Foreshocks, aftershocks, and static stress triggering of the 2020 Mw 4.8 Mentone Earthquake in west Texas

Authors

  • David C. Bolton Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA https://orcid.org/0000-0003-2428-1743
  • Nadine Igonin University of Texas at Dallas, Department of Sustainability and Earth Systems Sciences, Dallas, TX, USA
  • Yangkang Chen Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
  • Daniel T. Trugman Nevada Seismological Laboratory, University of Nevada at Reno, Reno, NV, USA https://orcid.org/0000-0002-9296-4223
  • Alexandros Savvaidis Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA https://orcid.org/0000-0001-6373-5256
  • Peter Hennings Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA

DOI:

https://doi.org/10.26443/seismica.v3i2.1420

Abstract

Foreshocks are the most obvious signature of the earthquake nucleation stage and could, in principle, forewarn of an impending earthquake. However, foreshocks are only sometimes observed, and we have a limited understanding of the physics that controls their occurrence. In this work, we use high-resolution earthquake catalogs and estimates of source properties to understand the spatiotemporal evolution of a sequence of 11 foreshocks that occurred ~ 6.5 hours before the 2020 Mw 4.8 Mentone earthquake in west Texas.  Elevated pore-pressure and poroelastic stressing from subsurface fluid injection from oil-gas operations is often invoked to explain seismicity in west Texas and the surrounding region. However, here we show that static stresses induced from the initial ML 4.0 foreshock significantly perturbed the local shear stress along the fault and could have triggered the Mentone mainshock. The majority (9/11) of the earthquakes leading up to the Mentone mainshock nucleated in areas where the static shear stresses were increased from the initial ML 4.0 foreshock. The spatiotemporal properties of the 11 earthquakes that preceded the mainshock cannot easily be explained in the context of a preslip or cascade nucleation model. We show that at least 6/11 events are better classified as aftershocks of the initial ML 4.0.  Together, our results suggest that a combination of physical mechanisms contributed to the occurrence of the 11 earthquakes that preceded the mainshock, including static-stressing from earthquake-earthquake interactions, aseismic creep, and stress perturbations induced from fluid injection.  Our work highlights the role of earthquake-earthquake triggering in induced earthquake sequences, and suggests that such triggering could help sustain seismic activity following initial stressing perturbations from fluid injection.

References

Aben, F. M., & Brantut, N. (2021). Dilatancy stabilises shear failure in rock. Earth and Planetary Science Letters, 574, 117174. https://doi.org/10.1016/j.epsl.2021.117174 DOI: https://doi.org/10.1016/j.epsl.2021.117174

Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131 DOI: https://doi.org/10.1098/rsta.2020.0131

Abercrombie, R. E., Agnew, D. C., & Wyatt, F. K. (1995). Testing a model of earthquake nucleation. Bulletin of the Seismological Society of America, 85(6), 1873–1878. https://doi.org/10.1785/bssa0850061873 DOI: https://doi.org/10.1785/BSSA0850061873

Abercrombie, R. E., & Mori, J. (1996). Occurrence patterns of foreshocks to large earthquakes in the western United States. Nature, 381(6580), 303–307. https://doi.org/10.1038/381303a0 DOI: https://doi.org/10.1038/381303a0

Affinito, R., Elsworth, D., Mittal, T., Scuderi, M. M., & Marone, C. (2024). Rate and Pressure Dependence of Dilatancy and Fault Strength in Partially-Drained Laboratory Fault Zones. https://doi.org/10.22541/essoar.172798807.76814555/v1 DOI: https://doi.org/10.22541/essoar.172798807.76814555/v1

Aki, K. (1967). Scaling law of seismic spectrum. Journal of Geophysical Research, 72(4), 1217–1231. https://doi.org/10.1029/jz072i004p01217 DOI: https://doi.org/10.1029/JZ072i004p01217

Andrews, D. J. (1980). A stochastic fault model: 1. Static case. Journal of Geophysical Research: Solid Earth, 85(B7), 3867–3877. https://doi.org/10.1029/jb085ib07p03867 DOI: https://doi.org/10.1029/JB085iB07p03867

Beeler, N. M., Lockner, D. L., & Hickman, S. H. (2001). A Simple Stick-Slip and Creep-Slip Model for Repeating Earthquakes and its Implication for Microearthquakes at Parkfield. Bulletin of the Seismological Society of America, 91(6), 1797–1804. https://doi.org/10.1785/0120000096 DOI: https://doi.org/10.1785/0120000096

