The impact of COVID-19 lockdown measures on high-frequency seismic ambient noise in Greece: Utilizing strong-motion seismograph networks for human activity monitoring in urban environments
DOI:
https://doi.org/10.26443/seismica.v4i1.1347Abstract
Vibrations generated by anthropogenic activity propagate into the Earth’s subsurface as high-frequency seismic waves. The Covid-19 pandemic, which prompted widespread adoption of prevention policies in 2020, including social distancing measures, stay-at-home orders, travel restrictions and lockdowns, provided a unique opportunity to investigate on a country-scale the impact of the pandemic restriction measures on seismic data. Greece, which implemented two strict horizontal lockdowns in March and November 2020, serves as a case study for examining the effects of the two nationwide lockdown measures on high-frequency ambient seismic noise. We analyze seismic waveform data obtained exclusively from strong-motion seismic sensors deployed in urban areas across Greece. Our findings reveal a significant 43% reduction in seismic noise levels during the first lockdown and a slightly less, yet still substantial, reduction of 36% during the second lockdown. The most substantial daily reduction in seismic noise levels, exceeding 80%, occurred on Easter Sunday of 2020, during the first lockdown. The decrease in human activity during the 2020 lockdowns resulted in the most extensive and prolonged reduction in anthropogenic seismic noise ever recorded on a national scale in Greece. Our results highlight the effectiveness of strong-motion accelerograph stations in monitoring the effects of lockdown measures on seismic data. Notably, co-located acceleration and broadband sensors exhibited similar variations in high-frequency seismic noise. Furthermore, a strong correlation between high-frequency seismic noise and various categories of human mobility suggests the potential utility of accelerometers in long-term seismic monitoring of human activity.
References
Aristotle University of Thessaloniki. (1993). EUROSEISTEST Strong Motion Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/EG
Arroyo-Solórzano, M., Castro-Rojas, D., Massin, F., Linkimer, L., Arroyo, I., & Yani, R. (2021). COVID-19 lockdown effects on the seismic recordings in Central America. Solid Earth, 12(10), 2127–2144. https://doi.org/10.5194/se-12-2127-2021
Boginskaya, N. V., & Kostylev, D. V. (2022). Change in the Level of Microseismic Noise During the COVID-19 Pandemic in the Russian Far East. Pure and Applied Geophysics, 179(11), 4207–4219. https://doi.org/10.1007/s00024-022-03019-7
Bonnefoy-Claudet, S., Cotton, F., & Bard, P.-Y. (2006). The nature of noise wavefield and its applications for site effects studies: A literature review. Earth-Science Reviews, 79(3), 205–227. https://doi.org/10.1016/j.earscirev.2006.07.004
Cannata, A., Cannavò, F., Di Grazia, G., Aliotta, M., Cassisi, C., De Plaen, R. S. M., Gresta, S., Lecocq, T., Montalto, P., & Sciotto, M. (2021). Seismic evidence of the COVID-19 lockdown measures: a case study from eastern Sicily (Italy). Solid Earth, 12(2), 299–317. https://doi.org/10.5194/se-12-299-2021
Curtis, A., Gerstoft, P., Sato, H., Snieder, R., & Wapenaar, K. (2006). Seismic interferometry—turning noise into signal. The Leading Edge, 25(9), 1082–1092. https://doi.org/10.1190/1.2349814
De Plaen, R. S. M., Márquez-Ramı́rez, V. H., Pérez-Campos, X., Zuñiga, F. R., Rodrı́guez-Pérez, Q., Gómez González, J. M., & Capra, L. (2021). Seismic signature of the COVID-19 lockdown at the city scale: a case study with low-cost seismometers in the city of Querétaro, Mexico. Solid Earth, 12(3), 713–724. https://doi.org/10.5194/se-12-713-2021
Diaz, J., Ruiz, M., & Jara, J.-A. (2021). Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown. Solid Earth, 12(3), 725–739. https://doi.org/10.5194/se-12-725-2021
Díaz, J., Ruiz, M., Sánchez-Pastor, P. S., & Romero, P. (2017). Urban Seismology: on the origin of earth vibrations within a city. Scientific Reports, 7(1), 15296. https://doi.org/10.1038/s41598-017-15499-y
Diaz, Jordi, Schimmel, M., Ruiz, M., & Carbonell, R. (2020). Seismometers Within Cities: A Tool to Connect Earth Sciences and Society. Frontiers in Earth Science, Volume 8-2020. https://doi.org/10.3389/feart.2020.00009 Evangelidis, C. P., & Melis, N. S. (2012). Ambient Noise Levels in Greece as Recorded at the Hellenic Unified Seismic Network. Bulletin of the Seismological Society of America, 102(6), 2507–2517. https://doi.org/10.1785/0120110319
Evangelidis, Christos P., Triantafyllis, N., Samios, M., Boukouras, K., Kontakos, K., Ktenidou, O., Fountoulakis, I., Kalogeras, I., Melis, N. S., Galanis, O., Papazachos, C. B., Hatzidimitriou, P., Scordilis, E., Sokos, E., Paraskevopoulos, P., Serpetsidaki, A., Kaviris, G., Kapetanidis, V., Papadimitriou, P., … Tselentis, G. ‐Akis. (2021). Seismic Waveform Data from Greece and Cyprus: Integration, Archival, and Open Access. Seismological Research Letters, 92(3), 1672–1684. https://doi.org/10.1785/0220200408
Giannopoulos, D., Evangelidis, C., Lois, A., Sokos, E., & Lecocq, T. (2021). The footprint of “lockdown” measures to curb COVID-19 spread in Greece on seismic noise. Zenodo. https://doi.org/10.5281/zenodo.7424040
