The impact of COVID-19 lockdown measures on high-frequency seismic ambient noise in Greece: Utilizing strong-motion seismograph networks for human activity monitoring in urban environments

Authors

  • Dimitrios Giannopoulos Laboratory of Seismology, Department of Geology, University of Patras https://orcid.org/0000-0002-8314-0759
  • Christos P. Evangelidis Institute of Geodynamics, National Observatory of Athens, 118 10, Greece
  • Efthimios Sokos Laboratory of Seismology, Department of Geology, University of Patras, Patras, 265 04, Greece

DOI:

https://doi.org/10.26443/seismica.v4i1.1347

Abstract

Vibrations generated by anthropogenic activity propagate into the Earth’s subsurface as high-frequency seismic waves. The Covid-19 pandemic, which prompted widespread adoption of prevention policies in 2020, including social distancing measures, stay-at-home orders, travel restrictions and lockdowns, provided a unique opportunity to investigate on a country-scale the impact of the pandemic restriction measures on seismic data. Greece, which implemented two strict horizontal lockdowns in March and November 2020, serves as a case study for examining the effects of the two nationwide lockdown measures on high-frequency ambient seismic noise. We analyze seismic waveform data obtained exclusively from strong-motion seismic sensors deployed in urban areas across Greece. Our findings reveal a significant 43% reduction in seismic noise levels during the first lockdown and a slightly less, yet still substantial, reduction of 36% during the second lockdown. The most substantial daily reduction in seismic noise levels, exceeding 80%, occurred on Easter Sunday of 2020, during the first lockdown. The decrease in human activity during the 2020 lockdowns resulted in the most extensive and prolonged reduction in anthropogenic seismic noise ever recorded on a national scale in Greece. Our results highlight the effectiveness of strong-motion accelerograph stations in monitoring the effects of lockdown measures on seismic data. Notably, co-located acceleration and broadband sensors exhibited similar variations in high-frequency seismic noise. Furthermore, a strong correlation between high-frequency seismic noise and various categories of human mobility suggests the potential utility of accelerometers in long-term seismic monitoring of human activity.

References

Aristotle University of Thessaloniki. (1993). EUROSEISTEST Strong Motion Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/EG

Arroyo-Solórzano, M., Castro-Rojas, D., Massin, F., Linkimer, L., Arroyo, I., & Yani, R. (2021). COVID-19 lockdown effects on the seismic recordings in Central America. Solid Earth, 12(10), 2127–2144. https://doi.org/10.5194/se-12-2127-2021

Boginskaya, N. V., & Kostylev, D. V. (2022). Change in the Level of Microseismic Noise During the COVID-19 Pandemic in the Russian Far East. Pure and Applied Geophysics, 179(11), 4207–4219. https://doi.org/10.1007/s00024-022-03019-7

Bonnefoy-Claudet, S., Cotton, F., & Bard, P.-Y. (2006). The nature of noise wavefield and its applications for site effects studies: A literature review. Earth-Science Reviews, 79(3), 205–227. https://doi.org/10.1016/j.earscirev.2006.07.004

Cannata, A., Cannavò, F., Di Grazia, G., Aliotta, M., Cassisi, C., De Plaen, R. S. M., Gresta, S., Lecocq, T., Montalto, P., & Sciotto, M. (2021). Seismic evidence of the COVID-19 lockdown measures: a case study from eastern Sicily (Italy). Solid Earth, 12(2), 299–317. https://doi.org/10.5194/se-12-299-2021

Curtis, A., Gerstoft, P., Sato, H., Snieder, R., & Wapenaar, K. (2006). Seismic interferometry—turning noise into signal. The Leading Edge, 25(9), 1082–1092. https://doi.org/10.1190/1.2349814