Beroza, G. C., & Ellsworth, W. L. (1996). Properties of the seismic nucleation phase. Tectonophysics, 261(1–3), 209–227. https://doi.org/10.1016/0040-1951(96)00067-4 DOI: https://doi.org/10.1016/0040-1951(96)00067-4

Boatwright, J. (1980). A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy. Bulletin of the Seismological Society of America, 70(1), 1–27. DOI: https://doi.org/10.1785/BSSA0840010001

Bolton, David C., Shreedharan, S., Rivière, J., & Marone, C. (2021). Frequency‐Magnitude Statistics of Laboratory Foreshocks Vary With Shear Velocity, Fault Slip Rate, and Shear Stress. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022175 DOI: https://doi.org/10.1029/2021JB022175

Bolton, D.C., Affinito, R., Smye, K., Marone, C., & Hennings, P. (2023). Frictional and poromechanical properties of the Delaware Mountain Group: Insights into induced seismicity in the Delaware Basin. Earth and Planetary Science Letters, 623, 118436. DOI: https://doi.org/10.1016/j.epsl.2023.118436

Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2013). The long precursory phase of most large interplate earthquakes. Nature Geoscience, 6(4), 299–302. https://doi.org/10.1038/ngeo1770 DOI: https://doi.org/10.1038/ngeo1770

Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M.-P. (2011). Extended Nucleation of the 1999 M w 7.6 Izmit Earthquake. Science, 331(6019), 877–880. https://doi.org/10.1126/science.1197341 DOI: https://doi.org/10.1126/science.1197341

Brodsky, E. E. (2019). The importance of studying small earthquakes. Science, 364(6442), 736–737. https://doi.org/10.1126/science.aax2490 DOI: https://doi.org/10.1126/science.aax2490

Brodsky, E. E., & Lay, T. (2014). Recognizing Foreshocks from the 1 April 2014 Chile Earthquake. Science, 344(6185), 700–702. https://doi.org/10.1126/science.1255202 DOI: https://doi.org/10.1126/science.1255202

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/jb075i026p04997 DOI: https://doi.org/10.1029/JB075i026p04997

Cappa, F., Scuderi, M. M., Collettini, C., Guglielmi, Y., & Avouac, J.-P. (2019). Stabilization of fault slip by fluid injection in the laboratory and in situ. Science Advances, 5(3). https://doi.org/10.1126/sciadv.aau4065 DOI: https://doi.org/10.1126/sciadv.aau4065

Cattania, C., & Segall, P. (2021). Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020430. https://doi.org/10.1029/2020JB020430 DOI: https://doi.org/10.1029/2020JB020430

Cebry, S. B., Ke, C.-Y., & McLaskey, G. (2022). The Role of Background Stress State in Fluid-Induced Aseismic Slip and Dynamic Rupture on a 3-m Laboratory Fault. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2022JB024371 DOI: https://doi.org/10.1029/2022JB024371

Cebry, S. B. L., & McLaskey, G. C. (2021). Seismic swarms produced by rapid fluid injection into a low permeability laboratory fault. Earth and Planetary Science Letters, 557, 116726. https://doi.org/10.1016/j.epsl.2020.116726 DOI: https://doi.org/10.1016/j.epsl.2020.116726

Chaves, E., Schwartz, S., & Abercrombie, R. (2020). Repeating earthquakes record fault weakening and healing in areas of megathrust postseismic slip. Science Advances, 6(32), eaaz9317. https://doi.org/10.1126/sciadv.aaz9317 DOI: https://doi.org/10.1126/sciadv.aaz9317

Chen, X., Nakata, N., Pennington, C., Haffener, J., Chang, J. C., He, X., Zhan, Z., Ni, S., & Walter, J. I. (2017). The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-04992-z DOI: https://doi.org/10.1038/s41598-017-04992-z

Chen, X., & Shearer, P. M. (2013). California foreshock sequences suggest aseismic triggering process. Geophysical Research Letters, 40(11), 2602–2607. https://doi.org/10.1002/grl.50444 DOI: https://doi.org/10.1002/grl.50444

Chen, X., & Shearer, P. M. (2015). Analysis of Foreshock Sequences in California and Implications for Earthquake Triggering. Pure and Applied Geophysics, 173(1), 133–152. https://doi.org/10.1007/s00024-015-1103-0 DOI: https://doi.org/10.1007/s00024-015-1103-0

