First DAS observations from the GeoLab fibre in Madeira, Portugal
DOI:
https://doi.org/10.26443/seismica.v4i2.1482Keywords:
DAS, North Atlantic, Macaronesia, Distributed Acoustic Sensing, Oceanography, Seismology, Marine mammals, Ocean Soundscape, Madeira Island, Anthropogenic noiseAbstract
Distributed Acoustic Sensing allows extremely dense acquisition geometries of strain data. The GeoLab fibre, installed on the southern coast of Madeira Island, extends for ∼56 km and is exclusively dedicated to research. This fibre provides an invaluable resource for continuous data collection and analysis. Between October 26th and November 3rd , 2023, ∼7 TB of data were collected at 500 Hz with gauge length of 10.2 m at each 5.1 m. This report highlights the versatility of the GeoLab fibre and the present dataset for seismological, oceanographic, and biological research with a non-exhaustive collection of examples in various scientific domains, such as local and teleseismic events, calls from different species of baleen whales, waves and their interaction with the shoreline, ocean-bottom currents and temperatures, and anthropogenic noise sources.
References
Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Tribaldos, V. R., Ulrich, C., Freifeld, B., Daley, T., & Li, X. (2019). Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-36675-8
Baumgartner, M. F., Van Parijs, S. M., Wenzel, F. W., Tremblay, C. J., Carter Esch, H., & Warde, A. M. (2008). Low frequency vocalizations attributed to sei whales (Balaenoptera borealis). The Journal of the Acoustical Society of America, 124(2), 1339–1349. https://doi.org/10.1121/1.2945155
Becerril, C., Sladen, A., Ampuero, J.-P., Vidal-Moreno, P. J., Gonzalez-Herraez, M., Kutschera, F., Gabriel, A.-A., & Bouchette, F. (2024). Towards tsunami early-warning with Distributed Acoustic Sensing: Expected seafloor strains induced by tsunamis [preprint]. ESS Open Archive. https://doi.org/10.22541/essoar.171052484.46251426/v1
Becker, M. W., Ciervo, C., Cole, M., Coleman, T., & Mondanos, M. (2017). Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies. Geophysical Research Letters, 44(14), 7295–7302. https://doi.org/10.1002/2017gl073931
Benjumea, B., Gaite, B., Schimmel, M., Bohoyo, F., Spica, Z. J., Mancilla, F. D. L., Li, Y., Almendros, J., & Morales, J. (2024). Subsurface Imaging in Urban Areas With Ambient Noise Using DAS and Seismometer Data Sets: Granada, Spain. Journal of Geophysical Research: Solid Earth, 129(11). https://doi.org/10.1029/2024jb029820
Bertholds, A., & Dandliker, R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology, 6(1), 17–20. https://doi.org/10.1109/50.3956
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530
Blanc, W., Schenato, L., Molardi, C., Palmieri, L., Galtarossa, A., & Tosi, D. (2022). Distributed fiber optics strain sensors: from long to short distance. Comptes Rendus. Géoscience, 354(S1), 161–183. https://doi.org/10.5802/crgeos.129
Bouffaut, L., Goestchel, Q., Rørstadbotnen, R. A., Sladen, A., Hartog, A., & Klinck, H. (2025). Estimating sound pressure levels from distributed acoustic sensing data using 20-Hz fin whale calls. JASA Express Letters, 5(4). https://doi.org/10.1121/10.0036351
Bouffaut, L., Taweesintananon, K., Kriesell, H. J., Rørstadbotnen, R. A., Potter, J. R., Landrø, M., Johansen, S. E., Brenne, J. K., Haukanes, A., Schjelderup, O., & Storvik, F. (2022). Eavesdropping at the Speed of Light: Distributed Acoustic Sensing of Baleen Whales in the Arctic. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.901348
Bucaro, J. A., Dardy, H. D., & Carome, E. F. (1977). Fiber-optic hydrophone. The Journal of the Acoustical Society of America, 62(5), 1302–1304. https://doi.org/10.1121/1.381624
Budiansky, B., Drucker, D. C., Kino, G. S., & Rice, J. R. (1979). Pressure sensitivity of a clad optical fiber. Appl. Opt., 18(24), 4085–4088. https://doi.org/10.1364/AO.18.004085
