The extremely shallow MW 4.9 2019 Le Teil earthquake, France: main ground motion features and comparison with ground motion models

Authors

  • Aurore Laurendeau Autorité de Radioprotection et de Sureté Nucléaire (ASNR), PSE-ENV/SCAN/BERSSIN, F-92260, Fontenay aux Roses, France
  • Mathieu Causse University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
  • Edward Marc Cushing Autorité de Radioprotection et de Sureté Nucléaire (ASNR), PSE-ENV/SCAN/BERSSIN, F-92260, Fontenay aux Roses, France
  • Céline Gélis Autorité de Radioprotection et de Sureté Nucléaire (ASNR), PSE-ENV/SCAN/BERSSIN, F-92260, Fontenay aux Roses, France
  • Maria Lancieri Autorité de Radioprotection et de Sureté Nucléaire (ASNR), PSE-ENV/SCAN/BERSSIN, F-92260, Fontenay aux Roses, France
  • Roxanne Rusch Autorité de Radioprotection et de Sureté Nucléaire (ASNR), PSE-ENV/SCAN/BERSSIN, F-92260, Fontenay aux Roses, France https://orcid.org/0009-0008-3499-3983
  • Paula Fahed University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
  • Cécile Cornou University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
  • Sébastien Hok Autorité de Radioprotection et de Sureté Nucléaire (ASNR), PSE-ENV/SCAN/BERSSIN, F-92260, Fontenay aux Roses, France

DOI:

https://doi.org/10.26443/seismica.v4i2.1174

Keywords:

shallow earthquake, Earthquake ground motion, France

Abstract

On 11 November 2019, a M4.9 earthquake occurred in Le Teil, southeastern France, at an exceptional depth of 1 to 2~km. We benefit from a comprehensive dataset of high-quality seismic records to investigate ground motion features in terms of source, path, and site effects. Clear regional variations of intensity measures are identified. Additionally, we conduct a residual analysis by comparing observed motions with predictions from ground motion models (GMMs), revealing a systematic underestimation of amplitudes at low frequencies (< 1 Hz), associated with the generation of Rayleigh waves. These waves are generated due to the shallow depth of the rupture and are most prominent in directions orthogonal to the fault. At higher frequencies, additional spatial variations are observed. In particular, ground motions recorded in the southeast show significantly lower amplitudes than those predicted by GMMs. This phenomenon may be attributed to the regional attenuation and geological structure or to local geological conditions combined with the extremely shallow depth of the seismic event, as demonstrated with numerical simulations. Our study emphasises the necessity for further analyses of ground motions generated by such moderate extremely shallow earthquakes.

Author Biography

Roxanne Rusch, Autorité de Radioprotection et de Sureté Nucléaire (ASNR), PSE-ENV/SCAN/BERSSIN, F-92260, Fontenay aux Roses, France

now at Bureau de Recherches Géologiques et Minières (BRGM), DGR/GBS, Orléans, France

References

Abrahamson, N. A., & Youngs, R. R. (1992). A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82(1), 505–510. https://doi.org/10.1785/bssa0820010505

Aki, K. (1980). Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research: Solid Earth, 85(B11), 6496–6504. https://doi.org/10.1029/jb085ib11p06496

Aki, K., & Richards, P. G. (2002). Quantitative seismology (2nd ed.). University Science Books.

Al Atik, L., Abrahamson, N., Bommer, J. J., Scherbaum, F., Cotton, F., & Kuehn, N. (2010). The Variability of Ground-Motion Prediction Models and Its Components. Seismological Research Letters, 81(5), 794–801. https://doi.org/10.1785/gssrl.81.5.794

Allen, T. I. (2020). Seismic hazard estimation in stable continental regions: Does PSHA meet the needs for modern engineering design in Australia? Bulletin of the New Zealand Society for Earthquake Engineering, 53(1), 22–36. https://doi.org/10.5459/bnzsee.53.1.22-36

Allen, T. I., Dhu, T., Cummins, P. R., & Schneider, J. F. (2006). Empirical Attenuation of Ground-Motion Spectral Amplitudes in Southwestern Western Australia. Bulletin of the Seismological Society of America, 96(2), 572–585. https://doi.org/10.1785/0120040238

