/gji/ggu151

Fadugba, O., Sahakian, V., Melgar, D., Rodgers, A., & Shimony, R. (2024). The Impact of the three-dimensional structure of a subduction zone on time-dependent crustal deformation measured by HR-GNSS. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.887

Felix, R. P., Hubbard, J. A., Moore, J. D. P., & Switzer, A. D. (2021). The role of frontal thrusts in tsunami earthquake generation. Bulletin of the Seismological Society of America, 112(2), 680–694. https://doi.org/10.1785/0120210154

Fukao, Y. (1979). Tsunami earthquakes and subduction processes near deep‐sea trenches. Journal of Geophysical Research: Solid Earth, 84(B5), 2303–2314. https://doi.org/10.1029/jb084ib05p02303

Fukao, Y., & Kanjo, K. (1980). A zone of low-frequency earthquakes beneath the inner wall of the Japan Trench. Tectonophysics, 67(1–2), 153–162. https://doi.org/10.1016/0040-1951(80)90170-5

Geersen, J. (2019). Sediment-starved trenches and rough subducting plates are conducive to tsunami earthquakes. Tectonophysics, 762, 28–44. https://doi.org/10.1016/j.tecto.2019.04.024

Goldberg, D. E., & Melgar, D. (2020). Generation and validation of broadband synthetic P waves in semistochastic models of large earthquakes. Bulletin of the Seismological Society of America, 110(4), 1982–1995. https://doi.org/10.1785/0120200049

Goldberg, D. E., Melgar, D., Hayes, G. P., Crowell, B. W., & Sahakian, V. J. (2021). A ground-motion model for GNSS peak ground displacement. Bulletin of the Seismological Society of America, 111(5), 2393–2407. https://doi.org/10.1785/0120210042

Graves, R., & Pitarka, A. (2015). Refinements to the Graves & Pitarka (2010) broadband ground‐motion simulation method. Seismological Research Letters, 86(1), 75–80. https://doi.org/10.1785/0220140101

Graves, R., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123. https://doi.org/10.1785/0120100057

Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., Elosegui, P., Fritz, H. M., Suwargadi, B. W., Pranantyo, I. R., Li, L., Macpherson, K. A., Skanavis, V., Synolakis, C. E., & Sieh, K. (2012). The 2010 MW 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near‐field GPS data. Journal of Geophysical Research: Solid Earth, 117(B6). https://doi.org/10.1029/2012jb009159

Hirshorn, B., & Weinstein, S. (2011). Earthquake source parameters, rapid estimates for tsunami warning. In Extreme Environmental Events (pp. 447–461). Springer New York. https://doi.org/10.1007/978-1-4419-7695-6_24

Houston, H. (1999). Slow ruptures, roaring tsunamis. Nature, 400(6743), 409–410. https://doi.org/10.1038/22656

Hubbard, J., Barbot, S., Hill, E. M., & Tapponnier, P. (2015). Coseismic slip on shallow décollement megathrusts: Implications for seismic and tsunami hazard. Earth-Science Reviews, 141, 45–55. https://doi.org/10.1016/j.earscirev.2014.11.003

Ide, S., Imamura, F., & Abe, K. (1993). Source characteristics of the Nicaraguan tsunami earthquake of September 2, 1992. Geophysical Research Letters, 20(9), 836–866.

Jeppson, T. N., Tobin, H. J., & Hashimoto, Y. (2018). Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake. Geosphere, 14(4), 1411–1424. https://doi.org/10.1130/ges01630.1

Kajiura, K. (1970). Tsunami source, energy and the directivity of wave radiation. Bulletin of the Earthquake Research Institute, 48, 835–869.

Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359. https://doi.org/10.1016/0031-9201(72)90058-1

Kanamori, H., & Kikuchi, M. (1993). The 1992 Nicaragua earthquake: A slow tsunami earthquake associated with subducted sediments. Nature, 361(6414), 714–716. https://doi.org/10.1038/361714a0

Kikuchi, M., & Kanamori, H. (1995). Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. In Tsunamis: 1992–1994: Their generation, dynamics, and hazard" (pp. 441–453). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7279-9_5

Krischer, L. (2016). mtspec Python wrappers 0.3.2 [Dataset]. Zenodo. Zenodo. https://doi.org/10.5281/ZENODO.321789

Kuncoro, A. K., Srigutomo, W., & Fauzi, U. (2023). Coseismic deformation responses due to geometrical structure and heterogeneity of the accretionary wedge: Study case 2010 Mentawai earthquake, West Sumatra, Indonesia. International Journal of Geophysics, 2023, 1–13. https://doi.org/10.1155/2023/5507264

Lay, T., Ammon, C. J., Kanamori, H., Yamazaki, Y., Cheung, K. F., & Hutko, A. R. (2011). The 25 October 2010 Mentawai tsunami earthquake (MW 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophysical Research Letters, 38(6). https://doi.org/10.1029/2010gl046552

