Chasing the ghost of fracking in the Vaca Muerta Formation: Induced seismicity in the Neuquén Basin, Argentina
DOI:
https://doi.org/10.26443/seismica.v3i2.1435Keywords:
Induced seismicity, hydraulic fracturing, Earthquake Statistics, Neuquén Basin, Vaca Muerta Formation, ArgentinaAbstract
Earthquakes are known to be induced by a variety of anthropogenic causes, such as hydraulic fracturing. In the Neuquén Basin of Argentina, hydraulic fracturing has been used to produce hydrocarbons trapped in the shales of the Vaca Muerta Formation. Correspondingly, incidences of seismicity there have increased. We collect information on well stimulations and earthquakes to perform statistical analysis linking these two datasets together. Spatiotemporal association filters suggest that the catalogue of events is biased towards hydraulic fracturing operations. After accounting for false-positives, we estimate that ~0.5% of operations are associated with earthquakes. These associated event-operation pairs show highly correlated temporal signals (>99.99% confidence) between seismicity/injection rates. Based on this evidence, we argue that many of these earthquakes are induced. We support this argument by comparing the geological setting of the Neuquén Basin against conditions needed for fault reactivation in other susceptible/seismogenic basins. This recognition adds to the growing list of (hydraulic fracturing) induced seismicity.
References
Ader, T., Chendorain, M., Free, M., Saarno, T., Heikkinen, P., Malin, P. E., Leary, P., Kwiatek, G., Dresen, G., Bluemle, F., & Vuorinen, T. (2019). Design and implementation of a traffic light system for deep geothermal well stimulation in Finland. Journal of Seismology, 24(5), 991–1014. https://doi.org/10.1007/s10950-019-09853-y DOI: https://doi.org/10.1007/s10950-019-09853-y
Álvarez Mullally, M. (2021). Vaca Muerta: sesenta sismos en diez días, OPSur. https://opsur.org.ar/2021/07/27/vaca-muerta-sesenta-sismos-en-diez-dias/
Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R. M., Liu, Y., van der Baan, M., & Kao, H. (2016). Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters, 87(3), 631–647. https://doi.org/10.1785/0220150263 DOI: https://doi.org/10.1785/0220150263
Atkinson, G. M., Eaton, D. W., & Igonin, N. (2020). Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 1(5), 264–277. https://doi.org/10.1038/s43017-020-0049-7 DOI: https://doi.org/10.1038/s43017-020-0049-7
Badessich, M. F., Hryb, D. E., Suarez, M., Mosse, L., Palermo, N., Pichon, S., & Reynolds, L. (2016). Vaca Muerta shale—Taming a giant. Oilfield Review, 28(1), 26–39. https://www.slb.com/-/media/files/oilfield-review/04-vaca-muerta-shale-english
Bao, X., & Eaton, D. W. (2016). Fault activation by hydraulic fracturing in western Canada. Science, 354(6318), 1406–1409. https://doi.org/10.1126/science.aag2583 DOI: https://doi.org/10.1126/science.aag2583
Beascochea, H. (2020). Shell retomó sus trabajos en Vaca Muerta. Vaca Muerta News. https://vacamuertanews.com/actualidad/20200609232301.htm
Berger, V. W., & Zhou, Y. (2014). Kolmogorov–Smirnov Test: Overview. In Wiley StatsRef: Statistics Reference Online. Wiley. https://doi.org/10.1002/9781118445112.stat06558 DOI: https://doi.org/10.1002/9781118445112.stat06558
Bilek, S. L. (2010). Invited review paper: Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity. Tectonophysics, 495(1–2), 2–14. https://doi.org/10.1016/j.tecto.2009.02.037 DOI: https://doi.org/10.1016/j.tecto.2009.02.037
Bohm, M., Lüth, S., Echtler, H., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A., & Wigger, P. (2002). The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities. Tectonophysics, 356(4), 275–289. https://doi.org/10.1016/s0040-1951(02)00399-2 DOI: https://doi.org/10.1016/S0040-1951(02)00399-2
Bommer, J. J., Oates, S., Cepeda, J. M., Lindholm, C., Bird, J., Torres, R., Marroquín, G., & Rivas, J. (2006). Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Engineering Geology, 83(4), 287–306. https://doi.org/10.1016/j.enggeo.2005.11.002 DOI: https://doi.org/10.1016/j.enggeo.2005.11.002
Brudzinski, M. R., & Kozłowska, M. (2019). Seismicity induced by hydraulic fracturing and wastewater disposal in the Appalachian Basin, USA: a review. Acta Geophysica, 67(1), 351–364. https://doi.org/10.1007/s11600-019-00249-7 DOI: https://doi.org/10.1007/s11600-019-00249-7
Cingolani, C. A., Zanettini, J. C. M., & Leanza, H. A. (2011). El basamento ígneo y metamórfico. In H. A. Leanza, C. Arregui, O. Carbone, J. C. Danieli, & J. M. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén: Relatorio del 18° Congreso Geológico Argentino (pp. 37–47).