Capdeville, Y., & Sladen, A. (2024). DAS sensitivity to heterogeneity scales much smaller than the minimum wavelength. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1007
Carrilho, F., Custódio, S., Bezzeghoud, M., Oliveira, C. S., Marreiros, C., Vales, D., Alves, P., Pena, A., Madureira, G., Escuer, M., Silveira, G., Corela, C., Matias, L., Silva, M., Veludo, I., Dias, N. A., Loureiro, A., Borges, J. F., Caldeira, B., … Fontiela, J. (2021). The Portuguese National Seismic Network—Products and Services. Seismological Research Letters. https://doi.org/10.1785/0220200407
Cedilnik, G., Lees, G., Schmidt, P. E., Herstrom, S., & Geisler, T. (2019). Pushing the Reach of Fiber Distributed Acoustic Sensing to 125 km Without the Use of Amplification. IEEE Sensors Letters, 3(3), 1–4. https://doi.org/10.1109/lsens.2019.2895249
Celli, N. L., Bean, C. J., & O’Brien, G. (2023). Full-waveform simulation of DAS records, response, and cable-ground coupling. Geophysical Journal International. https://doi.org/10.1093/gji/ggad449
Cerchio, S., & Weir, C. R. (2022). Mid-frequency song and low-frequency calls of sei whales in the Falkland Islands. Royal Society Open Science, 9(11). https://doi.org/10.1098/rsos.220738
Cole, J. H., Johnson, R. L., & Bhuta, P. G. (1977). Fiber-optic detection of sound. The Journal of the Acoustical Society of America, 62(5), 1136–1138. https://doi.org/10.1121/1.381647
Corela, C., Loureiro, A., Duarte, J. L., Matias, L., Rebelo, T., & Bartolomeu, T. (2023). The effect of deep ocean currents on ocean-bottom seismometers records. Natural Hazards and Earth System Sciences, 23(4), 1433–1451. https://doi.org/10.5194/nhess-23-1433-2023
Cranch, G. A., Nash, P. J., & Kirkendall, C. K. (2003). Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sensors Journal, 3(1), 19–30. https://doi.org/10.1109/jsen.2003.810102
Crawford, W. C., Webb, S. C., & Hildebrand, J. A. (1991). Seafloor compliance observed by long‐period pressure and displacement measurements. Journal of Geophysical Research: Solid Earth, 96(B10), 16151–16160. https://doi.org/10.1029/91jb01577
Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154
Cummings, W. C., & Thompson, P. O. (1971). Underwater Sounds from the Blue Whale, Balaenoptera musculus. The Journal of the Acoustical Society of America, 50(4B), 1193–1198. https://doi.org/10.1121/1.1912752
Cuny, T., Bettinelli, P., & Le Calvez, J. (2024). Variable gauge length: Processing theory and applications to distributed acoustic sensing. Geophysical Prospecting. https://doi.org/10.1111/1365-2478.13640
Daley, T. M., Miller, D. E., Dodds, K., Cook, P., & Freifeld, B. M. (2015). Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophysical Prospecting, 64(5), 1318–1334. https://doi.org/10.1111/1365-2478.12324
Dean, T., Cuny, T., & Hartog, A. H. (2016). The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing. Geophysical Prospecting, 65(1), 184–193. https://doi.org/10.1111/1365-2478.12419
Dean, T., Hartog, A., Papp, B., & Frignet, B. (2015, April). Fibre Optic Based Vibration Sensing: Nature of the Measurement. 3rd EAGE Workshop on Borehole Geophysics. https://doi.org/10.3997/2214-4609.201412183
Delarue, J., Todd, S. K., Van Parijs, S. M., & Di Iorio, L. (2009). Geographic variation in Northwest Atlantic fin whale (Balaenoptera physalus) song: Implications for stock structure assessment. The Journal of the Acoustical Society of America, 125(3), 1774–1782. https://doi.org/10.1121/1.3068454
Dong, L. (2013). Stimulated thermal Rayleigh scattering in optical fibers. Optics Express, 21(3), 2642. https://doi.org/10.1364/oe.21.002642
Douglass, A. S., Abadi, S., & Lipovsky, B. P. (2023). Distributed Acoustic Sensing for detecting near surface hydroacoustic signals. Authorea Preprints. https://doi.org/10.1121/10.0019703
