Strong asymmetry in near-fault ground velocity during an oblique strike-slip earthquake revealed by waveform particle motions and dynamic rupture simulations

Authors

  • Jesse Kearse School of Geography, Environment and Earth Science, Victoria University of Wellington, Wellington, New Zealand
  • Yoshihiro Kaneko Center Graduate School of Science, Kyoto University, Kyoto, Japan
  • Yoshito Nozuka Center Graduate School of Science, Kyoto University, Kyoto, Japan
  • Christopher W.D. Milliner Geology and Planetary Science Division, California Institute of Technology, Pasadena, CA 91125, USA
  • Ya-Ju Hsu Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
  • Jean-Philippe Avouac Geology and Planetary Science Division, California Institute of Technology, Pasadena, CA 91125, USA

DOI:

https://doi.org/10.26443/seismica.v3i2.1155

Abstract

The 2022 Mw 7.0 Chihshang (Taiwan) earthquake, captured by almost a dozen near-fault strong-motion seismometers, high-rate GPS and satellite data, offers a rare opportunity to examine dynamic fault rupture in detail. Using dynamic rupture simulations, we investigate the particle motions recorded at near-fault strong-motion and 1 Hz GPS stations surrounding the main asperity. Some of these stations were as close as 250 m from the fault trace as determined by sub-pixel correlation of Sentinel-2 images. Our model reproduces the observed strong asymmetry in the ground motions on either side of the fault rupture, which results from along-dip spatial variability in rake angle on the steeply dipping fault (70°) at shallow depth (2 km). Observed near-fault, pulse-like fault-parallel ground velocity larger than fault-normal velocity can be explained by a model with a sub-shear rupture speed, which may be due to shallow rupture propagation within low-velocity material and to free surface reflections. In addition, we estimate a slip-weakening distance Dc of ~0.7-0.9m from strong-motion seismogram recorded at Station F073, which is located ~250 m from the fault rupture, and the results of dynamic rupture modeling. The inferred Dc is similar to other empirically derived estimates found for crustal earthquakes. These results have important implications for near-fault ground-motion hazard.

References

Aagaard, B. T., & Heaton, T. H. (2004). Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures. Bulletin of the Seismological Society of America, 94(6). DOI: https://doi.org/10.1785/0120030249

Abrahamson, N. (2001). Incorporating effects of near fault tectonic deformation into design ground motions.

Ampuero, J. P. (2002). physique et numérique de la nucléation des séismes (Doctoral dissertation).

Andrews, D. J. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research: Solid Earth, 110(B1). https://doi.org/10.1029/2004jb003191 DOI: https://doi.org/10.1029/2004JB003191

Bouchon, M., & Barker, J. S. (1996). Seismic response of a hill: The example of Tarzana, California. Bulletin of the Seismological Society of America, 86(1A), 66–72. https://doi.org/10.1785/bssa08601a0066 DOI: https://doi.org/10.1785/BSSA08601A0066

Bruce, J., Shyu, H., Sieh, K., Chen, Y.-G., & Chung, L.-H. (2006). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11–12), 1447–1462. https://doi.org/10.1130/b25905.1 DOI: https://doi.org/10.1130/B25905.1

Brune, J. N. (1996). Particle motions in a physical model of shallow angle thrust faulting. Journal of Earth System Science, 105(2), 197–206. https://doi.org/10.1007/bf02876014 DOI: https://doi.org/10.1007/BF02876014

Carey, T. J., Mason, H. B., Asimaki, D., Athanasopoulos-Zekkos, A., Garcia, F. E., Gray, B., Lavrentiadis, G., & Nweke, C. C. (2023). The 2022 Chihshang, Taiwan, Earthquake: Initial GEER Team Observations. Journal of Geotechnical and Geoenvironmental Engineering, 149(5). https://doi.org/10.1061/jggefk.gteng-11522 DOI: https://doi.org/10.1061/JGGEFK.GTENG-11522

Chang, C.-P., Angelier, J., & Huang, C.-Y. (2000). Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1–2), 43–62. https://doi.org/10.1016/s0040-1951(00)00130-x DOI: https://doi.org/10.1016/S0040-1951(00)00130-X