Clarke, H., Verdon, J. P., Kettlety, T., Baird, A. F., & Kendall, J. (2019). Real‐Time Imaging, Forecasting, and Management of Human‐Induced Seismicity at Preston New Road, Lancashire, England. Seismological Research Letters. https://doi.org/10.1785/0220190110 DOI: https://doi.org/10.1785/0220190110
Cobbold, P. R., & Rossello, E. A. (2003). Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Marine and Petroleum Geology, 20(5), 429–443. https://doi.org/10.1016/s0264-8172(03)00077-1 DOI: https://doi.org/10.1016/S0264-8172(03)00077-1
Corlett, H., Schultz, R., Branscombe, P., Hauck, T., Haug, K., MacCormack, K., & Shipman, T. (2018). Subsurface faults inferred from reflection seismic, earthquakes, and sedimentological relationships: Implications for induced seismicity in Alberta, Canada. Marine and Petroleum Geology, 93, 135–144. https://doi.org/10.1016/j.marpetgeo.2018.03.008 DOI: https://doi.org/10.1016/j.marpetgeo.2018.03.008
Correa-Otto, S. (2021). Experimento sismológico en la cuenca neuquina, la región de mayor explotación de hidrocarburos por métodos no convencionales de la Argentina (p. 219) [PhD Thesis, Universidad Nacional de San Juan]. https://www.fundaciongarciasineriz.es/2023/11/20/experimento-sismologico-en-la-cuenca-neuquina-la-region-de-mayor-explotacion-de-hidrocarburos-por-metodos-no-convencionales-de-la-argentina/
Correa-Otto, Sebastián, Gianni, G., Giménez, M., Spagnotto, S., & Godoy, L. (2024). Seismotectonic and gravimetric analysis of the central Neuquén Basin. Journal of South American Earth Sciences, 144, 105036. https://doi.org/10.1016/j.jsames.2024.105036 DOI: https://doi.org/10.1016/j.jsames.2024.105036
Correa-Otto, Sebastián, Nacif, S., Pesce, A., Nacif, A., Gianni, G., Furlani, R., Giménez, M., & Francisco, R. (2018). Intraplate seismicity recorded by a local network in the Neuquén Basin, Argentina. Journal of South American Earth Sciences, 87, 211–220. https://doi.org/10.1016/j.jsames.2017.12.007 DOI: https://doi.org/10.1016/j.jsames.2017.12.007
Cristallini, E., Tomezzoli, R., Pando, G., Gazzera, C., Martínez, J., Quiroga, J., & Zambrano, O. (2009). Controles precuyanos en la estructura de la CuencaNeuquina. Revista de La Asociación Geológica Argentina, 65(2), 248–264.
Cunningham, N. (2022). Fracking in Argentina’s Vaca Muerta leads to earthquakes. In Gas Outlook. https://gasoutlook.com/analysis/fracking-in-argentinas-vaca-muerta-leads-to-earthquakes/
Curia, D., Duncan, P. M., Grealy, M., McKenna, J., & Hill, A. (2018). Microseismic monitoring of Vaca Muerta completions in the Neuquén Basin, Argentina. The Leading Edge, 37(4), 262–269. https://doi.org/10.1190/tle37040262.1 DOI: https://doi.org/10.1190/tle37040262.1
Dalmati, R., Souto, J. F., Zarauz, F., Pertierra, A., Escuder-Bueno, I., & Morales-Torres, A. (2018). Implementation of Risk Analysis to Inform Dam Safety from a Regulatory Perspective: Application to Cerros Colorados System (Neuquén, Argentina). In Twenty-Sixth International Congress on Large Dams/Vingt-Sixième Congrès International des Grands Barrages (p. 101 166-101 180). CRC Press.