Dunlop, R. A., Cato, D. H., & Noad, M. J. (2008). Non‐song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Marine Mammal Science, 24(3), 613–629. https://doi.org/10.1111/j.1748-7692.2008.00208.x
Dunlop, R. A., Noad, M. J., Cato, D. H., & Stokes, D. (2007). The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae). The Journal of the Acoustical Society of America, 122(5), 2893–2905. https://doi.org/10.1121/1.2783115
Essing, D., Schlindwein, V., Schmidt-Aursch, M. C., Hadziioannou, C., & Stähler, S. C. (2021). Characteristics of Current-Induced Harmonic Tremor Signals in Ocean-Bottom Seismometer Records. Seismological Research Letters. https://doi.org/10.1785/0220200397
Feng, C. (1968). The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders [Phdthesis, University of British Columbia]. https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/831/items/1.0104049
Fernandez-Ruiz, M. R., Martins, H. F., Williams, E. F., Becerril, C., Magalhaes, R., Costa, L., Martin-Lopez, S., Jia, Z., Zhan, Z., & Gonzalez-Herraez, M. (2022). Seismic Monitoring With Distributed Acoustic Sensing From the Near-Surface to the Deep Oceans. Journal of Lightwave Technology, 40(5), 1453–1463. https://doi.org/10.1109/jlt.2021.3128138
Fernández-Ruiz, M. R., Soto, M. A., Williams, E. F., Martin-Lopez, S., Zhan, Z., Gonzalez-Herraez, M., & Martins, H. F. (2020). Distributed acoustic sensing for seismic activity monitoring. APL Photonics, 5(3), 030901. https://doi.org/10.1063/1.5139602
Flores, D. M., Sladen, A., Ampuero, J.-P., Mercerat, E. D., & Rivet, D. (2023). Monitoring Deep Sea Currents With Seafloor Distributed Acoustic Sensing. Earth and Space Science, 10(6). https://doi.org/10.1029/2022ea002723
Frazão, H. C., Prien, R. D., Müller, T. J., Schulz-Bull, D. E., & Waniek, J. J. (2021). 30 years of temporal variability of temperature and currents below the main thermocline between 1980?2009 in the subtropical Northeast Atlantic (Kiel 276, 33°N, 22°W). Journal of Marine Systems, 217, 103517. https://doi.org/10.1016/j.jmarsys.2021.103517
Froggatt, M., & Moore, J. (1998). High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Applied Optics, 37(10), 1735. https://doi.org/10.1364/ao.37.001735
GA 101058518. (2022). https://doi.org/10.3030/101058518
GA 101095055. (2023). https://doi.org/10.3030/101095055
Gabai, H., & Eyal, A. (2016). On the sensitivity of distributed acoustic sensing. Optics Letters, 41(24), 5648. https://doi.org/10.1364/ol.41.005648
GEBCO Compilation Group. (2023). GEBCO 2023 Grid. NERC EDS British Oceanographic Data Centre NOC. https://doi.org/10.5285/F98B053B-0CBC-6C23-E053-6C86ABC0AF7B
Gök, R., Walter, W. R., Barno, J., Downie, C., Mellors, R. J., Mayeda, K., Roman-Nieves, J., Templeton, D., & Ajo-Franklin, J. (2024). Reliable Earthquake Source Parameters Using Distributed Acoustic Sensing Data Derived from Coda Envelopes. Seismological Research Letters. https://doi.org/10.1785/0220230270
González-Herráez, M. (2024). Observing ocean waves and their nonlinear interactions using fiber optic cables. In J. Scheuer & S. M. Shahriar (Eds.), Quantum Sensing, Imaging, and Precision Metrology II (Vol. 12912, p. 129120I). SPIE. https://doi.org/10.1117/12.3012361
Griffin, O. M. (1985). Vortex-induced vibrations of marine cables and structures. Naval Research Laboratory.
Hamza, A. A., Sokkar, T. Z. N., EL-Farahaty, K. A., & EL-Dessouky, H. M. (2004). Influence of temperature on the optical and structural properties along the diameter of optical fibres. Optics and Lasers in Engineering, 41(2), 261–275. https://doi.org/10.1016/s0143-8166(02)00199-9
Hartog, A. H. (2017). An introduction to distributed optical fibre sensors. CRC press. https://doi.org/10.1201/9781315119014
Hatch, L. T., & Clark, C. W. (2004). Acoustic differentiation between fin whales in both the NorthAtlantic and North Pacific Oceans, and integration with genetic estimates of divergence. Unpublished Paper Presented to the IWC Scientific Committee, 1–37.