De Barros, L., Guglielmi, Y., Rivet, D., Cappa, F., & Duboeuf, L. (2018). Seismicity and fault aseismic deformation caused by fluid injection in decametric in-situ experiments. Comptes Rendus. Géoscience, 350(8), 464–475. https://doi.org/10.1016/j.crte.2018.08.002 DOI: https://doi.org/10.1016/j.crte.2018.08.002

Dieterich, James H. (1992). Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 211(1–4), 115–134. https://doi.org/10.1016/0040-1951(92)90055-b DOI: https://doi.org/10.1016/0040-1951(92)90055-B

Dieterich, J.H. (1978). Preseismic fault slip and earthquake prediction. Journal of Geophysical Research: Solid Earth, 83(B8), 3940–3948. DOI: https://doi.org/10.1029/JB083iB08p03940

Dieterich, J.H. (1986). A model for the nucleation of earthquake slip. Earthquake source mechanics, 37, 37–47. DOI: https://doi.org/10.1029/GM037p0037

Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research: Solid Earth, 101(B10), 22371–22392. https://doi.org/10.1029/96jb02269 DOI: https://doi.org/10.1029/96JB02269

Dresen, G., Kwiatek, G., Goebel, T., & Ben-Zion, Y. (2020). Seismic and Aseismic Preparatory Processes Before Large Stick–Slip Failure. Pure and Applied Geophysics, 177(12), 5741–5760. https://doi.org/10.1007/s00024-020-02605-x DOI: https://doi.org/10.1007/s00024-020-02605-x

Ellsworth, W. L., & Beroza, G. C. (1995). Seismic Evidence for an Earthquake Nucleation Phase. Science, 268(5212), 851–855. https://doi.org/10.1126/science.268.5212.851 DOI: https://doi.org/10.1126/science.268.5212.851

Ellsworth, William L., & Bulut, F. (2018). Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 11(7), 531–535. https://doi.org/10.1038/s41561-018-0145-1 DOI: https://doi.org/10.1038/s41561-018-0145-1

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376–396. https://doi.org/10.1098/rspa.1957.0133 DOI: https://doi.org/10.1098/rspa.1957.0133

Geller, R. J. (1997). Earthquake prediction: a critical review. Geophysical Journal International, 131(3), 425–450. DOI: https://doi.org/10.1111/j.1365-246X.1997.tb06588.x

Goebel, Thomas H. W., & Brodsky, E. E. (2018). The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405), 899–904. https://doi.org/10.1126/science.aat5449 DOI: https://doi.org/10.1126/science.aat5449

Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., & Brodsky, E. E. (2017). The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 472, 50–61. https://doi.org/10.1016/j.epsl.2017.05.011 DOI: https://doi.org/10.1016/j.epsl.2017.05.011

Gomberg, J. (2018). Unsettled earthquake nucleation. Nature Geoscience, 11(7), 463–464. https://doi.org/10.1038/s41561-018-0149-x DOI: https://doi.org/10.1038/s41561-018-0149-x

Grigoratos, I., Savvaidis, A., & Rathje, E. (2022). Distinguishing the Causal Factors of Induced Seismicity in the Delaware Basin: Hydraulic Fracturing or Wastewater Disposal? Seismological Research Letters, 93(5), 2640–2658. https://doi.org/10.1785/0220210320 DOI: https://doi.org/10.1785/0220210320

Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., & Elsworth, D. (2015). Seismicity triggered by fluid injection–induced aseismic slip. Science, 348(6240), 1224–1226. https://doi.org/10.1126/science.aab0476 DOI: https://doi.org/10.1126/science.aab0476

Hardebeck, J. L., Nazareth, J. J., & Hauksson, E. (1998). The static stress change triggering model: Constraints from two southern California aftershock sequences. Journal of Geophysical Research: Solid Earth, 103(B10), 24427–24437. https://doi.org/10.1029/98jb00573 DOI: https://doi.org/10.1029/98JB00573

Helmstetter, A., & Sornette, D. (2003). Foreshocks explained by cascades of triggered seismicity. Journal of Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2003jb002409 DOI: https://doi.org/10.1029/2003JB002409