De Plaen, R. S. M., Márquez-Ramı́rez, V. H., Pérez-Campos, X., Zuñiga, F. R., Rodrı́guez-Pérez, Q., Gómez González, J. M., & Capra, L. (2021). Seismic signature of the COVID-19 lockdown at the city scale: a case study with low-cost seismometers in the city of Querétaro, Mexico. Solid Earth, 12(3), 713–724. https://doi.org/10.5194/se-12-713-2021

Diaz, J., Ruiz, M., & Jara, J.-A. (2021). Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown. Solid Earth, 12(3), 725–739. https://doi.org/10.5194/se-12-725-2021

Díaz, J., Ruiz, M., Sánchez-Pastor, P. S., & Romero, P. (2017). Urban Seismology: on the origin of earth vibrations within a city. Scientific Reports, 7(1), 15296. https://doi.org/10.1038/s41598-017-15499-y

Diaz, Jordi, Schimmel, M., Ruiz, M., & Carbonell, R. (2020). Seismometers Within Cities: A Tool to Connect Earth Sciences and Society. Frontiers in Earth Science, Volume 8-2020. https://doi.org/10.3389/feart.2020.00009 Evangelidis, C. P., & Melis, N. S. (2012). Ambient Noise Levels in Greece as Recorded at the Hellenic Unified Seismic Network. Bulletin of the Seismological Society of America, 102(6), 2507–2517. https://doi.org/10.1785/0120110319

Evangelidis, Christos P., Triantafyllis, N., Samios, M., Boukouras, K., Kontakos, K., Ktenidou, O., Fountoulakis, I., Kalogeras, I., Melis, N. S., Galanis, O., Papazachos, C. B., Hatzidimitriou, P., Scordilis, E., Sokos, E., Paraskevopoulos, P., Serpetsidaki, A., Kaviris, G., Kapetanidis, V., Papadimitriou, P., … Tselentis, G. ‐Akis. (2021). Seismic Waveform Data from Greece and Cyprus: Integration, Archival, and Open Access. Seismological Research Letters, 92(3), 1672–1684. https://doi.org/10.1785/0220200408

Giannopoulos, D., Evangelidis, C., Lois, A., Sokos, E., & Lecocq, T. (2021). The footprint of “lockdown” measures to curb COVID-19 spread in Greece on seismic noise. Zenodo. https://doi.org/10.5281/zenodo.7424040

Giannopoulos, D., Vallianatos, F., Lois, A., & Hloupis, G. (2022). Non-extensive statistical physics analysis of high-frequency anthropogenic seismic noise with relation to COVID-19 pandemic lockdown measures: Preliminary observations . Zenodo. https://doi.org/10.5281/zenodo.7424070

Google. (2022). COVID-19 Community Mobility Reports. https://www.google.com/covid19/mobility/. https://www.google.com/covid19/mobility/

Grecu, B., Borleanu, F., Tiganescu, A., Poiata, N., Dinescu, R., & Tataru, D. (2021). The effect of 2020 COVID-19 lockdown measures on seismic noise recorded in Romania. Solid Earth, 12(10), 2351–2368. https://doi.org/10.5194/se-12-2351-2021

Green, D. N., Bastow, I. D., Dashwood, B., & Nippress, S. E. J. (2016). Characterizing Broadband Seismic Noise in Central London. Seismological Research Letters, 88(1), 113–124. https://doi.org/10.1785/0220160128

Gualtieri, L., Stutzmann, E., Capdeville, Y., Ardhuin, F., Schimmel, M., Mangeney, A., & Morelli, A. (2013). Modelling secondary microseismic noise by normal mode summation. Geophysical Journal International, 193(3), 1732–1745. https://doi.org/10.1093/gji/ggt090

(ITSAK) Institute of Engineering Seimology Earthquake Engineering. (1981). ITSAK Strong Motion Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HI

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003

Lecocq, T., Hicks, S. P., Noten, K. V., van Wijk, K., Koelemeijer, P., Plaen, R. S. M. D., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., Arroyo-Solórzano, M., Assink, J. D., Büyükakpınar, P., Cannata, A., Cannavo, F., Carrasco, S., Caudron, C., Chaves, E. J., Cornwell, D. G., … Han Xiao. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. https://doi.org/10.1126/science.abd2438

