Rupture Dynamics and Near-Fault Ground Motion of the Mw7.8 Kahramanmaraş, Turkey earthquake of February 6, 2023

Authors

  • Hideo Aochi 1 - Bureau de Recherches Géologiques et Minières, Orléans, France & 2 - Laboratoire de Géologie de l’Ecole Normale Supérieure, CNRS UMR 8538, PSL Research University, Paris, France https://orcid.org/0000-0001-9405-9596
  • Victor Manuel Cruz-Atienza Departamento de Sismología, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico https://orcid.org/0000-0001-7067-2636

DOI:

https://doi.org/10.26443/seismica.v4i1.1432

Keywords:

2023 Kahramanmaras Earthquake, Earthquake ground motion, rupture physics, supershear rupture, frictional energy

Abstract

We studied the dynamic rupture propagation of the February 6th, 2023 (Mw7.8, 01:17 UTC) Pazarcık (Kahramanmaraş), Turkey, earthquake by incorporating the non-planar fault structure, the regional stress field, and a data-driven friction parameterization into numerical simulations. To explain the rupture extent of 200 km and the average speed, a regional non-uniform load is necessary and was determined from the orientation and intensity of the principal stresses. Careful analysis of near-fault strong motions suggests that the critical slip-weakening distance (Dc) varies smoothly along the fault strike (between 0.6 - 1.2 m) with mean value of 0.86 +/- 0.34 m. Such friction and prestress heterogeneities help to explain local kinematic features of the rupture process imaged by Delouis et al. (2023) (e.g., two supershear rupture transients) where the fault geometry played a major role. As expected, we found clear correlation between rupture speed and radiation efficiency (ηr) along the fault, both metrics with peak values near the maximum PGAs recorded. This is the first earthquake where local heterogeneity of rupture dynamics and near-fault ground motion can be studied together so that the methodologies introduced will serve to generate comprehensive earthquake scenarios to assess the seismic hazard in other regions.

References

Abdelmeguid, M., Elbanna, A., & Rosakis, A. (2025). Ground motion characteristics of subshear and supershear ruptures in the presence of sediment layers. Geophysical Journal International, 240(2), 967–987. https://doi/org/10.1093/gji/ggae422

Abdelmeguid, Mohamed, Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, A., & Rosakis, A. (2023). Dynamics of episodic supershear in the 2023 M7.8 Kahramanmaraş/Pazarcik earthquake, revealed by near-field records and computational modeling. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247-023-01131-7

Adda-Bedia, M., & Madariaga, R. (2008). Seismic Radiation from a Kink on an Antiplane Fault. Bulletin of the Seismological Society of America, 98(5), 2291–2302. https://doi.org/10.1785/0120080003

Aktuğ, B., & Kiliçoğlu, A. (2005). Establishment of regional reference frames for detecting active deformation areas in Anatolia, IAG-IABO-IASPO Joint Assembly.

Ando, R., & Kaneko, Y. (2018). Dynamic rupture simulation reproduces spontaneous multifault rupture and arrest during the 2016 Mw 7.9 Kaikoura earthquake. Geophysical Research Letters, 45(23). https://doi.org/10.1029/2018gl080550

Ando, R., Tada, T., & Yamashita, T. (2004). Dynamic evolution of a fault system through interactions between fault segments. Journal of Geophysical Research: Solid Earth, 109(B5). https://doi.org/10.1029/2003jb002665

Aochi, H., Fukuyama, E., & Matsu’ura, M. (2000). Spontaneous Rupture Propagation on a Non-planar Fault in 3D Elastic Medium. Pure and Applied Geophysics, 157(11), 2003–2027. https://doi.org/10.1007/pl00001072

Aochi, H., & Madariaga, R. (2003). The 1999 İzmit, Turkey, earthquake: Nonplanar fault structure, dynamic rupture process and strong ground motion. Bulletin of the Seismological Society of America, 93(3), 1249–1266. https://doi.org/10.1785/0120020167

Aochi, Hideo, Douglas, J., & Ulrich, T. (2017). Stress accumulation in the Marmara Sea estimated through ground-motion simulations from dynamic rupture scenarios. Journal of Geophysical Research: Solid Earth, 122(3), 2219–2235. https://doi.org/10.1002/2016jb013790

Aochi, Hideo, & Fukuyama, E. (2002). Three-dimensional nonplanar simulation of the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 107(B2). https://doi.org/10.1029/2000jb000061

Aochi, Hideo, & Ulrich, T. (2015). A probabilistic earthquake scenario near Istanbul determined from dynamic simulations. Bulletin of the Seismological Society of America, 105(3), 1468–1475. https://doi.org/10.1785/0120140283

Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.502

Chen, K., Wei, G., Milliner, C., Dal Zilio, L., Liang, C., & Avouac, J.-P. (2024). Super-shear ruptures steered by pre-stress heterogeneities during the 2023 Kahramanmaraş earthquake doublet. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-51446-y