Davis, S. D., & Frohlich, C. (1993). Did (Or Will) Fluid Injection Cause Earthquakes? - Criteria for a Rational Assessment. Seismological Research Letters, 64(3–4), 207–224. https://doi.org/10.1785/gssrl.64.3-4.207 DOI: https://doi.org/10.1785/gssrl.64.3-4.207
Eaton, D. W., Igonin, N., Poulin, A., Weir, R., Zhang, H., Pellegrino, S., & Rodriguez, G. (2018). Induced Seismicity Characterization during Hydraulic‐Fracture Monitoring with a Shallow‐Wellbore Geophone Array and Broadband Sensors. Seismological Research Letters, 89(5), 1641–1651. https://doi.org/10.1785/0220180055 DOI: https://doi.org/10.1785/0220180055
Eaton, D. W., & Schultz, R. (2018). Increased likelihood of induced seismicity in highly overpressured shale formations. Geophysical Journal International, 214(1), 751–757. https://doi.org/10.1093/gji/ggy167 DOI: https://doi.org/10.1093/gji/ggy167
Ellsworth, W. L. (2013). Injection-Induced Earthquakes. Science, 341(6142). https://doi.org/10.1126/science.1225942 DOI: https://doi.org/10.1126/science.1225942
Farahbod, A. M., Kao, H., Walker, D. M., & Cassidy, J. F. (2015). Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, northeast British Columbia. Canadian Journal of Earth Sciences, 52(2), 112–122. https://doi.org/10.1139/cjes-2014-0162 DOI: https://doi.org/10.1139/cjes-2014-0162
Fasola, S. L., Brudzinski, M. R., Skoumal, R. J., Langenkamp, T., Currie, B. S., & Smart, K. J. (2019). Hydraulic Fracture Injection Strategy Influences the Probability of Earthquakes in the Eagle Ford Shale Play of South Texas. Geophysical Research Letters, 46(22), 12958–12967. https://doi.org/10.1029/2019gl085167 DOI: https://doi.org/10.1029/2019GL085167
Forni, L., Mautner, M., Lavado, A., Burke, K. F., & Gomez, R. D. (2021). Watershed implications of shale oil and gas production in Vaca Muerta. SEI Working Paper.
Forni, Laura, Escobar, M., Cello, P., Marizza, M., Nadal, G., Girardin, L., Losano, F., Bucciarelli, L., Young, C., & Purkey, D. (2018). Navigating the Water-Energy Governance Landscape and Climate Change Adaptation Strategies in the Northern Patagonia Region of Argentina. Water, 10(6), 794. https://doi.org/10.3390/w10060794 DOI: https://doi.org/10.3390/w10060794
Foulger, G. R., Wilkinson, M. W., Wilson, M. P., Mhana, N., Tezel, T., & Gluyas, J. G. (2023). Human-induced earthquakes: E-PIE—a generic tool for Evaluating Proposals of Induced Earthquakes. Journal of Seismology, 27(1), 21–44. https://doi.org/10.1007/s10950-022-10122-8 DOI: https://doi.org/10.1007/s10950-022-10122-8
Foulger, Gillian R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008 DOI: https://doi.org/10.1016/j.earscirev.2017.07.008
Frohlich, C., DeShon, H., Stump, B., Hayward, C., Hornbach, M., & Walter, J. I. (2016). A Historical Review of Induced Earthquakes in Texas. Seismological Research Letters, 87(4), 1022–1038. https://doi.org/10.1785/0220160016 DOI: https://doi.org/10.1785/0220160016
Galloway, E., Hauck, T., Corlett, H., Pană, D., & Schultz, R. (2018). Faults and associated karst collapse suggest conduits for fluid flow that influence hydraulic fracturing-induced seismicity. Proceedings of the National Academy of Sciences, 115(43). https://doi.org/10.1073/pnas.1807549115 DOI: https://doi.org/10.1073/pnas.1807549115
Ghofrani, H., & Atkinson, G. M. (2021). Reply to “Comment on ‘Activation Rate of Seismicity for Hydraulic Fracture Wells in the Western Canadian Sedimentary Basin’by Hadi Ghofrani and Gail M (A. James P. Verdon & J. J. Bommer, Trans.). Bulletin of the Seismological Society of America, 111(6), 3475–3497. https://doi.org/10.1785/0120210059