AlpArray Seismic Network. (2015). AlpArray Seismic Network (AASN) temporary component. AlpArray Working Group. https://doi.org/10.12686/ALPARRAY/Z3_2015

Ampuero, J. P., Audin, L., Bernard, P., Brenguier, F., Delouis, B., Grandin, R., Jolivet, R., Leloup, P. H., Ritz, J. F., Vergne, J., Vernant, P., & Voisin, C. (2019). Rapport d’évaluation du groupe de travail (GT) CNRS-INSU sur le séisme du Teil du 11 novembre 2019 et ses causes possibles (p. 35) [Research Report]. https://www.cnrs.fr/sites/default/files/press_info/2019-12/Rapport_GT_Teil_phase1_final_171219_v3.pdf

Ampuero, J.-P., Billant, J., Brenguier, F., Cavalié, O., Courboulex, F., Deschamps, A., Delouis, B., Grandin, R., Jolivet, R., Liang, C., Mordret, A., & Oral, E. (2020). The November 11 2019 Le Teil, France M5 earthquake: a triggered event in nuclear country. https://doi.org/10.5194/egusphere-egu2020-18295

Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., Wooddell, K. E., Graves, R. W., Kottke, A. R., & Boore, D. M. (2013). PEER NGA-West2 Database [PEER Report 2013/03, pacific earthquake engineering research center.]. University of California. https://apps.peer.berkeley.edu/publications/peer_reports/reports_2013/webPEER-2013-03-Ancheta.pdf

Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., Kishida, T., & Donahue, J. L. (2014). NGA-West2 Database. Earthquake Spectra, 30(3), 989–1005. https://doi.org/10.1193/070913eqs197m

Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027–1035. https://doi.org/10.5555/1283383.1283494

Assumpção, M., Bianchi, M., Calhau, J., Rosa, D., Baksh, J., Assing, D., Basdeo, C., Zahradnik, J., Dias, F., Jolivet, R., & Calais, E. (2025). The 2021 Mw 5.6 Earthquake in the Guyana Shield, South America: An Intraplate Event with No Reason to Occur. The Seismic Record, 5(2), 228–238. https://doi.org/10.1785/0320250002

Barros, L. V., Assumpção, M., Chimpliganond, C., Carvalho, J. M., Von Huelsen, M. G., Caixeta, D., França, G. S., de Albuquerque, D. F., Ferreira, V. M., & Fontenele, D. P. (2015). The Mara Rosa 2010 GT-5 earthquake and its possible relationship with the continental-scale transbrasiliano lineament. Journal of South American Earth Sciences, 60, 1–9. https://doi.org/10.1016/j.jsames.2015.02.002

Båth, M. (1975). Short-period Rayleigh waves from near-surface events. Physics of the Earth and Planetary Interiors, 10(4), 369–376. https://doi.org/10.1016/0031-9201(75)90064-3

Beauval, C., Bard, P.-Y., & Danciu, L. (2020). The influence of source- and ground-motion model choices on probabilistic seismic hazard levels at 6 sites in France. Bulletin of Earthquake Engineering, 18(10), 4551–4580. https://doi.org/10.1007/s10518-020-00879-z

Bertrand, E., Cornou, C., Gélis, C., Rivet, D., & SISMOB-RESIF. (2019). Le Teil P5 post seismic experiment. RESIF - Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.3C2019

Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., & Augliera, P. (2014). Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bulletin of Earthquake Engineering, 12(1), 391–430. https://doi.org/10.1007/s10518-013-9525-5

Bindi, D., Spallarossa, D., & Pacor, F. (2017). Between-event and between-station variability observed in the Fourier and response spectra domains: comparison with seismological models. Geophysical Journal International, 210(2), 1092–1104. https://doi.org/10.1093/gji/ggx217

Bollinger, L., Le Dortz, K., Duverger, C., Vallage, A., Marin, S., & Leroy, Y. M. (2021). Seismic swarms in Tricastin, lower Rhône Valley (France): review of historical and instrumental seismicity and models. Comptes Rendus. Géoscience, 353(S1), 585–606. https://doi.org/10.5802/crgeos.93