Helble, T. A., Guazzo, R. A., Alongi, G. C., Martin, C. R., Martin, S. W., & Henderson, E. E. (2020). Fin Whale Song Patterns Shift Over Time in the Central North Pacific. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.587110
Hilmo, R., & Wilcock, W. S. D. (2024). Estimating distances to baleen whales using multipath arrivals recorded by individual seafloor seismometers at full ocean depth. The Journal of the Acoustical Society of America, 155(2), 930–951. https://doi.org/10.1121/10.0024615
Hocker, G. B. (1979). Fiber-optic sensing of pressure and temperature. Applied Optics, 18(9), 1445. https://doi.org/10.1364/ao.18.001445
Hubbard, P. G., Vantassel, J. P., Cox, B. R., Rector, J. W., Yust, M. B. S., & Soga, K. (2022). Quantifying the Surface Strain Field Induced by Active Sources with Distributed Acoustic Sensing: Theory and Practice. Sensors, 22(12), 4589. https://doi.org/10.3390/s22124589
Ide, S., Araki, E., & Matsumoto, H. (2021). Very broadband strain-rate measurements along a submarine fiber-optic cable off Cape Muroto, Nankai subduction zone, Japan. Earth, Planets and Space, 73(1). https://doi.org/10.1186/s40623-021-01385-5
Janneh, M., Bruno, F. A., Guardato, S., Donnarumma, G. P., Iannaccone, G., Gruca, G., Werzinger, S., Gunda, A., Rijnveld, N., Cutolo, A., Pisco, M., & Cusano, A. (2023). Field demonstration of an optical fiber hydrophone for seismic monitoring at Campi-Flegrei caldera. Optics & Laser Technology, 158, 108920. https://doi.org/10.1016/j.optlastec.2022.108920
Johnson, S. C., Širović, A., Buccowich, J. S., Debich, A. J., Roche, L. K., Thayre, B., Wiggins, S. M., Hildebrand, J. A., Hodge, L. E., & Read, A. J. (2014). Passive Acoustic Monitoring for Marine Mammals in the Jacksonville Range Complex 2010. Final Report. Submitted to Naval Facilities Engineering Command (NAVFAC) Atlantic, Norfolk, Virginia, under Contract No. N62470-10D-3011 issued to HDR, Inc. In Scripps Institution of Oceanography, Marine Physical Laboratory, La Jolla, CA (p. 26) [Techreport]. Citeseer.
Juškaitis, R., Mamedov, A. M., Potapov, V. T., & Shatalin, S. V. (1992). Distributed interferometric fiber sensor system. Optics Letters, 17(22), 1623. https://doi.org/10.1364/ol.17.001623
Juškaitis, R., Mamedov, A. M., Potapov, V. T., & Shatalin, S. V. (1994). Interferometry with Rayleigh backscattering in a single-mode optical fiber. Optics Letters, 19(3), 225. https://doi.org/10.1364/ol.19.000225
Käse, R. H., & Siedler, G. (1982). Meandering of the subtropical front south-east of the Azores. Nature, 300(5889), 245–246. https://doi.org/10.1038/300245a0
Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x
Kislov, K. V., & Gravirov, V. V. (2022). Distributed Acoustic Sensing: A New Tool or a New Paradigm. Seismic Instruments, 58(5), 485–508. https://doi.org/10.3103/s0747923922050085
Kovachev, S. A., Demidova, T. A., & Son’kin, A. V. (1997). Properties of Noise Registered by Pop-Up Ocean-Bottom Seismographs. Journal of Atmospheric and Oceanic Technology, 14(4), 883–888. https://doi.org/10.1175/1520-0426(1997)014<0883:ponrbp>2.0.co;2
Kuvshinov, B. N. (2015). Interaction of helically wound fibre-optic cables with plane seismic waves. Geophysical Prospecting, 64(3), 671–688. https://doi.org/10.1111/1365-2478.12303
Landrø, M., Bouffaut, L., Kriesell, H. J., Potter, J. R., Rørstadbotnen, R. A., Taweesintananon, K., Johansen, S. E., Brenne, J. K., Haukanes, A., Schjelderup, O., & others. (2022). Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable. Scientific Reports, 12(1), 19226. https://doi.org/10.1002/essoar.10507855.1
LA/P/0068/2020. (2020). https://doi.org/10.54499/LA/P/0068/2020
Lewis, L. A., & Širović, A. (2018). Variability in blue whale acoustic behavior off southern California. Marine Mammal Science, 34(2), 311–329. https://doi.org/10.1111/mms.12458
Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. (2019). Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366(6469), 1103–1107. https://doi.org/10.1126/science.aay5881
Lindsey, N. J., & Martin, E. R. (2021). Fiber-Optic Seismology. Annual Review of Earth and Planetary Sciences, 49(1), 309–336. https://doi.org/10.1146/annurev-earth-072420-065213
Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., & Ajo-Franklin, J. B. (2017). Fiber-Optic Network Observations of Earthquake Wavefields. Geophysical Research Letters, 44(23). https://doi.org/10.1002/2017gl075722
Lindsey, N. J., Rademacher, H., & Ajo-Franklin, J. B. (2020). On the Broadband Instrument Response of Fiber-Optic DAS Arrays. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb018145
Lior, I., Sladen, A., Mercerat, D., Ampuero, J.-P., Rivet, D., & Sambolian, S. (2021). Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination. Solid Earth, 12(6), 1421–1442. https://doi.org/10.5194/se-12-1421-2021
Loureiro, A. (2023). DAS dataset from the GeoLab fibre, Madeira, Portugal. ARDITI. https://doi.org/10.7914/TPN4-MP07
Loureiro, A. (2024). DAS dataset from the GeoLab fibre, Madeira, Portugal. ARDITI. https://doi.org/10.14470/8K802502
Martin, E. R., Lindsey, N. J., Ajo-Franklin, J. B., & Biondi, B. L. (2021). Introduction to Interferometry of Fiber-Optic Strain Measurements (pp. 111–129). Wiley. https://doi.org/10.1002/9781119521808.ch9
Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z., & Detomo, R. (2014). Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophysical Prospecting, 62(4), 679–692. https://doi.org/10.1111/1365-2478.12116
Matias, L., & Harris, D. (2015). A single-station method for the detection, classification and location of fin whale calls using ocean-bottom seismic stations. The Journal of the Acoustical Society of America, 138(1), 504–520. https://doi.org/10.1121/1.4922706
McDonald, M. A., Mesnick, S. L., & Hildebrand, J. A. (2006). Biogeographic characterisation of blue whale song worldwide: using song to identify populations. Journal of Cetacean Research and Management, 8(1), 55–65. https://doi.org/10.47536/jcrm.v8i1.702
Mellinger, D. K., & Clark, C. W. (2003). Blue whale (Balaenoptera musculus) sounds from the North Atlantic. The Journal of the Acoustical Society of America, 114(2), 1108–1119. https://doi.org/10.1121/1.1593066
Miller, B. S., Andrews-Goff, V., Barlow, J., Bell, E., Calderan, S., Double, M. C., Gedamke, J., Kelly, N., Laverick, S., Leaper, R., Miller, E. J., Reeve, K., Širović, A., & Stafford, K. M. (2024). Antarctic sonobuoy surveys for blue whales from 2006-2021 reveal contemporary distribution, changes over time, and paths to further our understanding of their distribution and biology. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1324816
Miller, B. S., Madhusudhana, S., Aulich, M. G., & Kelly, N. (2022). Deep learning algorithm outperforms experienced human observer at detection of blue whale D-calls: a double-observer analysis. Remote Sensing in Ecology and Conservation, 9(1), 104–116. https://doi.org/10.1002/rse2.297
Miller, B. S., Miller, B. S., Stafford, K. M., Van Opzeeland, I., Harris, D., Samaran, F., Širović, A., Buchan, S., Findlay, K., Balcazar, N., Nieukirk, S., Leroy, E. C., Aulich, M., Shabangu, F. W., Dziak, R. P., Lee, W. S., & Hong, J. K. (2021). An open access dataset for developing automated detectors of Antarctic baleen whale sounds and performance evaluation of two commonly used detectors. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-78995-8
MODAS project 2022.02359.PTDC. (2022). Monitoring the Oceans with Distributed Acoustic Sensing. https://doi.org/10.54499/2022.02359.PTDC
Nieukirk, S. L., Mellinger, D. K., Dziak, R. P., Matsumoto, H., & Klinck, H. (2020). Multi-year occurrence of sei whale calls in North Atlantic polar waters. The Journal of the Acoustical Society of America, 147(3), 1842–1850. https://doi.org/10.1121/10.0000931
Notarbartolo-di Sciara, G., Zanardell, M., Jahoda, M., Panigada, S., & Airoldi, S. (2003). The fin whale Balaenoptera physalus (L. 1758) in the Mediterranean Sea. Mammal Review, 33(2), 105–150. https://doi.org/10.1046/j.1365-2907.2003.00005.x
Oleson, E., Calambokidis, J., Burgess, W., McDonald, M., LeDuc, C., & Hildebrand, J. (2007). Behavioral context of call production by eastern North Pacific blue whales. Marine Ecology Progress Series, 330, 269–284. https://doi.org/10.3354/meps330269