Horne, E. A., Hennings, P. H., & Zahm, C. K. (2021). Basement-rooted faults of the Delaware Basin and Central Basin Platform, Permian Basin, West Texas and southeastern New Mexico. In The Geologic Basement of Texas: A Volume in Honor of Peter T. Flawn. University of Texas at Austin, Bureau of Economic Geology. https://doi.org/10.23867/ri0286c6 DOI: https://doi.org/10.23867/RI0286C6

Hsu, Y.-J., Simons, M., Avouac, J.-P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., & Bock, Y. (2006). Frictional Afterslip Following the 2005 Nias-Simeulue Earthquake, Sumatra. Science, 312(5782), 1921–1926. https://doi.org/10.1126/science.1126960 DOI: https://doi.org/10.1126/science.1126960

Huang, G. D., Horne, E., Kavoura, F., & Savvaidis, A. (2022). Characteristics of Seismogenic Structures and 3D Stress State of the Delaware Basin of West Texas as Constrained by Earthquake Source Mechanisms. Seismological Research Letters, 93(6), 3363–3372. https://doi.org/10.1785/0220220054 DOI: https://doi.org/10.1785/0220220054

Igonin, N., Trugman, D. T., Gonzalez, K., & Eaton, D. W. (2023). Spectral Characteristics of Hydraulic Fracturing-Induced Seismicity Can Distinguish between Activation of Faults and Fractures. Seismological Research Letters. https://doi.org/10.1785/0220230024 DOI: https://doi.org/10.1785/0220230024

Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., & Fialko, Y. (2023). The complex dynamics of the 2023 Kahramanmaraş, Turkey,Mw7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. https://doi.org/10.1126/science.adi0685 DOI: https://doi.org/10.1126/science.adi0685

Jin, L., Curry, W. J., Lippoldt, R. C., Hussenoeder, S. A., & Bhargava, P. (2023). 3D coupled hydro-mechanical modeling of multi-decadal multi-zone saltwater disposal in layered and faulted poroelastic rocks and implications for seismicity: An example from the Midland Basin. Tectonophysics, 863, 229996. https://doi.org/10.1016/j.tecto.2023.229996 DOI: https://doi.org/10.1016/j.tecto.2023.229996

Jones, L., & Molnar, P. (1976). Frequency of foreshocks. Nature, 262(5570), 677–679. https://doi.org/10.1038/262677a0 DOI: https://doi.org/10.1038/262677a0

Kaneko, Y., & Shearer, P. M. (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197(2), 1002–1015. https://doi.org/10.1093/gji/ggu030 DOI: https://doi.org/10.1093/gji/ggu030

Kato, A. (2023). Implications of Fault‐Valve Behavior From Immediate Aftershocks Following the 2023 Mj6.5 Earthquake Beneath the Noto Peninsula, Central Japan. Geophysical Research Letters, 51(1). https://doi.org/10.1029/2023gl106444 DOI: https://doi.org/10.1029/2023GL106444

Kato, A., Fukuda, J., Kumazawa, T., & Nakagawa, S. (2016). Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake. Scientific Reports, 6(1). https://doi.org/10.1038/srep24792 DOI: https://doi.org/10.1038/srep24792

Kato, A., Fukuda, J., Nakagawa, S., & Obara, K. (2016). Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan. Geophysical Research Letters, 43(17), 8945–8953. https://doi.org/10.1002/2016gl070079 DOI: https://doi.org/10.1002/2016GL070079

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of Slow Slip Leading Up to the 2011 M w 9.0 Tohoku-Oki Earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141 DOI: https://doi.org/10.1126/science.1215141

Keranen, K. M., Savage, H. M., Abers, G. A., & Cochran, E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41(6), 699–702. https://doi.org/10.1130/g34045.1 DOI: https://doi.org/10.1130/G34045.1

Keranen, K. M., & Weingarten, M. (2018). Induced Seismicity. Annual Review of Earth and Planetary Sciences, 46(1), 149–174. https://doi.org/10.1146/annurev-earth-082517-010054 DOI: https://doi.org/10.1146/annurev-earth-082517-010054

King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953. https://doi.org/10.1785/BSSA0840030935

Kwiatek, G., Martínez-Garzón, P., Becker, D., Dresen, G., Cotton, F., Beroza, G. C., Acarel, D., Ergintav, S., & Bohnhoff, M. (2023). Months-long seismicity transients preceding the 2023 MW 7.8 Kahramanmaraş earthquake, Türkiye. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-42419-8 DOI: https://doi.org/10.1038/s41467-023-42419-8