Bollinger, L., Nicolas, M., & Marin, S. (2010). Hydrological triggering of the seismicity around a salt diapir in Castellane, France. Earth and Planetary Science Letters, 290(1–2), 20–29. https://doi.org/10.1016/j.epsl.2009.11.051

Bommer, J. J., Stafford, P. J., & Alarcon, J. E. (2009). Empirical Equations for the Prediction of the Significant, Bracketed, and Uniform Duration of Earthquake Ground Motion. Bulletin of the Seismological Society of America, 99(6), 3217–3233. https://doi.org/10.1785/0120080298

Boore, D. M. (2010). Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity from Two Horizontal Components of Motion. Bulletin of the Seismological Society of America, 100(4), 1830–1835. https://doi.org/10.1785/0120090400

Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M

Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959–971. https://doi.org/10.1785/bssa0710040959

Burnol, A., Armandine Les Landes, A., Raucoules, D., Foumelis, M., Allanic, C., Paquet, F., Maury, J., Aochi, H., Guillon, T., Delatre, M., Dominique, P., Bitri, A., Lopez, S., Pébaÿ, P. P., & Bazargan-Sabet, B. (2023). Impacts of Water and Stress Transfers from Ground Surface on the Shallow Earthquake of 11 November 2019 at Le Teil (France). Remote Sensing, 15(9), 2270. https://doi.org/10.3390/rs15092270

Buscetti, M., Traversa, P., Perron, V., Rischette, P., Hollender, F., & Shible, H. (2024). Epos-France Database of Earthquake Ground Motion for Mainland France: 1996–2021 Updated Version. Seismological Research Letters, 96(2A), 1214–1226. https://doi.org/10.1785/0220240053

Cadet, H., Bard, P.-Y., & Rodriguez-Marek, A. (2010). Defining a Standard Rock Site: Propositions Based on the KiK-net Database. Bulletin of the Seismological Society of America, 100(1), 172–195. https://doi.org/10.1785/0120090078

Calvet, M., Sylvander, M., Margerin, L., & Villaseñor, A. (2013). Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: Coda Q and peak delay time analysis. Tectonophysics, 608, 428–439. https://doi.org/10.1016/j.tecto.2013.08.045

Campillo, M., & Plantet, J. L. (1991). Frequency dependence and spatial distribution of seismic attenuation in France: experimental results and possible interpretations. Physics of the Earth and Planetary Interiors, 67(1–2), 48–64. https://doi.org/10.1016/0031-9201(91)90059-q

Castellaro, S., Mulargia, F., & Rossi, P. L. (2008). Vs30: Proxy for Seismic Amplification? Seismological Research Letters, 79(4), 540–543. https://doi.org/10.1785/gssrl.79.4.540

Causse, M., Cornou, C., Maufroy, E., Grasso, J.-R., Baillet, L., & El Haber, E. (2021). Exceptional ground motion during the shallow Mw 4.9 2019 Le Teil earthquake, France. Communications Earth & Environment, 2(1). https://doi.org/10.1038/s43247-020-00089-0

Cauzzi, C., Faccioli, E., Vanini, M., & Bianchini, A. (2015). Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bulletin of Earthquake Engineering, 13(6), 1587–1612. https://doi.org/10.1007/s10518-014-9685-y

CERN. (2016). CERN Seismic Network. ETH Zurich. https://doi.org/10.12686/SED/NETWORKS/C4

Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813eqs219m

Clauzon, G. (1982). Le canyon messinien du Rhone; une preuve decive du “desiccated deep-basin model” (Hsue, Cita and Ryan, 1973). Bulletin de La Société Géologique de France, S7-XXIV(3), 597–610. https://doi.org/10.2113/gssgfbull.s7-xxiv.3.597