Cocco, M., Spudich, P., & Tinti, E. (2006). On the mechanical work absorbed on faults during earthquake ruptures. In Geophysical Monograph Series. American Geophysical Union. https://doi.org/10.1029/gm170

Cruz-Atienza, V. M., Olsen, K. B., & Dalguer, L. A. (2009). Estimation of the Breakdown Slip from Strong-Motion Seismograms: Insights from Numerical Experiments. Bulletin of the Seismological Society of America, 99(6), 3454–3469. https://doi.org/10.1785/0120080330

Cruz-Atienza, V. M., & Virieux, J. (2004). Dynamic rupture simulation of non-planar faults with a finite-difference approach. Geophysical Journal International, 158(3), 939–954. https://doi.org/10.1111/j.1365-246x.2004.02291.x

Cruz-Atienza, Víctor M., Virieux, J., & Aochi, H. (2007). 3D Finite-Difference Dynamic-Rupture Modelling Along Non-Planar Faults. GEOPHYSICS, 72(5), SM123–SM137. https://doi.org/10.1190/1.2766756

Cruz-Atienza, V.M., & Olsen. (2010). Supershear Mach-waves expose the fault breakdown slip. Tectonophysics, 493(3–4), 285–296. https://doi.org/10.1016/j.tecto.2010.05.012

Das, S., & Aki, K. (1977). A numerical study of two-dimensional spontaneous rupture propagation. Geophysical Journal International, 50(3), 643–668. https://doi.org/10.1111/j.1365-246x.1977.tb01339.x

Delouis, B., van den Ende, M., & Ampuero, J.-P. (2023). Kinematic Rupture Model of the 6 February 2023 Mw 7.8 Türkiye Earthquake from a Large Set of Near-Source Strong-Motion Records Combined with GNSS Offsets Reveals Intermittent Supershear Rupture. Bulletin of the Seismological Society of America, 114(2), 726–740. https://doi.org/10.1785/0120230077

Díaz‐Mojica, J., Cruz‐Atienza, V. M., Madariaga, R., Singh, S. K., Tago, J., & Iglesias, A. (2014). Dynamic Source Inversion of the M6.5 Intermediate-Depth Zumpango Earthquake in central Mexico: a Parallel Genetic Algorithm. Journal of Geophysical Research: Solid Earth, 119(10), 7768–7785. https://doi.org/10.1002/2013jb010854

Ding, X., Xu, S., Xie, Y., Van den Ende, M., Premus, J., & Ampuero, J.-P. (2023). The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.1083

Dunham, E. M., & Archuleta, R. J. (2004). Evidence for a Supershear Transient during the 2002 Denali Fault Earthquake. Bulletin of the Seismological Society of America, 94(6B), S256–S268. https://doi.org/10.1785/0120040616

Eberhart-Phillips, D., Haeussler, P. J., Freymueller, J. T., Frankel, A. D., Rubin, C. M., Craw, P., Ratchkovski, N. A., Anderson, G., Carver, G. A., Crone, A. J., Dawson, T. E., Fletcher, H., Hansen, R., Harp, E. L., Harris, R. A., Hill, D. P., Hreinsdóttir, S., Jibson, R. W., Jones, L. M., … Wallace, W. K. (2003). The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science, 300(5622), 1113–1118. https://doi.org/10.1126/science.1082703

Fukuyama, E., Mikumo, T., & Olsen, K. B. (2003). Estimation of the Critical Slip-Weakening Distance: Theoretical Background. Bulletin of the Seismological Society of America, 93(4), 1835–1840. https://doi.org/10.1785/0120020184

Fukuyama, Eiichi, & Mikumo, T. (2007). Slip‐weakening distance estimated at near‐fault stations. Geophysical Research Letters, 34(9). https://doi.org/10.1029/2006gl029203

Gabriel, A.-A., Ulrich, T., Marchandon, M., Biemiller, J., & Rekoske, J. (2023). 3D Dynamic Rupture Modeling of the 6 February 2023, Kahramanmaraş, Turkey Mw 7.8 and 7.7 Earthquake Doublet Using Early Observations. The Seismic Record, 3(4), 342–356. https://doi.org/10.1785/0320230028

Gallovič, F., & Valentová, Ľ. (2023). Broadband Strong Ground Motion Modeling Using Planar Dynamic Rupture With Fractal Parameters. Journal of Geophysical Research: Solid Earth, 128(6). https://doi.org/10.1029/2023jb026506

Guatteri, M., Mai, P. M., Beroza, G. C., & Boatwright, J. (2003). Strong Ground-Motion Prediction from Stochastic-Dynamic Source Models. Bulletin of the Seismological Society of America, 93(1), 301–313. https://doi.org/10.1785/0120020006