Leeman, J. R., Saffer, D. M., Scuderi, M. M., & Marone, C. (2016). Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Communications, 7(1). https://doi.org/10.1038/ncomms11104 DOI: https://doi.org/10.1038/ncomms11104

Martínez-Garzón, P., & Poli, P. (2024). Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01285-y DOI: https://doi.org/10.1038/s43247-024-01285-y

McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904. https://doi.org/10.1029/2019jb018363 DOI: https://doi.org/10.1029/2019JB018363

Mignan, A. (2014). The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Scientific Reports, 4(1). https://doi.org/10.1038/srep04099 DOI: https://doi.org/10.1038/srep04099

Moutote, L., Itoh, Y., Lengliné, O., Duputel, Z., & Socquet, A. (2023). Evidence of a Transient Aseismic Slip Driving the 2017 Valparaiso Earthquake Sequence, From Foreshocks to Aftershocks. Journal of Geophysical Research: Solid Earth, 128(9). https://doi.org/10.1029/2023jb026603 DOI: https://doi.org/10.1029/2023JB026603

Ohnaka, M. (1992). Earthquake source nucleation: A physical model for short-term precursors. Tectonophysics, 211(1–4), 149–178. https://doi.org/10.1016/0040-1951(92)90057-d DOI: https://doi.org/10.1016/0040-1951(92)90057-D

Ohnaka, M. (1993). Critical Size of the Nucleation Zone of Earthquake Rupture Inferred from Immediate Foreshock Activity. Journal of Physics of the Earth, 41(1), 45–56. https://doi.org/10.4294/jpe1952.41.45 DOI: https://doi.org/10.4294/jpe1952.41.45

Ohnaka, M., & Shen, L. (1999). Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. Journal of Geophysical Research: Solid Earth, 104(B1), 817–844. https://doi.org/10.1029/1998jb900007 DOI: https://doi.org/10.1029/1998JB900007

Okamoto, K. K., Savage, H. M., Cochran, E. S., & Keranen, K. M. (2022). Stress Heterogeneity as a Driver of Aseismic Slip During the 2011 Prague, Oklahoma Aftershock Sequence. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2022jb024431 DOI: https://doi.org/10.1029/2022JB024431

Passelègue, F. X., Almakari, M., Dublanchet, P., Barras, F., Fortin, J., & Violay, M. (2020). Initial effective stress controls the nature of earthquakes. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18937-0 DOI: https://doi.org/10.1038/s41467-020-18937-0

Peng, H., & Mori, J. (2022). Characteristics of the foreshock occurrence for Mj3.0 to 7.2 shallow onshore earthquakes in Japan. Earth, Planets and Space, 74(1). https://doi.org/10.1186/s40623-021-01567-1 DOI: https://doi.org/10.1186/s40623-021-01567-1

Pepin, K. S., Ellsworth, W. L., Sheng, Y., & Zebker, H. A. (2022). Shallow Aseismic Slip in the Delaware Basin Determined by Sentinel-1 InSAR. Journal of Geophysical Research: Solid Earth, 127(2). https://doi.org/10.1029/2021JB023157 DOI: https://doi.org/10.1029/2021JB023157

Perfettini, H., & Avouac, J. ‐P. (2007). Modeling afterslip and aftershocks following the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 112(B7). https://doi.org/10.1029/2006jb004399 DOI: https://doi.org/10.1029/2006JB004399

Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, 35(8), 1701–1710. https://doi.org/10.1016/j.cageo.2008.06.007 DOI: https://doi.org/10.1016/j.cageo.2008.06.007

Proctor, B., Lockner, D. A., Kilgore, B. D., Mitchell, T. M., & Beeler, N. M. (2020). Direct Evidence for Fluid Pressure, Dilatancy, and Compaction Affecting Slip in Isolated Faults. Geophysical Research Letters, 47(16). https://doi.org/10.1029/2019gl086767 DOI: https://doi.org/10.1029/2019GL086767

Reasenberg, P. A., & Simpson, R. W. (1992). Response of Regional Seismicity to the Static Stress Change Produced by the Loma Prieta Earthquake. Science, 255(5052), 1687–1690. https://doi.org/10.1126/science.255.5052.1687 DOI: https://doi.org/10.1126/science.255.5052.1687

Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677–1690. https://doi.org/10.1111/j.1365-246x.2009.04214.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04214.x