Cornou, C., Ampuero, J.-P., Aubert, C., Audin, L., Baize, S., Billant, J., Brenguier, F., Causse, M., Chlieh, M., Combey, A., de Michele, M., Delouis, B., Deschamps, A., Ferry, M., Foumelis, M., Froment, B., Gélis, C., Grandin, R., Grasso, J.-R., … Weng, H. (2021). Rapid response to the Mw 4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus. Géoscience, 353(S1), 441–463. https://doi.org/10.5802/crgeos.30

Cotton, F., Archuleta, R., & Causse, M. (2013). What is Sigma of the Stress Drop? Seismological Research Letters, 84(1), 42–48. https://doi.org/10.1785/0220120087

Cotton, F., & Coutant, O. (1997). Dynamic stress variations due to shear faults in a plane-layered medium. Geophysical Journal International, 128(3), 676–688. https://doi.org/10.1111/j.1365-246x.1997.tb05328.x

Courboulex, F., Dujardin, A., Vallee, M., Delouis, B., Sira, C., Deschamps, A., Honore, L., & Thouvenot, F. (2013). High-Frequency Directivity Effect for an Mw 4.1 Earthquake, Widely Felt by the Population in Southeastern France. Bulletin of the Seismological Society of America, 103(6), 3347–3353. https://doi.org/10.1785/0120130073

Courboulex, F., Vallée, M., Causse, M., & Chounet, A. (2016). Stress‐Drop Variability of Shallow Earthquakes Extracted from a Global Database of Source Time Functions. Seismological Research Letters, 87(4), 912–918. https://doi.org/10.1785/0220150283

Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini, D. (2021). The 2020 update of the European Seismic Hazard Model - ESHM20: Model Overview. EFEHR European Facilities of Earthquake Hazard. https://doi.org/10.12686/A15

De Novellis, V., Convertito, V., Valkaniotis, S., Casu, F., Lanari, R., Monterroso Tobar, M. F., & Pino, N. A. (2020). Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying. Communications Earth & Environment, 1(1), 20. https://doi.org/10.1038/s43247-020-00021-6

Delouis, B., Oral, E., Menager, M., Ampuero, J.-P., Guilhem Trilla, A., Régnier, M., & Deschamps, A. (2021). Constraining the point source parameters of the 11 November 2019 Mw 4.9 Le Teil earthquake using multiple relocation approaches, first motion and full waveform inversions. Comptes Rendus. Géoscience, 353(S1), 493–516. https://doi.org/10.5802/crgeos.78

Di, N., Li, C., Li, T., Hu, W., Chen, Z., Zhang, Y., Lü, L., Chen, J., & Shan, X. (2023). The 2021 Mw 5.2 Baicheng Earthquake: Implications for the Hazards of Extremely Shallow Earthquakes. Seismological Research Letters. https://doi.org/10.1785/0220220328

Do Couto, D., Cushing, E. M., Mocochain, L., Rubino, J.-L., Miquelis, F., Hanot, F., Froment, B., Gélis, C., Camus, H., Bagayoko, N., & Bellier, O. (2024). Messinian canyons morphology of the Rhône and Ardèche rivers (south-east France): new insights from seismic profiles. BSGF - Earth Sciences Bulletin, 195, 19. https://doi.org/10.1051/bsgf/2024015

Drouet, S., Cotton, F., & Guéguen, P. (2010). VS30, κ, regional attenuation and Mw from accelerograms: Application to magnitude 3–5 French earthquakes. Geophysical Journal International, 182(2), 880–898. https://doi.org/10.1111/j.1365-246x.2010.04626.x

Epos-France. (1995). EPOS-France-RLBP French Broad-band network, EPOS-France-RAP strong motion network and other seismic stations in metropolitan France [Data set. Epos-France Seismological Data Centre. https://doi.org/10.15778/RESIF.FR

Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008

French Landslide Observatory – Seismological Datacenter / RESIF. (2006). Observatoire Multi-disciplinaire des Instabilités de Versants (OMIV). Résif—Réseau Sismologique et géodésique Français. RESIF - Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.MT