Chen, X., Yang, H., & Jin, M. (2021). Inferring Critical Slip-Weakening Distance from Near-Fault Accelerogram of the 2014 Mw 6.2 Ludian Earthquake. Seismological Research Letters, 92(6), 3416–3427. https://doi.org/10.1785/0220210089 DOI: https://doi.org/10.1785/0220210089

Chiu, H.-C., Yeh, Y. T., Lee, S.-D. Ni. L., Liu, W.-H., Wen, G.-F., & Liu, C.-C. (1994). A New Strong-motion Array in Taiwan: SMART-2. Terrestrial, Atmospheric and Oceanic Sciences, 5(4), 463. https://doi.org/10.3319/tao.1994.5.4.463(t) DOI: https://doi.org/10.3319/TAO.1994.5.4.463(T)

Cochran, E. S., Li, Y.-G., Shearer, P. M., Barbot, S., Fialko, Y., & Vidale, J. E. (2009). Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, 37(4), 315–318. https://doi.org/10.1130/g25306a.1 DOI: https://doi.org/10.1130/G25306A.1

Cruz-Atienza, V. M., Olsen, K. B., & Dalguer, L. A. (2009). Estimation of the Breakdown Slip from Strong-Motion Seismograms: Insights from Numerical Experiments. Bulletin of the Seismological Society of America, 99(6), 3454–3469. https://doi.org/10.1785/0120080330 DOI: https://doi.org/10.1785/0120080330

Cruz-Atienza, Víctor M., & Olsen, K. B. (2010). Supershear Mach-waves expose the fault breakdown slip. Tectonophysics, 493(3–4), 285–296. https://doi.org/10.1016/j.tecto.2010.05.012 DOI: https://doi.org/10.1016/j.tecto.2010.05.012

Dunham, E. M., & Archuleta, R. J. (2004). Evidence for a Supershear Transient during the 2002 Denali Fault Earthquake. Bulletin of the Seismological Society of America, 94(6B), S256–S268. https://doi.org/10.1785/0120040616 DOI: https://doi.org/10.1785/0120040616

Ellsworth, W. L., Celebi, M., Evans, J. R., Jensen, E. G., Kayen, R., Metz, M. C., Nyman, D. J., Roddick, J. W., Spudich, P., & Stephens, C. D. (2004). Near-Field Ground Motion of the 2002 Denali Fault, Alaska, Earthquake Recorded at Pump Station 10. Earthquake Spectra, 20(3), 597–615. https://doi.org/10.1193/1.1778172 DOI: https://doi.org/10.1193/1.1778172

Fukuyama, E., Mikumo, T., & Olsen, K. B. (2003). Estimation of the Critical Slip-Weakening Distance: Theoretical Background. Bulletin of the Seismological Society of America, 93(4), 1835–1840. https://doi.org/10.1785/0120020184 DOI: https://doi.org/10.1785/0120020184

Fukuyama, Eiichi, & Mikumo, T. (2007). Slip‐weakening distance estimated at near‐fault stations. Geophysical Research Letters, 34(9). https://doi.org/10.1029/2006gl029203 DOI: https://doi.org/10.1029/2006GL029203

Fukuyama, Eiichi, & Suzuki, W. (2016). Near-fault deformation and Dc″ during the 2016 Mw7.1 Kumamoto earthquake. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0570-6 DOI: https://doi.org/10.1186/s40623-016-0570-6

Goto, H., Toyomasu, A., & Sawada, S. (2019). Delayed Subevents During the MW6.2 First Shock of the 2016 Kumamoto, Japan, Earthquake. Journal of Geophysical Research: Solid Earth, 124(12), 13112–13123. https://doi.org/10.1029/2019jb018583 DOI: https://doi.org/10.1029/2019JB018583

Hall, J. F., Heaton, T. H., Halling, M. W., & Wald, D. J. (1995). Near-Source Ground Motion and its Effects on Flexible Buildings. Earthquake Spectra, 11(4), 569–605. https://doi.org/10.1193/1.1585828 DOI: https://doi.org/10.1193/1.1585828