Lecocq, T., Massin, F., Satriano, C., Vanstone, M., & Megies, T. (2020). SeismoRMS - A simple python/jupyter notebook package for studying seismic noise changes (1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3820046

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Zijian Feng. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316

McNamara, D. E., Hutt, C. R., Gee, L. S., Benz, H. M., & Buland, R. P. (2009). A Method to Establish Seismic Noise Baselines for Automated Station Assessment. Seismological Research Letters, 80(4), 628–637. https://doi.org/10.1785/gssrl.80.4.628

McNamara, Daniel E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001

Ministry of Health. (2022). The totality of the legislation applied is available at: https://covid19.gov.gr/nomothesia-gia-ton-covid-19/. https://covid19.gov.gr/nomothesia-gia-ton-covid-19/

National Observatory of Athens, Institute of Geodynamics, Athens. (1975). National Observatory of Athens Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL Ojeda, J., & Ruiz, S. (2021). Seismic noise variability as an indicator of urban mobility during the COVID-19 pandemic in the Santiago metropolitan region, Chile. Solid Earth, 12(5), 1075–1085. https://doi.org/10.5194/se-12-1075-2021

Paul, A., Campillo, M., Margerin, L., Larose, E., & Derode, A. (2005). Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves. Journal of Geophysical Research: Solid Earth, 110(B8). https://doi.org/https://doi.org/10.1029/2004JB003521

Pérez-Campos, X., Espı́ndola, V. H., González-Ávila, D., Zanolli Fabila, B., Márquez-Ramı́rez, V. H., De Plaen, R. S. M., Montalvo-Arrieta, J. C., & Quintanar, L. (2021). The effect of confinement due to COVID-19 on seismic noise in Mexico. Solid Earth, 12(6), 1411–1419. https://doi.org/10.5194/se-12-1411-2021

Poli, P., Boaga, J., Molinari, I., Cascone, V., & Boschi, L. (2020). The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in Northern Italy. Scientific Reports, 10(1), 9404. https://doi.org/10.1038/s41598-020-66368-0

Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674–2681. https://doi.org/https://doi.org/10.1002/2015GL063558

Sheen, D.-H., Shin, J. S., Kang, T.-S., & Baag, C.-E. (2009). Low frequency cultural noise. Geophysical Research Letters, 36(17). https://doi.org/https://doi.org/10.1029/2009GL039625

Somala, S. N. (2020). Seismic noise changes during COVID-19 pandemic: a case study of Shillong, India. Natural Hazards, 103(1), 1623–1628. https://doi.org/10.1007/s11069-020-04045-1

Stutzmann, E., Roult, G., & Astiz, L. (2000). GEOSCOPE Station Noise Levels. Bulletin of the Seismological Society of America, 90(3), 690–701. https://doi.org/10.1785/0119990025

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001

Xiao, H., Eilon, Z. C., Ji, C., & Tanimoto, T. (2020). COVID‐19 Societal Response Captured by Seismic Noise in China and Italy. Seismological Research Letters, 91(5), 2757–2768. https://doi.org/10.1785/0220200147

Yabe, S., Imanishi, K., & Nishida, K. (2020). Two-step seismic noise reduction caused by COVID-19 induced reduction in social activity in metropolitan Tokyo, Japan. Earth, Planets and Space, 72(1), 167. https://doi.org/10.1186/s40623-020-01298-9

Published

2025-06-12

How to Cite

Giannopoulos, D., Evangelidis, C., & Sokos, E. (2025). The impact of COVID-19 lockdown measures on high-frequency seismic ambient noise in Greece: Utilizing strong-motion seismograph networks for human activity monitoring in urban environments. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1347

Issue

Section

Articles