Froment, B., Olivar-Castaño, A., Ohrnberger, M., Gisselbrecht, L., Hannemann, K., Cushing, E. M., Boué, P., Gélis, C., Haendel, A., Pilz, M., Hillmann, L., Barbaux, O., Beauprêtre, S., Bouzat, G., Chaljub, E., Cotton, F., Lavoué, F., Stehly, L., Zhu, C., … Tourette, A. (2022). Complementary Dense Datasets Acquired in a Low-to-Moderate Seismicity Area for Characterizing Site Effects: Application in the French Rhône Valley. Seismological Research Letters, 94(1), 531–547. https://doi.org/10.1785/0220220244

Gélis, C., Cauchie, L., Cushing, E. M., Froment, B., Franco, S., Jomard, H., Moiriat, D., Provost, L., Sariguzel, B., & Tebib, H. (2022). Estimation of the Local Seismic Amplification on an Industrialized Site in the French Rhône Valley. Pure and Applied Geophysics, 179(6–7), 2119–2145. https://doi.org/10.1007/s00024-022-03069-x

Guéguen, P., Cornou, C., Garambois, S., & Banton, J. (2007). On the Limitation of the H/V Spectral Ratio Using Seismic Noise as an Exploration Tool: Application to the Grenoble Valley (France), a Small Apex Ratio Basin. Pure and Applied Geophysics, 164(1), 115–134. https://doi.org/10.1007/s00024-006-0151-x

Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I., Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F., Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling, E., Kopp, H., Korn, M., Margheriti, L., … Živčić, M. (2018). The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen. Surveys in Geophysics, 39(5), 1009–1033. https://doi.org/10.1007/s10712-018-9472-4

Hollender, F., Cornou, C., Dechamp, A., Oghalaei, K., Renalier, F., Maufroy, E., Burnouf, C., Thomassin, S., Wathelet, M., Bard, P.-Y., Boutin, V., Desbordes, C., Douste-Bacqué, I., Foundotos, L., Guyonnet-Benaize, C., Perron, V., Régnier, J., Roullé, A., Langlais, M., & Sicilia, D. (2018). Characterization of site conditions (soil class, VS30, velocity profiles) for 33 stations from the French permanent accelerometric network (RAP) using surface-wave methods. Bulletin of Earthquake Engineering, 16(6), 2337–2365. https://doi.org/10.1007/s10518-017-0135-5

Hollender, F., Roumelioti, Z., Maufroy, E., Traversa, P., & Mariscal, A. (2020). Can We Trust High-Frequency Content in Strong-Motion Database Signals? Impact of Housing, Coupling, and Installation Depth of Seismic Sensors. Seismological Research Letters, 91(4), 2192–2205. https://doi.org/10.1785/0220190163

Institut de physique du globe de Paris (IPGP), & École et Observatoire des Sciences de la Terre de Strasbourg (EOST). (1982). Institut de physique du globe de Paris (IPGP) and Ecole et Observatoire des Sciences de la Terre de Strasbourg (EOST. Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011

Jomard, H., Scotti, O., Auclair, S., Dominique, P., Manchuel, K., & Sicilia, D. (2021). The SISFRANCE database of historical seismicity. State of the art and perspectives. Comptes Rendus. Géoscience, 353(S1), 257–280. https://doi.org/10.5802/crgeos.91

Kafka, A. L. (1990). Rg as a depth discriminant for earthquakes and explosions : A case study in New England. Bulletin of the Seismological Society of America, 80(2), 373–394. https://doi.org/10.1785/BSSA0800020373

Kim, W.-Y., Dineva, S., Ma, S., & Eaton, D. (2006). The 4 August 2004, Lake Ontario, Earthquake. Seismological Research Letters, 77(1), 65–73. https://doi.org/10.1785/gssrl.77.1.65

Kotha, S. R., Weatherill, G., Bindi, D., & Cotton, F. (2020). A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe. Bulletin of Earthquake Engineering, 18(9), 4091–4125. https://doi.org/10.1007/s10518-020-00869-1

Kotha, S. R., Weatherill, G., Bindi, D., & Cotton, F. (2022). Near-source magnitude scaling of spectral accelerations: analysis and update of Kotha et al. (2020) model. Bulletin of Earthquake Engineering, 20(3), 1343–1370. https://doi.org/10.1007/s10518-021-01308-5