Harris, R. A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K., Duan, B., Liu, D., Luo, B., Bai, K., Ampuero, J., Kaneko, Y., Gabriel, A., Duru, K., Ulrich, T., Wollherr, S., Shi, Z., Dunham, E., Bydlon, S., … Dalguer, L. (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes. Seismological Research Letters, 89(3), 1146–1162. https://doi.org/10.1785/0220170222 DOI: https://doi.org/10.1785/0220170222

Haskell, N. A. (1969). Elastic displacements in the near-field of a propagating fault. Bulletin of the Seismological Society of America, 59(2), 865–908. https://doi.org/10.1785/bssa0590020865 DOI: https://doi.org/10.1785/BSSA0590020865

Hayes, G. P., Briggs, R. W., Sladen, A., Fielding, E. J., Prentice, C., Hudnut, K., Mann, P., Taylor, F. W., Crone, A. J., Gold, R., Ito, T., & Simons, M. (2010). Complex rupture during the 12 January 2010 Haiti earthquake. Nature Geoscience, 3(11). https://doi.org/10.1038/ngeo977 DOI: https://doi.org/10.1038/ngeo977

Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026 DOI: https://doi.org/10.1016/j.epsl.2014.02.026

Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77(20), 3796–3805. https://doi.org/10.1029/jb077i020p03796 DOI: https://doi.org/10.1029/JB077i020p03796

Ide, S., & Takeo, M. (1997). Determination of constitutive relations of fault slip based on seismic wave analysis. Journal of Geophysical Research: Solid Earth, 102(B12), 27379–27391. https://doi.org/10.1029/97jb02675 DOI: https://doi.org/10.1029/97JB02675

Ji, C., Helmberger, D. V., Wald, D. J., & Ma, K. (2003). Slip history and dynamic implications of the 1999 Chi‐Chi, Taiwan, earthquake. Journal of Geophysical Research: Solid Earth, 108(B9). https://doi.org/10.1029/2002jb001764 DOI: https://doi.org/10.1029/2002JB001764

Kalkan, E., & Kunnath, S. K. (2006). Effects of Fling Step and Forward Directivity on Seismic Response of Buildings. Earthquake Spectra, 22(2), 367–390. https://doi.org/10.1193/1.2192560 DOI: https://doi.org/10.1193/1.2192560

Kaneko, Y., & Fialko, Y. (2011). Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response: Modelling shallow slip deficit. Geophysical Journal International, 186(3), 1389–1403. https://doi.org/10.1111/j.1365-246x.2011.05117.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05117.x

Kaneko, Y., & Lapusta, N. (2010). Supershear transition due to a free surface in 3-D simulations of spontaneous dynamic rupture on vertical strike-slip faults. Tectonophysics, 493(3–4), 272–284. https://doi.org/10.1016/j.tecto.2010.06.015 DOI: https://doi.org/10.1016/j.tecto.2010.06.015

Kaneko, Y., Lapusta, N., & Ampuero, J. ‐P. (2008). Spectral element modeling of spontaneous earthquake rupture on rate and state faults: Effect of velocity‐strengthening friction at shallow depths. Journal of Geophysical Research: Solid Earth, 113(B9). https://doi.org/10.1029/2007jb005553 DOI: https://doi.org/10.1029/2007JB005553

Kaneko, Yoshihiro, Fukuyama, E., & Hamling, I. J. (2017). Slip‐weakening distance and energy budget inferred from near‐fault ground deformation during the 2016 Mw7.8 Kaikōura earthquake. Geophysical Research Letters, 44(10), 4765–4773. https://doi.org/10.1002/2017gl073681 DOI: https://doi.org/10.1002/2017GL073681

Kaneko, Yoshihiro, & Goto, H. (2022). The Origin of Large, Long‐Period Near‐Fault Ground Velocities During Surface‐Breaking Strike‐Slip Earthquakes. Geophysical Research Letters, 49(10). https://doi.org/10.1029/2022gl098029 DOI: https://doi.org/10.1029/2022GL098029

Kearse, J. (2024). numerical data to accompany “Strong asymmetry in near-fault ground velocity during an oblique strike-slip earthquake revealed by waveform particle motions and dynamic rupture simulations” [data set]. https://doi.org/10.5281/zenodo.11184340