Lay, Thorne, & Bilek, S. (2007). 15. Anomalous earthquake ruptures at shallow depths on subduction zone megathrusts. In The Seismogenic Zone of Subduction Thrust Faults (pp. 476–511). Columbia University Press. https://doi.org/10.7312/dixo13866-015

Lay, Thorne, Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., & Rushing, T. M. (2012). Depth‐varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011jb009133

LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Generating random earthquake events for probabilistic tsunami hazard assessment. Pure and Applied Geophysics, 173(12), 3671–3692. https://doi.org/10.1007/s00024-016-1357-1

Lin, J. ‐T., Melgar, D., Thomas, A. M., & Searcy, J. (2021). Early warning for great earthquakes from characterization of crustal deformation patterns with deep learning. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022703

Lotto, G. C., Dunham, E. M., Jeppson, T. N., & Tobin, H. J. (2017). The effect of compliant prisms on subduction zone earthquakes and tsunamis. Earth and Planetary Science Letters, 458, 213–222. https://doi.org/10.1016/j.epsl.2016.10.050

Ma, S., & Nie, S. (2019). Dynamic wedge failure and along‐arc variations of tsunamigenesis in the Japan Trench margin. Geophysical Research Letters, 46(15), 8782–8790. https://doi.org/10.1029/2019gl083148

Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11). https://doi.org/10.1029/2001jb000588

Melgar, D., Crowell, B. W., Geng, J., Allen, R. M., Bock, Y., Riquelme, S., Hill, E. M., Protti, M., & Ganas, A. (2015). Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13), 5197–5205. https://doi.org/10.1002/2015gl064278

Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise characteristics of operational real-time high-rate GNSS positions in a large aperture network. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2019jb019197

Melgar, D., & Hayes, G. P. (2017). Systematic observations of the slip pulse properties of large earthquake ruptures. Geophysical Research Letters, 44(19), 9691–9698. https://doi.org/10.1002/2017gl074916

Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. https://doi.org/10.1002/2016jb013314

Meng, Q., & Duan, B. (2022). Dynamic modeling of interactions between shallow slow-slip events and subduction earthquakes. Seismological Research Letters, 94(1), 206–216. https://doi.org/10.1785/0220220138

Meng, Q., & Duan, B. (2023). Do upper-plate material properties or fault frictional properties play more important roles in tsunami earthquake characteristics? Tectonophysics, 850, 229765. https://doi.org/10.1016/j.tecto.2023.229765

Miyoshi, H. (1954). Efficiency of the tsunami. Journal of the Oceanographical Society of Japan, 10(1), 11–14. https://doi.org/10.5928/kaiyou1942.10.11

Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real‐time discriminants, finite‐fault rupture, and tsunami excitation. Geophysical Research Letters, 38(5). https://doi.org/10.1029/2010gl046498

Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The E/M₀ discriminant for tsunami earthquakes. Journal of Geophysical Research: Solid Earth, 103(B11), 26885–26898. https://doi.org/10.1029/98jb02236

Nye, T., Sahakian, V. J., & Melgar, D. (2024). 2010 Mentawai tsunami earthquake simulations [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.10023345

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.

Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, 35(8), 1701–1710. https://doi.org/10.1016/j.cageo.2008.06.007

Qiu, Q., & Barbot, S. (2022). Tsunami excitation in the outer wedge of global subduction zones. Earth-Science Reviews, 230, 104054. https://doi.org/10.1016/j.earscirev.2022.104054

Riquelme, S., Schwarze, H., Fuentes, M., & Campos, J. (2020). Near‐field effects of earthquake rupture velocity Into Tsunami Runup Heights. Journal of Geophysical Research: Solid Earth, 125(6). https://doi.org/10.1029/2019jb018946

Riquelme, Sebastian, & Fuentes, M. (2021). Tsunami efficiency due to very slow earthquakes. Seismological Research Letters. https://doi.org/10.1785/ 0220200198

Ruff, L. J. (1989). Do trench sediments affect great earthquake occurrence in subduction zones? Pure and Applied Geophysics, 129(1–2), 263–282. https://doi.org/10.1007/bf00874629

Ruhl, C. J., Melgar, D., Chung, A. I., Grapenthin, R., & Allen, R. M. (2019). Quantifying the value of real‐time geodetic constraints for earthquake early warning using a global seismic and geodetic data set. Journal of Geophysical Research: Solid Earth, 124(4), 3819–3837. https://doi.org/10.1029/2018jb016935

Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12), 10359–10370. https://doi.org/10.1029/jb088ib12p10359