Lanzano, G., Luzi, L., Pacor, F., Felicetta, C., Puglia, R., Sgobba, S., & D’Amico, M. (2019). A Revised Ground‐Motion Prediction Model for Shallow Crustal Earthquakes in Italy. Bulletin of the Seismological Society of America, 109(2), 525–540. https://doi.org/10.1785/0120180210

Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D’Amico, M., Cotton, F., & Bindi, D. (2019). The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics. Bulletin of Earthquake Engineering, 17(2), 561–582. https://doi.org/10.1007/s10518-018-0480-z

Larroque, C., Baize, S., Albaric, J., Jomard, H., Trévisan, J., Godano, M., Cushing, M., Deschamps, A., Sue, C., Delouis, B., Potin, B., Courboulex, F., Régnier, M., Rivet, D., Brunel, D., Chèze, J., Martin, X., Maron, C., & Peix, F. (2021). Seismotectonics of southeast France: from the Jura mountains to Corsica. Comptes Rendus. Géoscience, 353(S1), 105–151. https://doi.org/10.5802/crgeos.69

Laurendeau, A., Causse, M., Cushing, E. M., Gélis, C., Lancieri, M., Rusch, R., Fahed, P., Cornou, C., & Hok, S. (2024). Dataset of: The extremely shallow Mw 4.9 2019 Le Teil earthquake, France: main ground motion features and comparison with ground motion models [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10462970

Lemoine, A., Douglas, J., & Cotton, F. (2012). Testing the Applicability of Correlations between Topographic Slope and VS30 for Europe. Bulletin of the Seismological Society of America, 102(6), 2585–2599. https://doi.org/10.1785/0120110240

Luo, Y., Ni, S., Zeng, X., Xie, J., Chen, Y., & Long, F. (2011). The M5.0 Suining-Tongnan (China) earthquake of 31 January 2010: A destructive earthquake occurring in sedimentary cover. Chinese Science Bulletin, 56(6), 521–525. https://doi.org/10.1007/s11434-010-4276-2

Mayor, J., Traversa, P., Calvet, M., & Margerin, L. (2018). Tomography of crustal seismic attenuation in Metropolitan France: implications for seismicity analysis. Bulletin of Earthquake Engineering, 16(6), 2195–2210. https://doi.org/10.1007/s10518-017-0124-8

Miller, M. S., Pickle, R., Murdie, R., Yuan, H., Allen, T. I., Gessner, K., Kennett, B. L. N., & Whitney, J. (2023). Southwest Australia Seismic Network (SWAN): Recording Earthquakes in Australia’s Most Active Seismic Zone. Seismological Research Letters, 94(2A), 999–1011. https://doi.org/10.1785/0220220323

Nouibat, A., Stehly, L., Paul, A., Schwartz, S., Bodin, T., Dumont, T., Rolland, Y., Brossier, R., & AlpArray Working Group, C. T. and. (2022). Lithospheric transdimensional ambient-noise tomography of W-Europe: implications for crustal-scale geometry of the W-Alps. Geophysical Journal International, 229(2), 862–879. https://doi.org/10.1093/gji/ggab520

Oth, A., Miyake, H., & Bindi, D. (2017). On the relation of earthquake stress drop and ground motion variability. Journal of Geophysical Research: Solid Earth, 122(7), 5474–5492. https://doi.org/10.1002/2017jb014026

Qian, Y., Chen, X., Luo, H., Wei, S., Wang, T., Zhang, Z., & Luo, X. (2019). An Extremely Shallow Mw4.1 Thrust Earthquake in the Eastern Sichuan Basin (China) Likely Triggered by Unloading During Infrastructure Construction. Geophysical Research Letters, 46(23), 13775–13784. https://doi.org/10.1029/2019gl085199

Régnier, J., Bertrand, E., & Cadet, H. (2020). Repeatable process for seismic microzonation using 1-D site-specific response spectra assessment approaches. Application to the city of Nice, France. Engineering Geology, 270, 105569. https://doi.org/10.1016/j.enggeo.2020.105569

Regnier, J., Laurendeau, A., Duval, A., & Gueguen, P. (2010). From heterogeneous set of soil data to VS profile: Application on the French accelerometric network (RAP) sites. 14th European Conference on Earthquake Engineering.

