Modeling ground motions and crustal deformation from tsunami earthquakes: Rupture parameter constraints from the 2010 Mentawai event
DOI:
https://doi.org/10.26443/seismica.v3i2.1152Keywords:
Earthquake simulation, 2010 Mentawai tsunami earthquake, tsunami early warningAbstract
We use a combination of near-field simulated and observational data to constrain the rise time, rupture velocity, and high frequency stress parameter for the 2010 M7.8 Mentawai tsunami earthquake. Tsunami earthquakes, which are shallow-rupturing events generating exceptionally large seafloor displacements, are challenging for current tsunami early warning systems. A combination of near-field high-rate GNSS and seismic data can be used for early-discrimination, but the dearth of data from these events limits testing of such an implementation in a real-time scenario. In lieu of near-field data, models with realistic rupture physics can be leveraged to improve local tsunami warning. We develop recommendations for such parameters based on observations of near-field data from the 2010 M7.8 Mentawai earthquake. We find that rise time and rupture velocity covary, and that rise time–rupture velocity combinations ranging from 5.4 s–1.23 km/s to 12 s–1.6 km/s adequately model the long duration of the Mentawai event. We find that a stress parameter of 1.43 MPa best models the high frequency deficiency. We present equations which can be used to determine reasonable parameter values for simulating tsunami earthquakes, and we find that simulated data generated with the recommended parameters capture defining characteristics of tsunami earthquakes.
References
Atkinson, G. M., & Macias, M. (2009). Predicted ground motions for great interface earthquakes in the Cascadia Subduction Zone. Bulletin of the Seismological Society of America, 99(3), 1552–1578. https://doi.org/10.1785/0120080147
Bilek, S. L., & Lay, T. (2002). Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophysical Research Letters, 29(14). https://doi.org/10.1029/2002gl015215
Bilek, Susan L., Engdahl, E. R., DeShon, H. R., & El Hariri, M. (2011). The 25 October 2010 Sumatra tsunami earthquake: Slip in a slow patch. Geophysical Research Letters, 38(14). https://doi.org/10.1029/2011gl047864
Bilek, Susan L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443–446. https://doi.org/10.1038/22739
Bilek, Susan L., Rotman, H. M. M., & Phillips, W. S. (2016). Low stress drop earthquakes in the rupture zone of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016gl070409
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/jb075i026p04997
Clift, P., & Vannucchi, P. (2004). Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42(2). https://doi.org/10.1029/2003rg000127
Collings, R., Lange, D., Rietbrock, A., Tilmann, F., Natawidjaja, D., Suwargadi, B., Miller, M., & Saul, J. (2012). Structure and seismogenic properties of the Mentawai segment of the Sumatra subduction zone revealed by local earthquake traveltime tomography. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011jb008469
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161
Du, Y., Ma, S., Kubota, T., & Saito, T. (2021). Impulsive tsunami and large runup along the Sanriku coast of Japan produced by an inelastic wedge deformation model. Journal of Geophysical Research: Solid Earth, 126(8). https://doi.org/10.1029/2021jb022098
Duputel, Z., Tsai, V. C., Rivera, L., & Kanamori, H. (2013). Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth and Planetary Science Letters, 374, 92–100. https://doi.org/10.1016/j.epsl.2013.05.024
Eberhart-Phillips, D., & Bannister, S. (2015). 3-D imaging of the northern Hikurangi subduction zone, New Zealand: variations in subducted sediment, slab fluids and slow slip. Geophysical Journal International, 201(2), 838–855. https://doi.org/10.1093/gji/ggv057
Eberhart-Phillips, D., Bannister, S., & Ellis, S. (2014). Imaging P and S attenuation in the termination region of the Hikurangi Subduction Zone, New Zealand. Geophysical Journal International, 198(1), 516–536. https://doi.org/10.1093/gji/ggu151
Fadugba, O., Sahakian, V., Melgar, D., Rodgers, A., & Shimony, R. (2024). The Impact of the three-dimensional structure of a subduction zone on time-dependent crustal deformation measured by HR-GNSS. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.887
Felix, R. P., Hubbard, J. A., Moore, J. D. P., & Switzer, A. D. (2021). The role of frontal thrusts in tsunami earthquake generation. Bulletin of the Seismological Society of America, 112(2), 680–694. https://doi.org/10.1785/0120210154