Sahakian, V. J., Melgar, D., & Muzli, M. (2019). Weak near‐field behavior of a tsunami earthquake: Toward real‐time identification for local warning. Geophysical Research Letters, 46(16), 9519–9528. https://doi.org/10.1029/2019gl083989

Sallarès, V., Prada, M., Riquelme, S., Meléndez, A., Calahorrano, A., Grevemeyer, I., & Ranero, C. R. (2021). Large slip, long duration, and moderate shaking of the Nicaragua 1992 tsunami earthquake caused by low near-trench rock rigidity. Science Advances, 7(32). https://doi.org/10.1126/sciadv.abg8659

Sallarès, V., & Ranero, C. R. (2019). Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes. Nature, 576(7785), 96–101. https://doi.org/10.1038/s41586-019-1784-0

Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Eos, Transactions American Geophysical Union, 92(28), 234–234. https://doi.org/10.1029/2011eo280002

Satake, K. (1994). Mechanism of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 21(23), 2519–2522. https://doi.org/10.1029/94gl02338

Satake, K., Bourgeois, J., Abe, K., Abe, K., Tsuji, Y., Imamura, F., Lio, Y., Katao, H., Noguera, E., & Estrada, F. (1993). Tsunami field survey of the 1992 Nicaragua earthquake. Eos, Transactions American Geophysical Union, 74(13), 145–157. https://doi.org/10.1029/93eo00271

Satake, K., Nishimura, Y., Putra, P. S., Gusman, A. R., Sunendar, H., Fujii, Y., Tanioka, Y., Latief, H., & Yulianto, E. (2013). Tsunami source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami field survey and waveform modeling. Pure and Applied Geophysics, 170, 1567–1582. https://doi.org/10.1007/s00024-012-0536-y

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097

Small, D. T., & Melgar, D. (2023). Can stochastic slip rupture modeling produce realistic M9+ Events? Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022jb025716

Tanioka, Y., Ruff, L., & Satake, K. (1997). What controls the lateral variation of large earthquake occurrence along the Japan Trench? Island Arc, 6(3), 261–266. https://doi.org/10.1111/j.1440-1738.1997.tb00176.x

Tsushima, H., & Ohta, Y. (2014). Review on near-field tsunami forecasting from offshore tsunami data and onshore GNSS data for tsunami early warning. Journal of Disaster Research, 9(3), 339–357. https://doi.org/10.20965/jdr.2014.p0339

U.S.G.S. (2018). Finite fault model maps [Dataset]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000hnj4/finite-fault

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Weinstein, S. A., & Okal, E. A. (2005). The mantle magnitude Mₘ and the slowness parameter Θ: Five years of real-time use in the context of tsunami warning. Bulletin of the Seismological Society of America, 95(3), 779–799. https://doi.org/10.1785/0120040112

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515

Williamson, A. L., Melgar, D., Crowell, B. W., Arcas, D., Melbourne, T. I., Wei, Y., & Kwong, K. (2020). Toward near‐field tsunami forecasting along the Cascadia Subduction Zone using rapid GNSS source models. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2020jb019636

Wirth, E. A., Sahakian, V. J., Wallace, L. M., & Melnick, D. (2022). The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment, 3(2), 125–140. https://doi.org/10.1038/s43017-021-00245-w

Yao, H., Shearer, P. M., & Gerstoft, P. (2013). Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures. Proceedings of the National Academy of Sciences, 110(12), 4512–4517. https://doi.org/10.1073/pnas.1212790110

Ye, L., Lay, T., Kanamori, H., & Rivera, L. (2016). Rupture characteristics of major and great (MW ge 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research: Solid Earth, 121(2), 826–844. https://doi.org/10.1002/2015jb012426

Yue, H., Lay, T., Rivera, L., Bai, Y., Yamazaki, Y., Cheung, K. F., Hill, E. M., Sieh, K., Kongko, W., & Muhari, A. (2014). Rupture process of the 2010 MW 7.8 Mentawai tsunami earthquake from joint inversion of near‐field hr‐GPS and teleseismic body wave recordings constrained by tsunami observations. Journal of Geophysical Research: Solid Earth, 119(7), 5574–5593. https://doi.org/10.1002/2014jb011082

Zhang, L., Liao, W., Li, J., & Wang, Q. (2015). Estimation of the 2010 Mentawai tsunami earthquake rupture process from joint inversion of teleseismic and strong ground motion data. Geodesy and Geodynamics, 6(3), 180–186. https://doi.org/10.1016/j.geog.2015.03.005

Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., & Fukushima, Y. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3), 898–913. https://doi.org/10.1785/0120050122

Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246x.2002.01610.x

Published

2024-09-28

How to Cite

Nye, T., Sahakian, V., & Melgar, D. (2024). Modeling ground motions and crustal deformation from tsunami earthquakes: Rupture parameter constraints from the 2010 Mentawai event. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1152

Issue

Section

Articles

Funding data