RESIF. (1995). Epos-France RAP French Accelerometric Network [Data set]. RESIF – Réseau Sismologique et géodésique Français. RESIF - Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.RA

Ritz, J.-F., Baize, S., Ferry, M., Larroque, C., Audin, L., Delouis, B., & Mathot, E. (2020). Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France. Communications Earth & Environment, 1(1). https://doi.org/10.1038/s43247-020-0012-z

Rösler, B., & van der Lee, S. (2020). Using Seismic Source Parameters to Model Frequency-Dependent Surface-Wave Radiation Patterns. Seismological Research Letters, 91(2A), 992–1002. https://doi.org/10.1785/0220190128

Saikia, C. K. (1992). Numerical study of quarry generated Rg as a discriminant for earthquakes and explosions: Modeling of Rg in southwestern New England. Journal of Geophysical Research: Solid Earth, 97(B7), 11057–11072. https://doi.org/10.1029/92jb00621

Sato, H. (1989). Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: southeastern Honshu, Japan. Journal of Geophysical Research: Solid Earth, 94(B12), 17735–17747. https://doi.org/10.1029/jb094ib12p17735

Schlupp, A., Sira, C., Maufroy, E., Provost, L., Dretzen, R., Bertrand, E., Beck, E., & Schaming, M. (2021). EMS98 intensities distribution of the “Le Teil” earthquake, France, 11 November 2019 (Mw 4.9) based on macroseismic surveys and field investigations. Comptes Rendus. Géoscience, 353(S1), 465–492. https://doi.org/10.5802/crgeos.88

Scotti, O., Baumont, D., Quenet, G., & Levret, A. (2004). The French macroseismic database SISFRANCE: objectives, results and perspectives. Annals of Geophysics, 47(2–3). https://doi.org/10.4401/ag-3323

Somerville, P., Graves, R., Collins, N., Song, S. G., Ni, S., & Cummins, P. (2009). Source and ground motion models for Australian earthquakes. Proc. 2009 Annual Conference of the Australian Earthquake Engineering Society, 11--13.

Somerville, P., & Ni, S. (2010). Contrast in seismic wave propagation and ground motion models between cratonic and other regions of Australia. Australian Earthquake Engineering Society 2010 Conference.

Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing, 44(4), 998–1001. https://doi.org/10.1109/78.492555

Swiss Seismological Service (SED) At ETH Zurich. (1983). National Seismic Networks of Switzerland. ETH Zürich. https://doi.org/10.12686/SED/NETWORKS/CH

Swiss Seismological Service (SED) At ETH Zurich. (2005). Temporary deployments in Switzerland associated with aftershocks and other seismic sequences. ETH Zurich. https://doi.org/10.12686/SED/NETWORKS/8D

Thomasset, C., Ritz, J.-F., Pouliquen, S., Manchuel, K., & Le-Roux-Mallouf, R. (2024). Geometry and tectonic history of the Northeastern Cévennes Fault System (Southeast Basin, France) : new insights from deep seismic reflection profiles. BSGF - Earth Sciences Bulletin, 195, 17. https://doi.org/10.1051/bsgf/2024016

Thouvenot, F., Fréchet, J., Tapponnier, P., Thomas, J.-C., Le Brun, B., Ménard, G., Lacassin, R., Jenatton, L., Grasso, J.-R., Coutant, O., Paul, A., & Hatzfeld, D. (1998). TheML5.3 Épagny (French Alps) earthquake of 1996 July 15: a long-awaited event on the Vuache Fault. Geophysical Journal International, 135(3), 876–892. https://doi.org/10.1046/j.1365-246x.1998.00662.x

Thouvenot, F., Jenatton, L., & Gratier, J. (2009). 200‐m‐deep earthquake swarm in Tricastin (lower Rhône Valley, France) accounts for noisy seismicity over past centuries. Terra Nova, 21(3), 203–210. https://doi.org/10.1111/j.1365-3121.2009.00875.x