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., & Fichtner, A. (2020). Empirical Investigations of the Instrument Response for Distributed Acoustic Sensing (DAS) across 17 Octaves. Bulletin of the Seismological Society of America, 111(1), 1–10. https://doi.org/10.1785/0120200185
Palmieri, L. (2013). Distributed Optical Fiber Sensing Based on Rayleigh Scattering. The Open Optics Journal, 7(1), 104–127. https://doi.org/10.2174/1874328501307010104
Papp, B., Donno, D., Martin, J. E., & Hartog, A. H. (2016). A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory‐scale experiments. Geophysical Prospecting, 65(5), 1186–1204. https://doi.org/10.1111/1365-2478.12471
Payne, R., & Webb, D. (1971). Orientation by means of long range acoustic signaling in baleen whales. Annals of the New York Academy of Sciences, 188(1), 110–141. https://doi.org/10.1111/j.1749-6632.1971.tb13093.x
Peláez Quiñones, J. D., Sladen, A., Ponte, A., Lior, I., Ampuero, J.-P., Rivet, D., Meulé, S., Bouchette, F., Pairaud, I., & Coyle, P. (2023). High resolution seafloor thermometry for internal wave and upwelling monitoring using Distributed Acoustic Sensing. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44635-0
Pereira, A., Harris, D., Tyack, P., & Matias, L. (2020a). On the use of the Lloyd’s Mirror effect to infer the depth of vocalizing fin whales. The Journal of the Acoustical Society of America, 148(5), 3086–3101. https://doi.org/10.1121/10.0002426
Pereira, A., Harris, D., Tyack, P., & Matias, L. (2020b). Fin whale acoustic presence and song characteristics in seas to the southwest of Portugal. The Journal of the Acoustical Society of America, 147(4), 2235–2249. https://doi.org/10.1121/10.0001066
Potter, J. R., Potter, J. R., Wengle, E., Dong, H., Trondheim, N., & Rørstadbotnen, R. A. (2024). Distributed Acoustic Sensing of Underwater Acoustic Communication Packets: Effects of Frequency and Incidence Angle. [Preprint]. https://doi.org/10.22541/essoar.173031738.81849568/v1
Prieto, R., Silva, M., Waring, G., & Gonçalves, J. (2014). Sei whale movements and behaviour in the North Atlantic inferred from satellite telemetry. Endangered Species Research, 26(2), 103–113. https://doi.org/10.3354/esr00630
Rathod, R., Pechstedt, R. D., Jackson, D. A., & Webb, D. J. (1994). Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber. Optics Letters, 19(8), 593. https://doi.org/10.1364/ol.19.000593
Rice, A. N., Palmer, K. J., Tielens, J. T., Muirhead, C. A., & Clark, C. W. (2014). Potential Bryde’s whale (Balaenoptera edeni) calls recorded in the northern Gulf of Mexico. The Journal of the Acoustical Society of America, 135(5), 3066–3076. https://doi.org/10.1121/1.4870057
Rivet, D., de Cacqueray, B., Sladen, A., Roques, A., & Calbris, G. (2021). Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. The Journal of the Acoustical Society of America, 149(4), 2615–2627. https://doi.org/10.1121/10.0004129
Romagosa, M., Baumgartner, M., Cascão, I., Lammers, M. O., Marques, T. A., Santos, R. S., & Silva, M. A. (2020). Baleen whale acoustic presence and behaviour at a Mid-Atlantic migratory habitat, the Azores Archipelago. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61849-8
Romagosa, M., Boisseau, O., Cucknell, A.-C., Moscrop, A., & McLanaghan, R. (2015). Source level estimates for sei whale (Balaenoptera borealis) vocalizations off the Azores. The Journal of the Acoustical Society of America, 138(4), 2367–2372. https://doi.org/10.1121/1.4930900
Seabrook, B. C., Ellmauthaler, A., LeBlanc, M., Jaaskelainen, M., Maida, J. L., & Wilson, G. A. (2022). Comparison of Raman, Brillouin, and Rayleigh Distributed Temperature Measurements in High-Rate Wells. Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description, 63(6), 685–699. https://doi.org/10.30632/pjv63n6-2022a8
Siedler, G., Armi, L., & Müller, T. J. (2005). Meddies and decadal changes at the Azores Front from 1980 to 2000. Deep Sea Research Part II: Topical Studies in Oceanography, 52(3–4), 583–604. https://doi.org/10.1016/j.dsr2.2004.12.010