Giannopoulos, D., Vallianatos, F., Lois, A., & Hloupis, G. (2022). Non-extensive statistical physics analysis of high-frequency anthropogenic seismic noise with relation to COVID-19 pandemic lockdown measures: Preliminary observations . Zenodo. https://doi.org/10.5281/zenodo.7424070
Google. (2022). COVID-19 Community Mobility Reports. https://www.google.com/covid19/mobility/. https://www.google.com/covid19/mobility/
Grecu, B., Borleanu, F., Tiganescu, A., Poiata, N., Dinescu, R., & Tataru, D. (2021). The effect of 2020 COVID-19 lockdown measures on seismic noise recorded in Romania. Solid Earth, 12(10), 2351–2368. https://doi.org/10.5194/se-12-2351-2021
Green, D. N., Bastow, I. D., Dashwood, B., & Nippress, S. E. J. (2016). Characterizing Broadband Seismic Noise in Central London. Seismological Research Letters, 88(1), 113–124. https://doi.org/10.1785/0220160128
Gualtieri, L., Stutzmann, E., Capdeville, Y., Ardhuin, F., Schimmel, M., Mangeney, A., & Morelli, A. (2013). Modelling secondary microseismic noise by normal mode summation. Geophysical Journal International, 193(3), 1732–1745. https://doi.org/10.1093/gji/ggt090
(ITSAK) Institute of Engineering Seimology Earthquake Engineering. (1981). ITSAK Strong Motion Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HI
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003
Lecocq, T., Hicks, S. P., Noten, K. V., van Wijk, K., Koelemeijer, P., Plaen, R. S. M. D., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., Arroyo-Solórzano, M., Assink, J. D., Büyükakpınar, P., Cannata, A., Cannavo, F., Carrasco, S., Caudron, C., Chaves, E. J., Cornwell, D. G., … Han Xiao. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. https://doi.org/10.1126/science.abd2438
Lecocq, T., Massin, F., Satriano, C., Vanstone, M., & Megies, T. (2020). SeismoRMS - A simple python/jupyter notebook package for studying seismic noise changes (1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3820046
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Zijian Feng. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
McNamara, D. E., Hutt, C. R., Gee, L. S., Benz, H. M., & Buland, R. P. (2009). A Method to Establish Seismic Noise Baselines for Automated Station Assessment. Seismological Research Letters, 80(4), 628–637. https://doi.org/10.1785/gssrl.80.4.628
McNamara, Daniel E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001
Ministry of Health. (2022). The totality of the legislation applied is available at: https://covid19.gov.gr/nomothesia-gia-ton-covid-19/. https://covid19.gov.gr/nomothesia-gia-ton-covid-19/
National Observatory of Athens, Institute of Geodynamics, Athens. (1975). National Observatory of Athens Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL Ojeda, J., & Ruiz, S. (2021). Seismic noise variability as an indicator of urban mobility during the COVID-19 pandemic in the Santiago metropolitan region, Chile. Solid Earth, 12(5), 1075–1085. https://doi.org/10.5194/se-12-1075-2021
Paul, A., Campillo, M., Margerin, L., Larose, E., & Derode, A. (2005). Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves. Journal of Geophysical Research: Solid Earth, 110(B8). https://doi.org/https://doi.org/10.1029/2004JB003521
Pérez-Campos, X., Espı́ndola, V. H., González-Ávila, D., Zanolli Fabila, B., Márquez-Ramı́rez, V. H., De Plaen, R. S. M., Montalvo-Arrieta, J. C., & Quintanar, L. (2021). The effect of confinement due to COVID-19 on seismic noise in Mexico. Solid Earth, 12(6), 1411–1419. https://doi.org/10.5194/se-12-1411-2021
Poli, P., Boaga, J., Molinari, I., Cascone, V., & Boschi, L. (2020). The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in Northern Italy. Scientific Reports, 10(1), 9404. https://doi.org/10.1038/s41598-020-66368-0
Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674–2681. https://doi.org/https://doi.org/10.1002/2015GL063558
Sheen, D.-H., Shin, J. S., Kang, T.-S., & Baag, C.-E. (2009). Low frequency cultural noise. Geophysical Research Letters, 36(17). https://doi.org/https://doi.org/10.1029/2009GL039625
Somala, S. N. (2020). Seismic noise changes during COVID-19 pandemic: a case study of Shillong, India. Natural Hazards, 103(1), 1623–1628. https://doi.org/10.1007/s11069-020-04045-1
Stutzmann, E., Roult, G., & Astiz, L. (2000). GEOSCOPE Station Noise Levels. Bulletin of the Seismological Society of America, 90(3), 690–701. https://doi.org/10.1785/0119990025
Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001
Xiao, H., Eilon, Z. C., Ji, C., & Tanimoto, T. (2020). COVID‐19 Societal Response Captured by Seismic Noise in China and Italy. Seismological Research Letters, 91(5), 2757–2768. https://doi.org/10.1785/0220200147
Yabe, S., Imanishi, K., & Nishida, K. (2020). Two-step seismic noise reduction caused by COVID-19 induced reduction in social activity in metropolitan Tokyo, Japan. Earth, Planets and Space, 72(1), 167. https://doi.org/10.1186/s40623-020-01298-9
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dimitrios Giannopoulos, Christos P. Evangelidis, Efthimios Sokos

This work is licensed under a Creative Commons Attribution 4.0 International License.