Tinti, E., Fukuyama, E., Piatanesi, A., & Cocco, M. (2005). A Kinematic Source-Time Function Compatible with Earthquake Dynamics. Bulletin of the Seismological Society of America, 95(4), 1211–1223. https://doi.org/10.1785/0120040177

Traversa, P., Maufroy, E., Hollender, F., Perron, V., Bremaud, V., Shible, H., Drouet, S., Guéguen, P., Langlais, M., Wolyniec, D., Péquegnat, C., & Douste-Bacque, I. (2020). RESIF RAP and RLBP Dataset of Earthquake Ground Motion in Mainland France. Seismological Research Letters, 91(4), 2409–2424. https://doi.org/10.1785/0220190367

Tsai, Y.-B., & Aki, K. (1970). Precise focal depth determination from amplitude spectra of surface waves. Journal of Geophysical Research, 75(29), 5729–5744. https://doi.org/10.1029/jb075i029p05729

Türker, E., Cotton, F., Pilz, M., & Weatherill, G. (2022). Analysis of the 2019 Mw 5.8 Silivri Earthquake Ground Motions: Evidence of Systematic Azimuthal Variations Associated with Directivity Effects. Seismological Research Letters, 93(2A), 693–705. https://doi.org/10.1785/0220210168

University of Genoa. (1967). Regional Seismic Network of North Western Italy. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GU

Vallage, A., Bollinger, L., Champenois, J., Duverger, C., Trilla, A. G., Hernandez, B., Pichon, A. L., Listowski, C., Mazet-Roux, G., Menager, M., Pinel-Puysségur, B., & Vergoz, J. (2021). Multitechnology characterization of an unusual surface rupturing intraplate earthquake: the ML 5.4 2019 Le Teil event in France. Geophysical Journal International, 226(2), 803–813. https://doi.org/10.1093/gji/ggab136

Wald, D. J., & Allen, T. I. (2007). Topographic Slope as a Proxy for Seismic Site Conditions and Amplification. Bulletin of the Seismological Society of America, 97(5), 1379–1395. https://doi.org/10.1785/0120060267

Wang, X., Fu, C., Gu, W., Xie, C., Yao, Z., Sheng, S., Tian, X., & Deng, Z. (2023). The Magnitude 4.5 Earthquake in the Karst Area of Guizhou on 21 August 2021: An Extremely Shallow Earthquake with a Closing-Crack Source. Seismological Research Letters. https://doi.org/10.1785/0220220360

Wathelet, M., Guillier, B., Roux, P., Cornou, C., & Ohrnberger, M. (2018). Rayleigh wave three-component beamforming: signed ellipticity assessment from high-resolution frequency-wavenumber processing of ambient vibration arrays. Geophysical Journal International, 215(1), 507–523. https://doi.org/10.1093/gji/ggy286

Weatherill, G. A., & Danciu, L. (2018). Regional variation of spectral parameters for seismic design from broadband probabilistic seismic hazard analysis. Earthquake Engineering & Structural Dynamics, 47(12), 2447–2467. https://doi.org/10.1002/eqe.3092

Weatherill, G., Kotha, S. R., & Cotton, F. (2020). A regionally-adaptable “scaled backbone” ground motion logic tree for shallow seismicity in Europe: application to the 2020 European seismic hazard model. Bulletin of Earthquake Engineering, 18(11), 5087–5117. https://doi.org/10.1007/s10518-020-00899-9

Zhao, L., Paul, A., Solarino, S., & RESIF. (2018). Seismic network XT: CIFALPS-2 temporary experiment (China-Italy-France Alps seismic transect #2. RESIF - Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.XT2018

Downloads

Published

2025-10-22

How to Cite

Laurendeau, A., Causse, M., Cushing, E. M., Gélis, C., Lancieri, M., Rusch, R., Fahed, P., Cornou, C., & Hok, S. (2025). The extremely shallow MW 4.9 2019 Le Teil earthquake, France: main ground motion features and comparison with ground motion models. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1174

Issue

Section

Articles