Güvercin, S. E., Karabulut, H., Konca, A. Ó., Doğan, U., & Ergintav, S. (2022). Active seismotectonics of the East Anatolian Fault. Geophysical Journal International, 230(1), 50–69. https://doi.org/10.1093/gji/ggac045

Harris, R. A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B., Ampuero, J. P., Bhat, H., Cruz-Atienza, V., Dalguer, L., Dawson, P., Day, S., Duan, B., Ely, G., Kaneko, Y., Kase, Y., Lapusta, N., Liu, Y., Ma, S., Oglesby, D., … Templeton, E. (2009). The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise. Seismological Research Letters, 80(1), 119–126. https://doi.org/10.1785/gssrl.80.1.119

Harris, R.A., Dolan, J. F., Hartleb, R., & Day, S. M. (2002). The 1999 İzmit, Turkey, earthquake: A 3D dynamic stress transfer model of intra-earthquake triggering. Bulletin of the Seismological Society of America, 92(1), 245–255. https://doi.org/10.1785/0120000825

Harris, Ruth A., & Day, S. M. (1993). Dynamics of fault interaction: Parallel strike-slip faults. Journal of Geophysical Research: Solid Earth, 98(B3), 4461–4472. https://doi.org/10.1029/92jb02272

He, Z., Zhang, Z., Wang, Z., & Wang, W. (2024). Slip-weakening distance and energy partitioning estimated from near-fault recordings during the 2023 Mw 7.8 Türkiye-Syria earthquake. Tectonophysics, 885, 230424. https://doi.org/10.1016/j.tecto.2024.230424

Husseini, M. I. (1977). Energy balance for motion along a fault. Geophysical Journal International, 49(3), 699–714. https://doi.org/10.1111/j.1365-246x.1977.tb01313.x

Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77(20), 3796–3805. https://doi.org/10.1029/jb077i020p03796

Ide, S., & Aochi, H. (2005). Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy. Journal of Geophysical Research: Solid Earth, 110(B11). https://doi.org/10.1029/2004jb003591

Inoue, T., & Miyatake, T. (1997). 3‐D simulation of near‐field strong ground motion: Basin edge effect derived from rupture directivity. Geophysical Research Letters, 24(8), 905–908. https://doi.org/10.1029/97gl00619

Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., & Fialko, Y. (2023). The complex dynamics of the 2023 Kahrammanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. https://doi.org/10.1126/science.adi0685

Kame, N., Rice, J. R., & Dmowska, R. (2003). Effects of prestress state and rupture velocity on dynamic fault branching. Journal of Geophysical Research: Solid Earth, 108(B5). https://doi.org/10.1029/2002jb002189

Kame, N., & Yamashita, T. (1997). Dynamic nucleation process of shallow earthquake faulting in a fault zone. Geophysical Journal International, 128(1), 204–216. https://doi.org/10.1111/j.1365-246x.1997.tb04081.x

Kaneko, Y., Avouac, J.-P., & Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience, 3(5), 363–369. https://doi.org/10.1038/ngeo843

Karabulut, H., Güvercin, S. E., Hollingsworth, J., & Konca, A. Ó. (2023). Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. Journal of the Geological Society, 180(3). https://doi.org/10.1144/jgs2023-021

Kase, Y., & Kuge, K. (1998). Numerical simulation of spontaneous rupture processes on two non-coplanar faults: effects of geometry on fault interaction. Geophysical Journal International, 135(3), 911–922. https://doi.org/10.1046/j.1365-246x.1998.00672.x

Kidoh, T., Nagano, M., Miyakoshi, K., Arai, K., & Sato, T. (2024). A characterized fault model with shallow subsurface slips for reproducing large-amplitude pulse-like velocity waveforms and permanent displacements observed very close to the seismic fault for the 2023 Kahramanmaraş earthquake (Mw7.8) in Türkiye. Journal of Structural and Construction Engineering (Transactions of AIJ), 89(822), 840–849. https://doi.org/10.3130/aijs.89.840

King, G., & Nábělek, J. (1985). Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. Science, 228(4702), 984–987. https://doi.org/10.1126/science.228.4702.984

Levander, A. R. (1988). Fourth-order finite-difference P-SV seismograms. GEOPHYSICS, 53(11), 1425–1436. https://doi.org/10.1190/1.1442422

Ma, S., & Andrews, D. J. (2010). Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault. Journal of Geophysical Research: Solid Earth, 115(B4). https://doi.org/10.1029/2009jb006382

Mahmoud, Y., Masson, F., Meghraoui, M., Cakir, Z., Alchalbi, A., Yavasoglu, H., Yönlü, O., Daoud, M., Ergintav, S., & Inan, S. (2013). Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements. Journal of Geodynamics, 67, 30–39. https://doi.org/10.1016/j.jog.2012.05.006