Ross, Z. E., Cochran, E. S., Trugman, D. T., & Smith, J. D. (2020). 3D fault architecture controls the dynamism of earthquake swarms. Science, 368(6497), 1357–1361. https://doi.org/10.1126/science.abb0779 DOI: https://doi.org/10.1126/science.abb0779

Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J., & Ben‐Zion, Y. (2017). Aftershocks driven by afterslip and fluid pressure sweeping through a fault‐fracture mesh. Geophysical Research Letters, 44(16), 8260–8267. https://doi.org/10.1002/2017gl074634 DOI: https://doi.org/10.1002/2017GL074634

Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767–771. https://doi.org/10.1126/science.aaw6888 DOI: https://doi.org/10.1126/science.aaw6888

Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., & Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique M w 8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074 DOI: https://doi.org/10.1126/science.1256074

Saad, O. M., Chen, Y., Siervo, D., Zhang, F., Savvaidis, A., Huang, G. D., Igonin, N., Fomel, S., & Chen, Y. (2023). EQCCT: A Production-Ready Earthquake Detection and Phase-Picking Method Using the Compact Convolutional Transformer. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–15. https://doi.org/10.1109/tgrs.2023.3319440 DOI: https://doi.org/10.1109/TGRS.2023.3319440

Samuelson, J., Elsworth, D., & Marone, C. (2009). Shear‐induced dilatancy of fluid‐saturated faults: Experiment and theory. Journal of Geophysical Research: Solid Earth, 114(B12). https://doi.org/10.1029/2008jb006273 DOI: https://doi.org/10.1029/2008JB006273

Savage, H. M., Keranen, K. M., P. Schaff, D., & Dieck, C. (2017). Possible precursory signals in damage zone foreshocks. Geophysical Research Letters, 44(11), 5411–5417. https://doi.org/10.1002/2017gl073226 DOI: https://doi.org/10.1002/2017GL073226

Savvaidis, A., Lomax, A., & Breton, C. (2020). Induced Seismicity in the Delaware Basin, West Texas, is Caused by Hydraulic Fracturing and Wastewater Disposal. Bulletin of the Seismological Society of America, 110(5), 2225–2241. https://doi.org/10.1785/0120200087 DOI: https://doi.org/10.1785/0120200087

Scholz, C., Molnar, P., & Johnson, T. (1972). Detailed studies of frictional sliding of granite and implications for the earthquake mechanism. Journal of Geophysical Research, 77(32), 6392–6406. https://doi.org/10.1029/jb077i032p06392 DOI: https://doi.org/10.1029/JB077i032p06392

Segall, P., & Lu, S. (2015). Injection‐induced seismicity: Poroelastic and earthquake nucleation effects. Journal of Geophysical Research: Solid Earth, 120(7), 5082–5103. https://doi.org/10.1002/2015jb012060 DOI: https://doi.org/10.1002/2015JB012060

Segall, Paul, & Rice, J. R. (1995). Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault. Journal of Geophysical Research: Solid Earth, 100(B11), 22155–22171. https://doi.org/10.1029/95jb02403 DOI: https://doi.org/10.1029/95JB02403

Shelly, D. R. (2024). Examining the Connections Between Earthquake Swarms, Crustal Fluids, and Large Earthquakes in the Context of the 2020–2024 Noto Peninsula, Japan, Earthquake Sequence. Geophysical Research Letters, 51(4). https://doi.org/10.1029/2023gl107897 DOI: https://doi.org/10.1029/2023GL107897

Shreedharan, S., Saffer, D., Wallace, L. M., & Williams, C. (2023). Ultralow frictional healing explains recurring slow slip events. Science, 379(6633), 712–717. https://doi.org/10.1126/science.adf4930 DOI: https://doi.org/10.1126/science.adf4930

Sibson, R. H. (1992a). Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1–4), 283–293. https://doi.org/10.1016/0040-1951(92)90065-e

Sibson, R. H. (1992b). Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1–4), 283–293. https://doi.org/10.1016/0040-1951(92)90065-e DOI: https://doi.org/10.1016/0040-1951(92)90065-E

Skoumal, R. J., Brudzinski, M. R., & Currie, B. S. (2015). Distinguishing induced seismicity from natural seismicity in Ohio: Demonstrating the utility of waveform template matching. Journal of Geophysical Research: Solid Earth, 120(9), 6284–6296. https://doi.org/10.1002/2015jb012265 DOI: https://doi.org/10.1002/2015JB012265