Kearse, J., & Kaneko, Y. (2020). On‐Fault Geological Fingerprint of Earthquake Rupture Direction. Journal of Geophysical Research: Solid Earth, 125(9). https://doi.org/10.1029/2020jb019863 DOI: https://doi.org/10.1029/2020JB019863

Ko, Y.-Y., Tsai, C.-C., Hwang, J.-H., Hwang, Y.-W., Ge, L., & Chu, M.-C. (2023). Failure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquake, Taiwan. Natural Hazards, 118(1), 55–94. https://doi.org/10.1007/s11069-023-05993-0 DOI: https://doi.org/10.1007/s11069-023-05993-0

Lee, S.-J., Liang, W.-T., Cheng, H.-W., Tu, F.-S., Ma, K.-F., Tsuruoka, H., Kawakatsu, H., Huang, B.-S., & Liu, C.-C. (2013). Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan. Geophysical Journal International, 196(1), 432–446. https://doi.org/10.1093/gji/ggt371 DOI: https://doi.org/10.1093/gji/ggt371

Lee, S.-J., Liu, T.-Y., & Lin, T.-C. (2023). The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30361-0 DOI: https://doi.org/10.1038/s41598-023-30361-0

Leprince, S., Ayoub, F., Klinger, Y., & Avouac, J.-P. (2007). Co-Registration of Optically Sensed Images and Correlation (COSI-Corr): an operational methodology for ground deformation measurements. 2007 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/igarss.2007.4423207 DOI: https://doi.org/10.1109/IGARSS.2007.4423207

Ma, S. (2008). A physical model for widespread near‐surface and fault zone damage induced by earthquakes. Geochemistry, Geophysics, Geosystems, 9(11). https://doi.org/10.1029/2008gc002231 DOI: https://doi.org/10.1029/2008GC002231

Mello, M., Bhat, H. S., Rosakis, A. J., & Kanamori, H. (2010). Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments. Tectonophysics, 493(3–4), 297–326. https://doi.org/10.1016/j.tecto.2010.07.003 DOI: https://doi.org/10.1016/j.tecto.2010.07.003

Mikumo, T., Olsen, K. B., Fukuyama, E., & Yagi, Y. (2003). Stress-Breakdown Time and Slip-Weakening Distance Inferred from Slip-Velocity Functions on Earthquake Faults. Bulletin of the Seismological Society of America, 93(1), 264–282. https://doi.org/10.1785/0120020082 DOI: https://doi.org/10.1785/0120020082

Nicol, A., & Van Dissen, R. (2002). Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand. Journal of Structural Geology, 24(9). https://doi.org/10.1016/S0191-8141(01)00141-9 DOI: https://doi.org/10.1016/S0191-8141(01)00141-9

Oglesby, David D., Archuleta, R. J., & Nielsen, S. B. (1998). Earthquakes on Dipping Faults: The Effects of Broken Symmetry. Science, 280(5366), 1055–1059. https://doi.org/10.1126/science.280.5366.1055 DOI: https://doi.org/10.1126/science.280.5366.1055

Oglesby, D.D., & Day, S. M. (2001). Fault Geometry and the Dynamics of the 1999 Chi-Chi (Taiwan) Earthquake. Bulletin of the Seismological Society of America, 91(5), 1099–1111. https://doi.org/10.1785/0120000714 DOI: https://doi.org/10.1785/0120000714

Palmer, A. C., & Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proceedings of the Royal Society of London. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 332(1591), 527–548. https://doi.org/10.1098/rspa.1973.0040 DOI: https://doi.org/10.1098/rspa.1973.0040

Raimbault, B., Jolivet, R., Calais, E., Symithe, S., Fukushima, Y., & Dubernet, P. (2023). Rupture Geometry and Slip Distribution of the Mw 7.2 Nippes Earthquake, Haiti, From Space Geodetic Data. Geochemistry, Geophysics, Geosystems, 24(4). https://doi.org/10.1029/2022gc010752 DOI: https://doi.org/10.1029/2022GC010752

Shyu, J. B. H., Sieh, K., Avouac, J., Chen, W., & Chen, Y. (2006). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research: Solid Earth, 111(B8). https://doi.org/10.1029/2005jb003971 DOI: https://doi.org/10.1029/2005JB003971