Melgar, D., Bock, Y., Sanchez, D., & Crowell, B. W. (2013). On robust and reliable automated baseline corrections for strong motion seismology. Journal of Geophysical Research: Solid Earth, 118(3), 1177–1187. https://doi.org/10.1002/jgrb.50135

Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbil, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387

Mikumo, T., Olsen, K. B., Fukuyama, E., & Yagi, Y. (2003). Stress-Breakdown Time and Slip-Weakening Distance Inferred from Slip-Velocity Functions on Earthquake Faults. Bulletin of the Seismological Society of America, 93(1), 264–282. https://doi.org/10.1785/0120020082

Mikumo, Takeshi, Hirahara, K., & Miyatake, T. (1987). Dynamical fault rupture processes in heterogeneous media. Tectonophysics, 144(1–3), 19–36. https://doi.org/10.1016/0040-1951(87)90006-0

Mirwald, A., Cruz‐Atienza, V. M., Díaz‐Mojica, J., Iglesias, A., Singh, S. K., Villafuerte, C., & Tago, J. (2019). The 19 September 2017 (Mw7.1) Intermediate‐Depth Mexican Earthquake: A Slow and Energetically Inefficient Deadly Shock. Geophysical Research Letters, 46(4), 2054–2064. https://doi.org/10.1029/2018gl080904

Nakata, T., Shimazaki, K., Suzuki, Y., & Tsukuda, E. (1998). Fault Branching and Directivity of Rupture Propagation. Journal of Geography (Chigaku Zasshi), 107(4), 512–528. https://doi.org/10.5026/jgeography.107.512

Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B. (2000). Dynamics of dip‐slip faulting: Explorations in two dimensions. Journal of Geophysical Research: Solid Earth, 105(B6), 13643–13653. https://doi.org/10.1029/2000jb900055

Olsen, K. B., Day, S. M., Dalguer, L. A., Mayhew, J., Cui, Y., Zhu, J., Cruz‐Atienza, V. M., Roten, D., Maechling, P., Jordan, T. H., Okaya, D., & Chourasia, A. (2009). ShakeOut‐D: Ground motion estimates using an ensemble of large earthquakes on the southern San Andreas fault with spontaneous rupture propagation. Geophysical Research Letters, 36(4). https://doi.org/10.1029/2008gl036832

Provost, F., Karabacak, V., Malet, J.-P., Van der Woerd, J., Meghraoui, M., Masson, F., Ferry, M., Michéa, D., & Pointal, E. (2024). High-resolution co-seismic fault offsets of the 2023 Türkiye earthquake ruptures using satellite imagery. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-55009-5

Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al‐Aydrus, A., Prilepin, M., Guseva, T., … Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004051

Reitman, N. G., Briggs, R., Barnhart, W. D., Jobe, J. A., Duross, C. B., Hatem, A. E., Gold, R. D., Akçiz, S., Koehler, J. D., R. DMejstrik, & Collett, C. M. (2023). Fault Rupture Mapping of the 6 February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence from Satellite Data (ver. 1.1, February 2024). U.S. Geological Survey. https://doi.org/10.5066/P985I7U2

Schliwa, N., Gabriel, A.-A., & Ben-Zion, Y. (2025). Shallow fault zone structure affects rupture dynamics and ground motions of the 2019 Ridgecrest sequence to regional distances. https://doi.org/10.31223/x5n412

Tago, J., Cruz‐Atienza, V. M., Virieux, J., Etienne, V., & Sánchez‐Sesma, F. J. (2012). A 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/10.1029/2012jb009313

Tang, R., Zhu, S., & Gan, L. (2021). Dynamic Rupture Simulations of the 2008 7.9 Wenchuan Earthquake: Implication for Heterogeneous Initial Stress and Complex Multifault Geometry. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022457

Venkataraman, A., & Kanamori, H. (2004). Observational constraints on the fracture energy of subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 109(B5). https://doi.org/10.1029/2003jb002549

Wang, Z., Zhang, W., Taymaz, T., He, Z., Xu, T., & Zhang, Z. (2023). Dynamic Rupture Process of the 2023 Mw 7.8 Kahramanmaraş Earthquake (SE Türkiye): Variable Rupture Speed and Implications for Seismic Hazard. Geophysical Research Letters, 50(15). https://doi.org/10.1029/2023gl104787

Yao, S., & Yang, H. (2023). Rupture phase in near-fault records of the 2023 Turkey Mw 7.8 earthquake. https://doi.org/10.31223/x51662

Additional Files

Published

2025-06-18

How to Cite

Aochi, H., & Cruz-Atienza, V. M. (2025). Rupture Dynamics and Near-Fault Ground Motion of the Mw7.8 Kahramanmaraş, Turkey earthquake of February 6, 2023. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1432

Issue

Section

Articles

Funding data