Skoumal, R. J., Kaven, J. O., Barbour, A. J., Wicks, C., Brudzinski, M. R., Cochran, E. S., & Rubinstein, J. L. (2020). The Induced Mw 5.0 March 2020 West Texas Seismic Sequence. Journal of Geophysical Research: Solid Earth, 126(1). https://doi.org/10.1029/2020jb020693 DOI: https://doi.org/10.1029/2020JB020693

Skoumal, R. J., & Trugman, D. T. (2021). The Proliferation of Induced Seismicity in the Permian Basin, Texas. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2021jb021921 DOI: https://doi.org/10.1029/2021JB021921

Smye, K. M., Ge, J., Morris, A., Horne, E. A., Calle, A., Eastwood, R. L., Nicot, J.-P., & Hennings, P. (2024). in review, Role of Deep Fluid Injection in Induced Seismicity in the Delaware Basin, West Texas and Southeast New Mexico. G-Cubed. DOI: https://doi.org/10.1029/2023GC011260

Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605–609. https://doi.org/10.1038/45144 DOI: https://doi.org/10.1038/45144

Sumy, D. F., Cochran, E. S., Keranen, K. M., Wei, M., & Abers, G. A. (2014). Observations of static Coulomb stress triggering of the November 2011 M5. 7 Oklahoma earthquake sequence. Journal of Geophysical Research: Solid Earth, 119(3), 1904–1923. https://doi.org/10.1002/2013jb010612 DOI: https://doi.org/10.1002/2013JB010612

Tan, X., & Lui, S. K. Y. (2023). Potential Poroelastic Triggering of the 2020 M5.0 Mentone Earthquake in the Delaware Basin, Texas, by Shallow Injection Wells. Bulletin of the Seismological Society of America, 114(2), 882–894. https://doi.org/10.1785/0120230142 DOI: https://doi.org/10.1785/0120230142

Tape, C., Holtkamp, S., Silwal, V., Hawthorne, J., Kaneko, Y., Ampuero, J. P., Ji, C., Ruppert, N., Smith, K., & West, M. E. (2018). Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nature Geoscience, 11(7), 536–541. https://doi.org/10.1038/s41561-018-0144-2 DOI: https://doi.org/10.1038/s41561-018-0144-2

Trugman, D., & Ross, Z. (2019). Pervasive foreshock activity across southern California. Geophysical Research Letters, 46(15), 8772–8781. https://doi.org/10.1029/2019GL083725 DOI: https://doi.org/10.1029/2019GL083725

Trugman, D. T., McBrearty, I. W., Bolton, D. C., Guyer, R. A., Marone, C., & Johnson, P. A. (2020). The Spatiotemporal Evolution of Granular Microslip Precursors to Laboratory Earthquakes. Geophysical Research Letters, 47(16). https://doi.org/10.1029/2020gl088404 DOI: https://doi.org/10.1029/2020GL088404

Trugman, D. T., & Savvaidis, A. (2021). Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research Letters, 92(4), 2477–2489. https://doi.org/10.1785/0220200461 DOI: https://doi.org/10.1785/0220200461

Trugman, D. T., & Shearer, P. M. (2017). GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 88(2A), 379–391. https://doi.org/10.1785/0220160188 DOI: https://doi.org/10.1785/0220160188

Tung, S., Zhai, G., & Shirzaei, M. (2021). Potential Link Between 2020 Mentone, West Texas M5 Earthquake and Nearby Wastewater Injection: Implications for Aquifer Mechanical Properties. Geophysical Research Letters, 48(3). https://doi.org/10.1029/2020gl090551 DOI: https://doi.org/10.1029/2020GL090551

Uchida, N., & Bürgmann, R. (2019). Repeating Earthquakes. Annual Review of Earth and Planetary Sciences, 47(1), 305–332. https://doi.org/10.1146/annurev-earth-053018-060119 DOI: https://doi.org/10.1146/annurev-earth-053018-060119

Vidale, J. E., ElIsworth, W. L., Cole, A., & Marone, C. (1994). Variations in rupture process with recurrence interval in a repeated small earthquake. Nature, 368(6472), 624–626. https://doi.org/10.1038/368624a0 DOI: https://doi.org/10.1038/368624a0

Vidale, John E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004034 DOI: https://doi.org/10.1029/2005JB004034