Somerville, P. G. (2003). Magnitude scaling of the near fault rupture directivity pulse. Physics of the Earth and Planetary Interiors, 137(1–4), 201–212. https://doi.org/10.1016/s0031-9201(03)00015-3 DOI: https://doi.org/10.1016/S0031-9201(03)00015-3

Spudich, P., Hellweg, M., & Lee, W. H. K. (1996). Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bulletin of the Seismological Society of America, 86(1B), S193–S208. https://doi.org/10.1785/bssa08601bs193 DOI: https://doi.org/10.1785/BSSA08601BS193

Sun, W.-F., Pan, S.-Y., Huang, C.-M., Guan, Z.-K., Yen, I.-C., Ho, C.-W., Chi, T.-C., Ku, C.-S., Huang, B.-S., Fu, C.-C., & Kuo-Chen, H. (2024). Deep learning-based earthquake catalog reveals the seismogenic structures of the 2022 MW 6.9 Chihshang earthquake sequence. Terrestrial, Atmospheric and Oceanic Sciences, 35(1). https://doi.org/10.1007/s44195-024-00063-9 DOI: https://doi.org/10.1007/s44195-024-00063-9

Tang, C., Hsu, Y., Bacolcol, T., Lin, Y. N., Chen, H., Kuo, Y., Su, H., Lee, H., Pelicano, A., Sapla, G., & Yu, S. (2023). Oblique Blind Faulting Underneath the Luzon Volcanic Arc During the 2022 Mw 7.0 Abra Earthquake, the Philippines. Geophysical Research Letters, 50(9). https://doi.org/10.1029/2023gl103659 DOI: https://doi.org/10.1029/2023GL103659

Tang, C.-H., Lin, Y. N., Tung, H., Wang, Y., Lee, S.-J., Hsu, Y.-J., Shyu, J. B. H., Kuo, Y.-T., & Chen, H.-Y. (2023). Nearby fault interaction within the double-vergence suture in eastern Taiwan during the 2022 Chihshang earthquake sequence. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247-023-00994-0 DOI: https://doi.org/10.1038/s43247-023-00994-0

Thomas, M. Y., Avouac, J., Champenois, J., Lee, J., & Kuo, L. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119(6), 5114–5139. https://doi.org/10.1002/2013jb010603 DOI: https://doi.org/10.1002/2013JB010603

Wen, Z., Xie, J., Gao, M., Hu, Y., & Chau, K. T. (2010). Near-Source Strong Ground Motion Characteristics of the 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B), 2425–2439. https://doi.org/10.1785/0120090266 DOI: https://doi.org/10.1785/0120090266

Wu, Y.-M., Hsu, Y.-J., Chang, C.-H., Teng, L. S., & Nakamura, M. (2010). Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: Insights from comprehensive first motion focal mechanism catalog. Earth and Planetary Science Letters, 298(3–4), 306–316. https://doi.org/10.1016/j.epsl.2010.07.047 DOI: https://doi.org/10.1016/j.epsl.2010.07.047

Xia, K., Rosakis, A. J., & Kanamori, H. (2004). Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition. Science, 303(5665), 1859–1861. https://doi.org/10.1126/science.1094022 DOI: https://doi.org/10.1126/science.1094022

Yagi, Y., Okuwaki, R., Enescu, B., & Lu, J. (2023). Irregular rupture process of the 2022 Taitung, Taiwan, earthquake sequence. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27384-y DOI: https://doi.org/10.1038/s41598-023-27384-y

Yen, M.-H., von Specht, S., Lin, Y.-Y., Cotton, F., & Ma, K.-F. (2021). Within- and Between-Event Variabilities of Strong-Velocity Pulses of Moderate Earthquakes within Dense Seismic Arrays. Bulletin of the Seismological Society of America, 112(1), 361–380. https://doi.org/10.1785/0120200376 DOI: https://doi.org/10.1785/0120200376

Published

2024-08-16

How to Cite

Kearse, J., Kaneko , Y., Nozuka , Y., Milliner, C., Hsu, Y.-J., & Avouac, J.-P. (2024). Strong asymmetry in near-fault ground velocity during an oblique strike-slip earthquake revealed by waveform particle motions and dynamic rupture simulations. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1155

Issue

Section

Articles