Ghofrani, Hadi, & Atkinson, G. M. (2020). Activation Rate of Seismicity for Hydraulic Fracture Wells in the Western Canada Sedimentary Basin. Bulletin of the Seismological Society of America, 110(5), 2252–2271. https://doi.org/10.1785/0120200002 DOI: https://doi.org/10.1785/0120200002
Grigoratos, I., Savvaidis, A., & Rathje, E. (2022). Distinguishing the Causal Factors of Induced Seismicity in the Delaware Basin: Hydraulic Fracturing or Wastewater Disposal? Seismological Research Letters, 93(5), 2640–2658. https://doi.org/10.1785/0220210320 DOI: https://doi.org/10.1785/0220210320
Gupta, H. K. (2002). A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth-Science Reviews, 58(3–4), 279–310. https://doi.org/10.1016/s0012-8252(02)00063-6 DOI: https://doi.org/10.1016/S0012-8252(02)00063-6
Häring, M. O., Schanz, U., Ladner, F., & Dyer, B. C. (2008). Characterisation of the Basel 1 enhanced geothermal system. Geothermics, 37(5), 469–495. https://doi.org/10.1016/j.geothermics.2008.06.002 DOI: https://doi.org/10.1016/j.geothermics.2008.06.002
Healy, J. H., Rubey, W. W., Griggs, D. T., & Raleigh, C. B. (1968). The Denver Earthquakes. Science, 161(3848), 1301–1310. https://doi.org/10.1126/science.161.3848.1301 DOI: https://doi.org/10.1126/science.161.3848.1301
Hicks, S. P., Goes, S., Whittaker, A. C., & Stafford, P. J. (2021). Multivariate Statistical Appraisal of Regional Susceptibility to Induced Seismicity: Application to the Permian Basin, SW United States. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022768 DOI: https://doi.org/10.1029/2021JB022768
Horton, S. (2012). Disposal of Hydrofracking Waste Fluid by Injection into Subsurface Aquifers Triggers Earthquake Swarm in Central Arkansas with Potential for Damaging Earthquake. Seismological Research Letters, 83(2), 250–260. https://doi.org/10.1785/gssrl.83.2.250 DOI: https://doi.org/10.1785/gssrl.83.2.250
Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén Basin: an overview. Geological Society, London, Special Publications, 252(1), 1–14. https://doi.org/10.1144/gsl.sp.2005.252.01.01 DOI: https://doi.org/10.1144/GSL.SP.2005.252.01.01
Jacquemond, L., Letort, J., Cotton, F., Causse, M., Grasso, J. R., Senechal, G., Ammirati, J. B., Derode, B., Grimaud, F., Pauchet, H., Benhamed, S., & Sylvander, M. (2024). Analysing 50 yr of the Lacq induced seismicity (Southwestern, France) highlights the role of fluid injection. Geophysical Journal International, 238(1), 214–234. https://doi.org/10.1093/gji/ggae119 DOI: https://doi.org/10.1093/gji/ggae119
Kettlety, T., Verdon, J. P., Butcher, A., Hampson, M., & Craddock, L. (2020). High-Resolution Imaging of the ML 2.9 August 2019 Earthquake in Lancashire, United Kingdom, Induced by Hydraulic Fracturing during Preston New Road PNR-2 Operations. Seismological Research Letters, 92(1), 151–169. https://doi.org/10.1785/0220200187 DOI: https://doi.org/10.1785/0220200187
Kugler, R. L. (1985). Source rock characteristics, Los Molles and Vaca Muerta shales, Neuquén Basin, west-central Argentina. AAPG Bulletin, 69. https://doi.org/10.1306/ad4620ce-16f7-11d7-8645000102c1865d DOI: https://doi.org/10.1306/AD4620CE-16F7-11D7-8645000102C1865D
Legarreta, L., & Villar, H. J. (2015). The Vaca Muerta Formation (Late Jurassic-Early Cretaceous). Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2015-2170906