Silva, M. A., Prieto, R., Jonsen, I., Baumgartner, M. F., & Santos, R. S. (2013). North Atlantic Blue and Fin Whales Suspend Their Spring Migration to Forage in Middle Latitudes: Building up Energy Reserves for the Journey? PLoS ONE, 8(10), e76507. https://doi.org/10.1371/journal.pone.0076507
Sinnett, G., Davis, K. A., Lucas, A. J., Giddings, S. N., Reid, E., Harvey, M. E., & Stokes, I. (2020). Distributed Temperature Sensing for Oceanographic Applications. Journal of Atmospheric and Oceanic Technology, 37(11), 1987–1997. https://doi.org/10.1175/jtech-d-20-0066.1
Širović, A., Hildebrand, J. A., & Wiggins, S. M. (2007). Blue and fin whale call source levels and propagation range in the Southern Ocean. The Journal of the Acoustical Society of America, 122(2), 1208–1215. https://doi.org/10.1121/1.2749452
Skop, R. A., & Griffin, O. M. (1975). On a theory for the vortex-excited oscillations of flexible cylindrical structures. Journal of Sound and Vibration, 41(3), 263–274. https://doi.org/10.1016/s0022-460x(75)80173-8
Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. (2019). Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13793-z
Spingys, C. P., Naveira Garabato, A. C., & Belal, M. (2024). Distributed Optical Fibre Sensing for High Space‐Time Resolution Ocean Velocity Observations: A Case Study From a Macrotidal Channel. Earth and Space Science, 11(5). https://doi.org/10.1029/2023ea003315
Stähler, S. C., Schmidt-Aursch, M. C., Hein, G., & Mars, R. (2018). A Self-Noise Model for the German DEPAS OBS Pool. Seismological Research Letters, 89(5), 1838–1845. https://doi.org/10.1785/0220180056
Stimpert, A. K., Au, W. W., Parks, S. E., Hurst, T., & Wiley, D. N. (2011). Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. The Journal of the Acoustical Society of America, 129(1), 476–482. https://doi.org/10.1121/1.3504708
Sun, J., Wang, Y., Zhang, J., Liang, Y., Zhang, G., Wan, A., Zhang, S., Ye, Z., Zhou, Y., Jing, Q., Rao, Y., Wang, H., & Wang, Z. (2024). 2-D Phase Unwrapping in DAS Based on Transport-of-Intensity-Equation: Principle, Algorithm and Field Test. Journal of Lightwave Technology, 1–11. https://doi.org/10.1109/jlt.2024.3391275
Toulouse, J. (2005). Optical nonlinearities in fibers: review, recent examples, and systems applications. Journal of Lightwave Technology, 23(11), 3625–3641. https://doi.org/10.1109/jlt.2005.855877
Trabattoni, A., Biagioli, F., Strumia, C., van den Ende, M., di Uccio, F. S., Festa, G., Rivet, D., Sladen, A., Ampuero, J. P., Métaxian, J.-P., & Éléonore Stutzmann. (2023). From strain to displacement: using deformation to enhance distributed acoustic sensing applications. Geophysical Journal International, 235(3), 2372–2384. https://doi.org/10.1093/gji/ggad365
Triantafyllou, M. S., Bourguet, R., Dahl, J., & Modarres-Sadeghi, Y. (2016). Vortex-Induced Vibrations. In Springer Handbook of Ocean Engineering (pp. 819–850). Springer International Publishing. https://doi.org/10.1007/978-3-319-16649-0_36
Ugalde, A., Becerril, C., Villaseñor, A., Ranero, C. R., Fernández-Ruiz, M. R., Martin-Lopez, S., González-Herráez, M., & Martins, H. F. (2021). Noise Levels and Signals Observed on Submarine Fibers in the Canary Islands Using DAS. JASA Express Letters, 93(1), 351–363. https://doi.org/10.1785/0220210049
UID/PRR/50019/2025. (2025). https://doi.org/10.54499/UID/PRR/50019/2025
Valente, R., Correia, A. M., Gil, Á., González García, L., & Sousa-Pinto, I. (2019). Baleen whales in Macaronesia: occurrence patterns revealed through a bibliographic review. Mammal Review, 49(2), 129–151. https://doi.org/10.1111/mam.12148
van den Ende, M. P. A., & Ampuero, J.-P. (2021). Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 12(4), 915–934. https://doi.org/10.5194/se-12-915-2021
van den Ende, M., Trabattoni, A., Baillet, M., & Rivet, D. (2024). An analysis of the dynamic range of Distributed Acoustic Sensing for Earthquake Early Warning. Earth ArXiv [Pre-Print]. https://doi.org/10.31223/x5kh5r