Fukao, Y. (1979). Tsunami earthquakes and subduction processes near deep‐sea trenches. Journal of Geophysical Research: Solid Earth, 84(B5), 2303–2314. https://doi.org/10.1029/jb084ib05p02303
Fukao, Y., & Kanjo, K. (1980). A zone of low-frequency earthquakes beneath the inner wall of the Japan Trench. Tectonophysics, 67(1–2), 153–162. https://doi.org/10.1016/0040-1951(80)90170-5
Geersen, J. (2019). Sediment-starved trenches and rough subducting plates are conducive to tsunami earthquakes. Tectonophysics, 762, 28–44. https://doi.org/10.1016/j.tecto.2019.04.024
Goldberg, D. E., & Melgar, D. (2020). Generation and validation of broadband synthetic P waves in semistochastic models of large earthquakes. Bulletin of the Seismological Society of America, 110(4), 1982–1995. https://doi.org/10.1785/0120200049
Goldberg, D. E., Melgar, D., Hayes, G. P., Crowell, B. W., & Sahakian, V. J. (2021). A ground-motion model for GNSS peak ground displacement. Bulletin of the Seismological Society of America, 111(5), 2393–2407. https://doi.org/10.1785/0120210042
Graves, R., & Pitarka, A. (2015). Refinements to the Graves & Pitarka (2010) broadband ground‐motion simulation method. Seismological Research Letters, 86(1), 75–80. https://doi.org/10.1785/0220140101
Graves, R., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123. https://doi.org/10.1785/0120100057
Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., Elosegui, P., Fritz, H. M., Suwargadi, B. W., Pranantyo, I. R., Li, L., Macpherson, K. A., Skanavis, V., Synolakis, C. E., & Sieh, K. (2012). The 2010 MW 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near‐field GPS data. Journal of Geophysical Research: Solid Earth, 117(B6). https://doi.org/10.1029/2012jb009159
Hirshorn, B., & Weinstein, S. (2011). Earthquake source parameters, rapid estimates for tsunami warning. In Extreme Environmental Events (pp. 447–461). Springer New York. https://doi.org/10.1007/978-1-4419-7695-6_24
Houston, H. (1999). Slow ruptures, roaring tsunamis. Nature, 400(6743), 409–410. https://doi.org/10.1038/22656
Hubbard, J., Barbot, S., Hill, E. M., & Tapponnier, P. (2015). Coseismic slip on shallow décollement megathrusts: Implications for seismic and tsunami hazard. Earth-Science Reviews, 141, 45–55. https://doi.org/10.1016/j.earscirev.2014.11.003
Ide, S., Imamura, F., & Abe, K. (1993). Source characteristics of the Nicaraguan tsunami earthquake of September 2, 1992. Geophysical Research Letters, 20(9), 836–866.
Jeppson, T. N., Tobin, H. J., & Hashimoto, Y. (2018). Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake. Geosphere, 14(4), 1411–1424. https://doi.org/10.1130/ges01630.1
Kajiura, K. (1970). Tsunami source, energy and the directivity of wave radiation. Bulletin of the Earthquake Research Institute, 48, 835–869.
Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359. https://doi.org/10.1016/0031-9201(72)90058-1
Kanamori, H., & Kikuchi, M. (1993). The 1992 Nicaragua earthquake: A slow tsunami earthquake associated with subducted sediments. Nature, 361(6414), 714–716. https://doi.org/10.1038/361714a0
Kikuchi, M., & Kanamori, H. (1995). Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. In Tsunamis: 1992–1994: Their generation, dynamics, and hazard" (pp. 441–453). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7279-9_5
Krischer, L. (2016). mtspec Python wrappers 0.3.2 [Dataset]. Zenodo. Zenodo. https://doi.org/10.5281/ZENODO.321789
Kuncoro, A. K., Srigutomo, W., & Fauzi, U. (2023). Coseismic deformation responses due to geometrical structure and heterogeneity of the accretionary wedge: Study case 2010 Mentawai earthquake, West Sumatra, Indonesia. International Journal of Geophysics, 2023, 1–13. https://doi.org/10.1155/2023/5507264
Lay, T., Ammon, C. J., Kanamori, H., Yamazaki, Y., Cheung, K. F., & Hutko, A. R. (2011). The 25 October 2010 Mentawai tsunami earthquake (MW 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophysical Research Letters, 38(6). https://doi.org/10.1029/2010gl046552
Lay, Thorne, & Bilek, S. (2007). 15. Anomalous earthquake ruptures at shallow depths on subduction zone megathrusts. In The Seismogenic Zone of Subduction Thrust Faults (pp. 476–511). Columbia University Press. https://doi.org/10.7312/dixo13866-015
Lay, Thorne, Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., & Rushing, T. M. (2012). Depth‐varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011jb009133
LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Generating random earthquake events for probabilistic tsunami hazard assessment. Pure and Applied Geophysics, 173(12), 3671–3692. https://doi.org/10.1007/s00024-016-1357-1
Lin, J. ‐T., Melgar, D., Thomas, A. M., & Searcy, J. (2021). Early warning for great earthquakes from characterization of crustal deformation patterns with deep learning. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022703
Lotto, G. C., Dunham, E. M., Jeppson, T. N., & Tobin, H. J. (2017). The effect of compliant prisms on subduction zone earthquakes and tsunamis. Earth and Planetary Science Letters, 458, 213–222. https://doi.org/10.1016/j.epsl.2016.10.050
Ma, S., & Nie, S. (2019). Dynamic wedge failure and along‐arc variations of tsunamigenesis in the Japan Trench margin. Geophysical Research Letters, 46(15), 8782–8790. https://doi.org/10.1029/2019gl083148
Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11). https://doi.org/10.1029/2001jb000588
Melgar, D., Crowell, B. W., Geng, J., Allen, R. M., Bock, Y., Riquelme, S., Hill, E. M., Protti, M., & Ganas, A. (2015). Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13), 5197–5205. https://doi.org/10.1002/2015gl064278
Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise characteristics of operational real-time high-rate GNSS positions in a large aperture network. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2019jb019197
Melgar, D., & Hayes, G. P. (2017). Systematic observations of the slip pulse properties of large earthquake ruptures. Geophysical Research Letters, 44(19), 9691–9698. https://doi.org/10.1002/2017gl074916
Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. https://doi.org/10.1002/2016jb013314
Meng, Q., & Duan, B. (2022). Dynamic modeling of interactions between shallow slow-slip events and subduction earthquakes. Seismological Research Letters, 94(1), 206–216. https://doi.org/10.1785/0220220138
Meng, Q., & Duan, B. (2023). Do upper-plate material properties or fault frictional properties play more important roles in tsunami earthquake characteristics? Tectonophysics, 850, 229765. https://doi.org/10.1016/j.tecto.2023.229765
Miyoshi, H. (1954). Efficiency of the tsunami. Journal of the Oceanographical Society of Japan, 10(1), 11–14. https://doi.org/10.5928/kaiyou1942.10.11
Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real‐time discriminants, finite‐fault rupture, and tsunami excitation. Geophysical Research Letters, 38(5). https://doi.org/10.1029/2010gl046498
Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The E/M₀ discriminant for tsunami earthquakes. Journal of Geophysical Research: Solid Earth, 103(B11), 26885–26898. https://doi.org/10.1029/98jb02236
Nye, T., Sahakian, V. J., & Melgar, D. (2024). 2010 Mentawai tsunami earthquake simulations [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.10023345
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.
Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, 35(8), 1701–1710. https://doi.org/10.1016/j.cageo.2008.06.007
Qiu, Q., & Barbot, S. (2022). Tsunami excitation in the outer wedge of global subduction zones. Earth-Science Reviews, 230, 104054. https://doi.org/10.1016/j.earscirev.2022.104054
Riquelme, S., Schwarze, H., Fuentes, M., & Campos, J. (2020). Near‐field effects of earthquake rupture velocity Into Tsunami Runup Heights. Journal of Geophysical Research: Solid Earth, 125(6). https://doi.org/10.1029/2019jb018946
Riquelme, Sebastian, & Fuentes, M. (2021). Tsunami efficiency due to very slow earthquakes. Seismological Research Letters. https://doi.org/10.1785/ 0220200198
Ruff, L. J. (1989). Do trench sediments affect great earthquake occurrence in subduction zones? Pure and Applied Geophysics, 129(1–2), 263–282. https://doi.org/10.1007/bf00874629
Ruhl, C. J., Melgar, D., Chung, A. I., Grapenthin, R., & Allen, R. M. (2019). Quantifying the value of real‐time geodetic constraints for earthquake early warning using a global seismic and geodetic data set. Journal of Geophysical Research: Solid Earth, 124(4), 3819–3837. https://doi.org/10.1029/2018jb016935
Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12), 10359–10370. https://doi.org/10.1029/jb088ib12p10359
Sahakian, V. J., Melgar, D., & Muzli, M. (2019). Weak near‐field behavior of a tsunami earthquake: Toward real‐time identification for local warning. Geophysical Research Letters, 46(16), 9519–9528. https://doi.org/10.1029/2019gl083989