Lei, X., Huang, D., Su, J., Jiang, G., Wang, X., Wang, H., Guo, X., & Fu, H. (2017). Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08557-y DOI: https://doi.org/10.1038/s41598-017-08557-y
Lei, X., Wang, Z., & Su, J. (2019). The December 2018 ML 5.7 and January 2019 ML 5.3 Earthquakes in South Sichuan Basin Induced by Shale Gas Hydraulic Fracturing. Seismological Research Letters, 90(3), 1099–1110. https://doi.org/10.1785/0220190029 DOI: https://doi.org/10.1785/0220190029
LM Neuquen. (2024). Se entregaron viviendas antisísmicas para vecinos de Sauzal. https://www.lmneuquen.com/neuquen/se-entregaron-viviendas-antisismicas-vecinos-sauzal-bonito-n1104994
Lomax, A., & Savvaidis, A. (2019). Improving Absolute Earthquake Location in West Texas Using Probabilistic, Proxy Ground‐Truth Station Corrections. Journal of Geophysical Research: Solid Earth, 124(11), 11447–11465. https://doi.org/10.1029/2019jb017727 DOI: https://doi.org/10.1029/2019JB017727
Lu, X., Li, S., Han, R., Jia, B., Xian, C., Ding, F., Zhang, Y., Zhong, S., Xu, Q., & Zuo, X. (2024). An Overview of Recent Developments and Understandings of Unconventionals in the Vaca Muerta Formation, Argentina. Applied Sciences, 14(4), 1366. https://doi.org/10.3390/app14041366 DOI: https://doi.org/10.3390/app14041366
Mahani, A. B., Schultz, R., Kao, H., Walker, D., Johnson, J., & Salas, C. (2017). Fluid Injection and Seismic Activity in the Northern Montney Play, British Columbia, Canada, with Special Reference to the 17 August 2015Mw 4.6 Induced Earthquake. Bulletin of the Seismological Society of America, 107(2), 542–552. https://doi.org/10.1785/0120160175 DOI: https://doi.org/10.1785/0120160175
Marchal, D., Manceda, R., Domínguez, R. F., & Sattler, F. (2020). Structural geology: Tectonic history, macrostructures, regional fault map, fault systems, second-order structures, and impact of the inheritance. In Daniel Minisini, M. Fantín, I. L. Noguera, & H. A. Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play (Vol. 121, pp. 99–140). AAPG Memoir. https://doi.org/10.1306/13682225M1203831
Martínez, M. A., Prámparo, M. B., Quattrocchio, M. E., & Zavala, C. A. (2008). Depositional environments and hydrocarbon potential of the Middle Jurassic Los Molles Formation, Neuquén Basin, Argentina: palynofacies and organic geochemical data. Andean Geology, 35(2). https://doi.org/10.5027/andgeov35n2-a05 DOI: https://doi.org/10.5027/andgeoV35n2-a05
Minisini, D., Fryklund, B., Gerali, F., & Fantín, M. (2020). The first economical unconventional play outside North America: Context, history, and “coopetition.” In Daniel Minisini, M. Fantín, I. L. Noguera, & H. A. Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play (Vol. 121, pp. 1–24). AAPG Memoir. https://doi.org/10.1306/13682221M1203264
Moein, M. J. A., Langenbruch, C., Schultz, R., Grigoli, F., Ellsworth, W. L., Wang, R., Rinaldi, A. P., & Shapiro, S. (2023). The physical mechanisms of induced earthquakes. Nature Reviews Earth & Environment, 4(12), 847–863. https://doi.org/10.1038/s43017-023-00497-8 DOI: https://doi.org/10.1038/s43017-023-00497-8
Mosquera, A., Alonso, J., Boll, A., Alarcón, M., Zavala, C., Arcuri, M., & Villar, H. J. (2008). Migración lateral y evidencias de hidrocarburos cuyanos en yacimientos de la plataforma de Catriel, Cuenca Neuquina. In 7 Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, Argentina (pp. 5–8). IAPG.
Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377(6607). https://doi.org/10.1126/science.abm4470 DOI: https://doi.org/10.1126/science.abm4470
Muntendam-Bos, A. G., Hoedeman, G., Polychronopoulou, K., Draganov, D., Weemstra, C., van der Zee, W., Bakker, R. R., & Roest, H. (2022). An overview of induced seismicity in the Netherlands. Netherlands Journal of Geosciences, 101. https://doi.org/10.1017/njg.2021.14 DOI: https://doi.org/10.1017/njg.2021.14
Nacion. (2022). Neuquén: un hombre murió aplastado en el derrumbe de un acantilado en el lago Mari Menuco, La Nacion. https://www.lanacion.com.ar/seguridad/neuquen-un-hombre-murio-aplastado-en-el-derrumbe-de-un-acantilado-en-el-lago-mari-menuco-nid10022022/
Oprsal, I., & Eisner, L. (2014). Cross-correlation—an objective tool to indicate induced seismicity. Geophysical Journal International, 196(3), 1536–1543. https://doi.org/10.1093/gji/ggt501 DOI: https://doi.org/10.1093/gji/ggt501
Pawley, S., Schultz, R., Playter, T., Corlett, H., Shipman, T., Lyster, S., & Hauck, T. (2018). The Geological Susceptibility of Induced Earthquakes in the Duvernay Play. Geophysical Research Letters, 45(4), 1786–1793. https://doi.org/10.1002/2017gl076100 DOI: https://doi.org/10.1002/2017GL076100
Peña Castro, A. F., Roth, M. P., Verdecchia, A., Onwuemeka, J., Liu, Y., Harrington, R. M., Zhang, Y., & Kao, H. (2020). Stress Chatter via Fluid Flow and Fault Slip in a Hydraulic Fracturing‐Induced Earthquake Sequence in the Montney Formation, British Columbia. Geophysical Research Letters, 47(14). https://doi.org/10.1029/2020gl087254 DOI: https://doi.org/10.1029/2020GL087254
Petrillo, G., Kumazawa, T., Napolitano, F., Capuano, P., & Zhuang, J. (2024). Fluids-Triggered Swarm Sequence Supported by a Nonstationary Epidemic-Like Description of Seismicity. Seismological Research Letters, 95(6), 3207–3220. https://doi.org/10.1785/0220240056 DOI: https://doi.org/10.1785/0220240056
Raleigh, C. B., Healy, J. H., & Bredehoeft, J. D. (1976). An Experiment in Earthquake Control at Rangely, Colorado. Science, 191(4233), 1230–1237. https://doi.org/10.1126/science.191.4233.1230 DOI: https://doi.org/10.1126/science.191.4233.1230
Ramos, V. A., Naipauer, M., Leanza, H. A., & Sigismondi, M. E. (2020). An exceptional tectonic setting along the Andean continental margin. In Daniel Minisini, M. Fantín, I. L. Noguera, & H. A. Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play (Vol. 121, pp. 25–37). AAPG Memoir. https://doi.org/10.1306/13682222M1202855
Rosa, L., & D’Odorico, P. (2019). The water-energy-food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina. Journal of Cleaner Production, 207, 743–750. https://doi.org/10.1016/j.jclepro.2018.10.039 DOI: https://doi.org/10.1016/j.jclepro.2018.10.039
Savvaidis, A., Lomax, A., & Breton, C. (2020). Induced Seismicity in the Delaware Basin, West Texas, is Caused by Hydraulic Fracturing and Wastewater Disposal. Bulletin of the Seismological Society of America, 110(5), 2225–2241. https://doi.org/10.1785/0120200087 DOI: https://doi.org/10.1785/0120200087
Schultz, R., Atkinson, G., Eaton, D. W., Gu, Y. J., & Kao, H. (2018). Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science, 359(6373), 304–308. https://doi.org/10.1126/science.aao0159 DOI: https://doi.org/10.1126/science.aao0159
Schultz, Ryan, Baptie, B., Edwards, B., & Wiemer, S. (2023). Red-light thresholds for induced seismicity in the UK. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.1086 DOI: https://doi.org/10.26443/seismica.v2i2.1086
Schultz, Ryan, Beroza, G. C., & Ellsworth, W. L. (2021a). A risk-based approach for managing hydraulic fracturing–induced seismicity. Science, 372(6541), 504–507. https://doi.org/10.1126/science.abg5451 DOI: https://doi.org/10.1126/science.abg5451