Vidal-Moreno, P. J., Rochat, E., Fermoso, P., Fernández-Ruiz, M. R., Martins, H., Martin-Lopez, S., Ocaña, M., & Gonzalez-Herraez, M. (2022). Cancellation of reference update-induced 1/f noise in a chirped-pulse DAS. Optics Letters, 47(14), 3588. https://doi.org/10.1364/ol.465367
Waagaard, O. H., Rønnekleiv, E., Haukanes, A., Stabo-Eeg, F., Thingbø, D., Forbord, S., Aasen, S. E., & Brenne, J. K. (2021). Real-time low noise distributed acoustic sensing in 171hspace0.25emkm low loss fiber. OSA Continuum, 4(2), 688. https://doi.org/10.1364/osac.408761
Watkins, W. A. (1981). Activities and underwater sounds of fin whales. Sci. Rep. Whales Res. Inst, 33, 83–117. https://doi.org/10.1016/0198-0254(82)90294-1
Watkins, W. A., Tyack, P., Moore, K. E., & Bird, J. E. (1987). The 20-Hz signals of finback whales (Balaenoptera-physalus). The Journal of the Acoustical Society of America, 82(6), 1901–1912. https://doi.org/10.1121/1.395685
Wenzel, F. W., Broms, F., López-Suárez, P., Lopes, K., Veiga, N., Yeoman, K., Rodrigues, M. S. D., Allen, J., Fernald, T. W., Stevick, P. T., Jones, L., Jann, B., Bouveret, L., Ryan, C., Berrow, S., & Corkeron, P. (2020). Humpback Whales (Megaptera novaeangliae) in the Cape Verde Islands: Migratory Patterns, Resightings, and Abundance. Aquatic Mammals, 46(1), 21–31. https://doi.org/10.1578/am.46.1.2020.21
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515
Wiggins, S. M., Oleson, E. M., McDonald, M. A., & Hildebrand, J. A. (2005). Blue Whale (Balaenoptera musculus) Diel Call Patterns Offshore of Southern California. Aquatic Mammals, 31(2), 161–168. https://doi.org/10.1578/am.31.2.2005.161
Wilcock, W. S. D., Abadi, S., & Lipovsky, B. P. (2023). Distributed acoustic sensing recordings of low-frequency whale calls and ship noise offshore Central Oregon. JASA Express Letters, 3(2). https://doi.org/10.1121/10.0017104
Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. (2019). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13262-7
Williams, E. F., Ugalde, A., Martins, H. F., Becerril, C. E., Callies, J., Claret, M., Fernandez-Ruiz, M. R., Gonzalez-Herraez, M., Martin-Lopez, S., Pelegri, J. L., Winters, K. B., & Zhan, Z. (2023). Fiber-Optic Observations of Internal Waves and Tides. Journal of Geophysical Research: Oceans, 128(9). https://doi.org/10.1029/2023jc019980
Williams, E. F., Zhan, Z., Martins, H. F., Fernández‐Ruiz, M. R., Martín‐López, S., González‐Herráez, M., & Callies, J. (2022). Surface Gravity Wave Interferometry and Ocean Current Monitoring With Ocean‐Bottom DAS. Journal of Geophysical Research: Oceans, 127(5). https://doi.org/10.1029/2021jc018375
Xiao, H., Zhang, S., Moss, R., & Zhan, Z. (2025). Imaging Underwater Faults and Tracking Whales with Optical Fiber Sensing. Seismological Research Letters. https://doi.org/10.1785/0220240359
Yang, Y., Atterholt, J. W., Shen, Z., Muir, J. B., Williams, E. F., & Zhan, Z. (2021). Sub‐Kilometer Correlation Between Near‐Surface Structure and Ground Motion Measured With Distributed Acoustic Sensing. Geophysical Research Letters, 49(1). https://doi.org/10.1029/2021gl096503
Yeung, W. F., & Johnston, A. R. (1978). Effect of temperature on optical fiber transmission. Applied Optics, 17(23), 3703. https://doi.org/10.1364/ao.17.003703
Zhai, Q., Yin, J., Yang, Y., Atterholt, J. W., Li, J., Husker, A., & Zhan, Z. (2025). Comprehensive Evaluation of DAS Amplitude and Its Implications for Earthquake Early Warning and Seismic Interferometry. Journal of Geophysical Research: Solid Earth, 130(4). https://doi.org/10.1029/2024jb030288
Zhu, W., Mousavi, S. M., & Beroza, G. C. (2019). Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9476–9488. https://doi.org/10.1109/tgrs.2019.2926772
Zumberge, M. A., Hatfield, W., & Wyatt, F. K. (2018). Measuring Seafloor Strain With an Optical Fiber Interferometer. Earth and Space Science, 5(8), 371–379. https://doi.org/10.1029/2018ea000418
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Afonso Loureiro, David Schlaphorst, Luís Matias, Andreia Pereira, Carlos Corela, Susana Gonçalves, Rui Caldeira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação para a Ciência e a Tecnologia
Grant numbers UIDB/50019/2020;UIDP/50019/2020;LA/P/068/2020;2022.02359.PTDC