Sallarès, V., Prada, M., Riquelme, S., Meléndez, A., Calahorrano, A., Grevemeyer, I., & Ranero, C. R. (2021). Large slip, long duration, and moderate shaking of the Nicaragua 1992 tsunami earthquake caused by low near-trench rock rigidity. Science Advances, 7(32). https://doi.org/10.1126/sciadv.abg8659
Sallarès, V., & Ranero, C. R. (2019). Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes. Nature, 576(7785), 96–101. https://doi.org/10.1038/s41586-019-1784-0
Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Eos, Transactions American Geophysical Union, 92(28), 234–234. https://doi.org/10.1029/2011eo280002
Satake, K. (1994). Mechanism of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 21(23), 2519–2522. https://doi.org/10.1029/94gl02338
Satake, K., Bourgeois, J., Abe, K., Abe, K., Tsuji, Y., Imamura, F., Lio, Y., Katao, H., Noguera, E., & Estrada, F. (1993). Tsunami field survey of the 1992 Nicaragua earthquake. Eos, Transactions American Geophysical Union, 74(13), 145–157. https://doi.org/10.1029/93eo00271
Satake, K., Nishimura, Y., Putra, P. S., Gusman, A. R., Sunendar, H., Fujii, Y., Tanioka, Y., Latief, H., & Yulianto, E. (2013). Tsunami source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami field survey and waveform modeling. Pure and Applied Geophysics, 170, 1567–1582. https://doi.org/10.1007/s00024-012-0536-y
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097
Small, D. T., & Melgar, D. (2023). Can stochastic slip rupture modeling produce realistic M9+ Events? Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022jb025716
Tanioka, Y., Ruff, L., & Satake, K. (1997). What controls the lateral variation of large earthquake occurrence along the Japan Trench? Island Arc, 6(3), 261–266. https://doi.org/10.1111/j.1440-1738.1997.tb00176.x
Tsushima, H., & Ohta, Y. (2014). Review on near-field tsunami forecasting from offshore tsunami data and onshore GNSS data for tsunami early warning. Journal of Disaster Research, 9(3), 339–357. https://doi.org/10.20965/jdr.2014.p0339
U.S.G.S. (2018). Finite fault model maps [Dataset]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000hnj4/finite-fault
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Weinstein, S. A., & Okal, E. A. (2005). The mantle magnitude Mₘ and the slowness parameter Θ: Five years of real-time use in the context of tsunami warning. Bulletin of the Seismological Society of America, 95(3), 779–799. https://doi.org/10.1785/0120040112
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515
Williamson, A. L., Melgar, D., Crowell, B. W., Arcas, D., Melbourne, T. I., Wei, Y., & Kwong, K. (2020). Toward near‐field tsunami forecasting along the Cascadia Subduction Zone using rapid GNSS source models. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2020jb019636
Wirth, E. A., Sahakian, V. J., Wallace, L. M., & Melnick, D. (2022). The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment, 3(2), 125–140. https://doi.org/10.1038/s43017-021-00245-w
Yao, H., Shearer, P. M., & Gerstoft, P. (2013). Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures. Proceedings of the National Academy of Sciences, 110(12), 4512–4517. https://doi.org/10.1073/pnas.1212790110
Ye, L., Lay, T., Kanamori, H., & Rivera, L. (2016). Rupture characteristics of major and great (MW ge 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research: Solid Earth, 121(2), 826–844. https://doi.org/10.1002/2015jb012426
Yue, H., Lay, T., Rivera, L., Bai, Y., Yamazaki, Y., Cheung, K. F., Hill, E. M., Sieh, K., Kongko, W., & Muhari, A. (2014). Rupture process of the 2010 MW 7.8 Mentawai tsunami earthquake from joint inversion of near‐field hr‐GPS and teleseismic body wave recordings constrained by tsunami observations. Journal of Geophysical Research: Solid Earth, 119(7), 5574–5593. https://doi.org/10.1002/2014jb011082
Zhang, L., Liao, W., Li, J., & Wang, Q. (2015). Estimation of the 2010 Mentawai tsunami earthquake rupture process from joint inversion of teleseismic and strong ground motion data. Geodesy and Geodynamics, 6(3), 180–186. https://doi.org/10.1016/j.geog.2015.03.005
Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., & Fukushima, Y. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3), 898–913. https://doi.org/10.1785/0120050122
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246x.2002.01610.x
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tara Nye, Valerie J. Sahakaian, Diego Melgar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
U.S. Geological Survey
Grant numbers G19AP00071 -
U.S. Geological Survey
Grant numbers G23AP00048 -
Science Mission Directorate
Grant numbers 80NSSC21K0841