Schultz, Ryan, Beroza, G. C., & Ellsworth, W. L. (2021b). A Strategy for Choosing Red‐Light Thresholds to Manage Hydraulic Fracturing Induced Seismicity in North America. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022340 DOI: https://doi.org/10.1029/2021JB022340
Schultz, Ryan, Ellsworth, W. L., & Beroza, G. C. (2022). Statistical bounds on how induced seismicity stops. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05216-9 DOI: https://doi.org/10.1038/s41598-022-05216-9
Schultz, Ryan, Ellsworth, W. L., & Beroza, G. C. (2023). An Ensemble Approach to Characterizing Trailing-Induced Seismicity. Seismological Research Letters, 94(2A), 699–707. https://doi.org/10.1785/0220220352 DOI: https://doi.org/10.1785/0220220352
Schultz, Ryan, Park, Y., Aguilar Suarez, A. L., Ellsworth, W. L., & Beroza, G. C. (2023). En echelon faults reactivated by wastewater disposal near Musreau Lake, Alberta. Geophysical Journal International, 235(1), 417–429. https://doi.org/10.1093/gji/ggad226 DOI: https://doi.org/10.1093/gji/ggad226
Schultz, Ryan, Skoumal, R. J., Brudzinski, M. R., Eaton, D., Baptie, B., & Ellsworth, W. (2020). Hydraulic Fracturing‐Induced Seismicity. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019rg000695 DOI: https://doi.org/10.1029/2019RG000695
Schultz, Ryan, & Telesca, L. (2018). The Cross-Correlation and Reshuffling Tests in Discerning Induced Seismicity. Pure and Applied Geophysics, 175(10), 3395–3401. https://doi.org/10.1007/s00024-018-1890-1 DOI: https://doi.org/10.1007/s00024-018-1890-1
Schultz, Ryan, & Wang, R. (2020). Newly emerging cases of hydraulic fracturing induced seismicity in the Duvernay East Shale Basin. Tectonophysics, 779, 228393. https://doi.org/10.1016/j.tecto.2020.228393 DOI: https://doi.org/10.1016/j.tecto.2020.228393
Schultz, Ryan, Wang, R., Gu, Y. J., Haug, K., & Atkinson, G. (2017). A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. Journal of Geophysical Research: Solid Earth, 122(1), 492–505. https://doi.org/10.1002/2016jb013570 DOI: https://doi.org/10.1002/2016JB013570
Silvestro, J., & Zubiri, M. (2008). Convergencia oblicua: modelo estructural alternativo para la Dorsal Neuquina (39oS)-Neuquén. Revista de La Asociación Geológica Argentina, 63(1), 49–64.
Skoumal, R. J., Barbour, A. J., Brudzinski, M. R., Langenkamp, T., & Kaven, J. O. (2020). Induced Seismicity in the Delaware Basin, Texas. Journal of Geophysical Research: Solid Earth, 125(1). https://doi.org/10.1029/2019jb018558 DOI: https://doi.org/10.1029/2019JB018558
Skoumal, R. J., Brudzinski, M. R., & Currie, B. S. (2015). Earthquakes Induced by Hydraulic Fracturing in Poland Township, Ohio. Bulletin of the Seismological Society of America, 105(1), 189–197. https://doi.org/10.1785/0120140168 DOI: https://doi.org/10.1785/0120140168
Skoumal, R. J., Brudzinski, M. R., & Currie, B. S. (2018). Proximity of Precambrian basement affects the likelihood of induced seismicity in the Appalachian, Illinois, and Williston Basins, central and eastern United States. Geosphere, 14(3), 1365–1379. https://doi.org/10.1130/ges01542.1 DOI: https://doi.org/10.1130/GES01542.1
Skoumal, R. J., Brudzinski, M. R., Currie, B. S., & Levy, J. (2014). Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence. Earth and Planetary Science Letters, 405, 274–280. https://doi.org/10.1016/j.epsl.2014.08.033 DOI: https://doi.org/10.1016/j.epsl.2014.08.033
Surma, K. (2024). Fracking-induced earthquakes are menacing Argentina as regulators stand by. Inside Climate News. https://insideclimatenews.org/news/14042024/argentina-fracking-earthquakes/