Wang, K., Peng, Z., Liang, S., Luo, J., Zhang, K., & He, C. (2024). Migrating Foreshocks Driven by a Slow Slip Event Before the 2021 MW 6.1 Yangbi, China Earthquake. Journal of Geophysical Research: Solid Earth, 129(1). https://doi.org/10.1029/2023jb027209 DOI: https://doi.org/10.1029/2023JB027209

Wang, Q.-Y., Cui, X., Frank, W. B., Lu, Y., Hirose, T., & Obara, K. (2024). Untangling the environmental and tectonic drivers of the Noto earthquake swarm in Japan. Science Advances, 10(19). https://doi.org/10.1126/sciadv.ado1469 DOI: https://doi.org/10.1126/sciadv.ado1469

Wetzler, N., Brodsky, E. E., Chaves, E. J., Goebel, T., & Lay, T. (2022). Regional Characteristics of Observable Foreshocks. Seismological Research Letters, 94(1), 428–442. https://doi.org/10.1785/0220220122 DOI: https://doi.org/10.1785/0220220122

Wu, B. S., & McLaskey, G. C. (2022). Testing Earthquake Nucleation Length Scale with Pawnee Aftershocks. Seismological Research Letters, 93(4), 2147–2160. https://doi.org/10.1785/0220210184 DOI: https://doi.org/10.1785/0220210184

Yoon, C. E., Yoshimitsu, N., Ellsworth, W. L., & Beroza, G. C. (2019). Foreshocks and Mainshock Nucleation of the 1999 Mw 7.1 Hector Mine, California, Earthquake. Journal of Geophysical Research: Solid Earth, 124(2), 1569–1582. https://doi.org/10.1029/2018jb016383 DOI: https://doi.org/10.1029/2018JB016383

Zaccagnino, D., Vallianatos, F., Michas, G., Telesca, L., & Doglioni, C. (2024). Are Foreshocks Fore‐Shocks? Journal of Geophysical Research: Solid Earth, 129(2). https://doi.org/10.1029/2023jb027337 DOI: https://doi.org/10.1029/2023JB027337

Zaliapin, I., & Ben‐Zion, Y. (2013a). Earthquake clusters in southern California I: Identification and stability. Journal of Geophysical Research: Solid Earth, 118(6), 2847–2864. https://doi.org/10.1002/jgrb.50179 DOI: https://doi.org/10.1002/jgrb.50179

Zaliapin, I., & Ben‐Zion, Y. (2013b). Earthquake clusters in southern California II: Classification and relation to physical properties of the crust. Journal of Geophysical Research: Solid Earth, 118(6), 2865–2877. https://doi.org/10.1002/jgrb.50178 DOI: https://doi.org/10.1002/jgrb.50178

Zaliapin, I., Gabrielov, A., Keilis-Borok, V., & Wong, H. (2008). Clustering Analysis of Seismicity and Aftershock Identification. Physical Review Letters, 101(1). https://doi.org/10.1103/physrevlett.101.018501 DOI: https://doi.org/10.1103/PhysRevLett.101.018501

Zhai, G., Shirzaei, M., & Manga, M. (2021). Widespread deep seismicity in the Delaware Basin, Texas, is mainly driven by shallow wastewater injection. Proceedings of the National Academy of Sciences, 118(20). https://doi.org/10.1073/pnas.2102338118 DOI: https://doi.org/10.1073/pnas.2102338118

Zhou, Y., Ren, C., Ghosh, A., Meng, H., Fang, L., Yue, H., Zhou, S., & Su, Y. (2022). Seismological Characterization of the 2021 Yangbi Foreshock-Mainshock Sequence, Yunnan, China: More than a Triggered Cascade. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/https://doi.org/10.1029/2022JB024534 DOI: https://doi.org/10.1029/2022JB024534

Zhu, G., Yang, H., Tan, Y. J., Jin, M., Li, X., & Yang, W. (2022). The Cascading Foreshock Sequence of the Ms 6.4 Yangbi Earthquake in Yunnan, China. Earth and Planetary Science Letters, 591, 117594. https://doi.org/https://doi.org/10.1016/j.epsl.2022.117594 DOI: https://doi.org/10.1016/j.epsl.2022.117594

Published

2024-12-23

How to Cite

Bolton, D. C., Igonin, N., Chen, Y., Trugman, D. T., Savvaidis, A., & Hennings, P. (2024). Foreshocks, aftershocks, and static stress triggering of the 2020 Mw 4.8 Mentone Earthquake in west Texas. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1420

Issue

Section

Articles