Tamburini-Beliveau, G., Grosso-Heredia, J. A., Béjar-Pizarro, M., Pérez-López, R., Portela, J., Cismondi-Duarte, M., & Monserrat, O. (2022). Assessment of ground deformation and seismicity in two areas of intense hydrocarbon production in the Argentinian Patagonia. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-23160-6 DOI: https://doi.org/10.1038/s41598-022-23160-6
Urien, C. M., & Zambrano, J. J. (1994). Petroleum Systems in the Neuquen Basin, Argentina: Chapter 32: Part V Case Studies–Western Hemisphere. https://doi.org/10.1306/M60585C32 DOI: https://doi.org/10.1306/M60585C32
US-EIA, U. S. E. I. A. (2013). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. In US Department of Energy. https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf
US-EIA, U. S. E. I. A. (2015). Technically recoverable shale oil and shale gas resources: Argentina. In US Department of Energy. https://www.eia.gov/analysis/studies/worldshalegas/
Varela, R. A., Marchal, D., Cuervo, S., Lombardo, E. F., Perl, Y. S., Hryb, D. E., & Pateti, P. (2020). Geomechanics: Pressure, stress field, and hydraulic fractures. In Daniel Minisini, M. Fantín, I. L. Noguera, & H. A. Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play (Vol. 121, pp. 351–376). AAPG Memoir. https://doi.org/10.1306/13682233M1203836
Vásquez, J., Spagnotto, S. L., Mescua, J. F., Giambiagi, L. B., & Sigismondi, M. (2020). Aumento notorio de la sismicidad de la provincia del Neuquén, en el período 2015-2020. In Boletín Brackebuschiano Geociencias y Sociedad de la Asociación Geológica Argentina. https://geologica.org.ar/wp-content/uploads/2020/12/boletin-octubre-noviembre-2020.pdf
Verdon, J. P., Baptie, B. J., & Bommer, J. J. (2019). An Improved Framework for Discriminating Seismicity Induced by Industrial Activities from Natural Earthquakes. Seismological Research Letters. https://doi.org/10.1785/0220190030 DOI: https://doi.org/10.1785/0220190030
Verdon, J. P., & Bommer, J. J. (2021). Comment on “Activation Rate of Seismicity for Hydraulic Fracture Wells in the Western Canadian Sedimentary Basin” by Hadi Ghofrani and Gail M. Atkinson. Bulletin of the Seismological Society of America, 111(6), 3459–3474. https://doi.org/10.1785/0120200350 DOI: https://doi.org/10.1785/0120200350
Wang, J., Li, T., Gu, Y. J., Schultz, R., Yusifbayov, J., & Zhang, M. (2020). Sequential Fault Reactivation and Secondary Triggering in the March 2019 Red Deer Induced Earthquake Swarm. Geophysical Research Letters, 47(22). https://doi.org/10.1029/2020gl090219 DOI: https://doi.org/10.1029/2020GL090219
Wetmiller, R. J. (1986). Earthquakes near Rocky Mountain House, Alberta, and their relationship to gas production facilities. Canadian Journal of Earth Sciences, 23(2), 172–181. https://doi.org/10.1139/e86-020 DOI: https://doi.org/10.1139/e86-020
Zhai, G., Shirzaei, M., & Manga, M. (2021). Widespread deep seismicity in the Delaware Basin, Texas, is mainly driven by shallow wastewater injection. Proceedings of the National Academy of Sciences, 118(20). https://doi.org/10.1073/pnas.2102338118 DOI: https://doi.org/10.1073/pnas.2102338118
Zhou, W., Lanza, F., Grigoratos, I., Schultz, R., Cousse, J., Trutnevyte, E., Muntendam‐Bos, A., & Wiemer, S. (2024). Managing Induced Seismicity Risks From Enhanced Geothermal Systems: A Good Practice Guideline. Reviews of Geophysics, 62(4). https://doi.org/10.1029/2024rg000849 DOI: https://doi.org/10.1029/2024RG000849
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ryan Schultz, Guillermo Tamburini-Beliveau, Sebastián Correa-Otto, Javier Grosso-Heredia
This work is licensed under a Creative Commons Attribution 4.0 International License.