Societal Impact of COVID-19 Crisis on the Ambient Seismic Noise in Metropolitan France
DOI:
https://doi.org/10.26443/seismica.v4i2.1491Keywords:
Ambient seismic noiseAbstract
The COVID-19 pandemic led to restrictions on human mobility worldwide. In France, numerous phases of lockdowns and curfews were instituted in an attempt to limit the consequences of this pandemic. Through these various phases of restrictions, we analysed changes in human activity based on the study of ambient seismic noise level in metropolitan France. We propose a different approach to previous studies, studying variations in the seismic noise level between the pandemic years 2020 and 2021 with respect to 2019, before the pandemic, taken as a reference. We focused our work between 4 and 8 Hz, where human induced noise sources are significant. We took advantage of the wide instrumental coverage of metropolitan France to distinguish the effects of restrictions in urbanized and rural areas. Whether in urban or rural areas, the effects of lockdowns and curfews coincide with reductions in seismic noise levels. The magnitude of the noise level reduction is greater for the first than for the last lockdowns. We also observe a signature of curfew periods and analyse variations according to time of day and day of the week. Changes in road traffic during lockdowns and curfews are a major factor contributing to the observed variations in ambient seismic noise.
References
Nakata, N., Gualtieri, L., & Fichtner, A. (Eds). (2019). Seismic Ambient Noise. doi:10.1017/9781108264808
Hasselmann, K. (1963). On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. Journal of Fluid Mechanics, 15(3), 385–398. doi:10.1017/S002211206300032X
Cauchemez, S., Kiem, C. T., Paireau, J., Rolland, P., & Fontanet, A. (2020). Lockdown impact on COVID-19 epidemics in regions across metropolitan France. The Lancet, 396(10257), 1068–1069. doi:10.1016/S0140-6736(20)32034-1
Poli, P., Boaga, J., Molinari, I., Cascone, V., & Boschi, L. (2020). The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in Northern Italy. Scientific Reports, 10(1), 9404. doi:10.1038/s41598-020-66368-0
Lecocq, T., Hicks, S. P., Van Noten, K., Van Wijk, K., Koelemeijer, P., De Plaen, R. S. M., … Xiao, H. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. doi:10.1126/science.abd2438
Grecu, B., Borleanu, F., Tiganescu, A., Poiata, N., Dinescu, R., & Tataru, D. (2021). The effect of 2020 COVID-19 lockdown measures on seismic noise recorded in Romania. Solid Earth, 12(10), 2351–2368. doi:10.5194/se-12-2351-2021
Cannata, A., Cannavò, F., Di Grazia, G., Aliotta, M., Cassisi, C., De Plaen, R. S. M., … Sciotto, M. (2021). Seismic evidence of the COVID-19 lockdown measures: a case study from eastern Sicily (Italy). Solid Earth, 12(2), 299–317. doi:10.5194/se-12-299-2021
De Plaen, R. S. M., Márquez-Ramírez, V. H., Pérez-Campos, X., Zuñiga, F. R., Rodríguez-Pérez, Q., Gómez González, J. M., & Capra, L. (2021). Seismic signature of the COVID-19 lockdown at the city scale: a case study with low-cost seismometers in the city of Querétaro, Mexico. Solid Earth, 12(3), 713–724. doi:10.5194/se-12-713-2021
Diaz, J., Ruiz, M., & Jara, J.-A. (2021). Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown. Solid Earth, 12(3), 725–739. doi:10.5194/se-12-725-2021
Fuchs, F., Bokelmann, G., & the AlpArray Working Group. (2018). Equidistant Spectral Lines in Train Vibrations. Seismological Research Letters, 89(1), 56–66. doi:10.1785/0220170092
Hong, T.-K., Lee, J., Lee, G., Lee, J., & Park, S. (2020). Correlation between Ambient Seismic Noises and Economic Growth. Seismological Research Letters, 91(4), 2343–2354. doi:10.1785/0220190369
Mofijur, M., Fattah, I. M. R., Alam, M. A., Islam, A. B. M. S., Ong, H. C., Rahman, S. M. A., … Mahlia, T. M. I. (2021). Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustainable Production and Consumption, 26, 343–359. doi:10.1016/j.spc.2020.10.016
McNamara, D. E. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. doi:10.1785/012003001
Coward, D., Blair, D., Burman, R., & Zhao, C. (2003). Vehicle-induced seismic effects at a gravitational wave observatory. Review of Scientific Instruments, 74(11), 4846–4854. doi:10.1063/1.1614411
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. doi:10.1785/gssrl.81.3.530
Longuet-Higgins, M. S., & Jeffreys, H. (1950). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(857), 1–35. doi:10.1098/rsta.1950.0012
Epos-France. (1995). Epos-France Broad-band network (RLBP). doi:10.15778/RESIF.FR
Resif. (2018). CEA/DASE broad-band permanent network in metropolitan France. doi:10.15778/resif.rd
Nishida, K. (2017). Ambient seismic wave field. Proceedings of the Japan Academy, Series B, 93(7), 423–448. doi:10.2183/pjab.93.026
Brune, J. N., & Oliver, J. (1959). The seismic noise of the earth’s surface. Bulletin of the Seismological Society of America, 49(4), 349–353. doi:10.1785/BSSA0490040349
Gualtieri, L., Stutzmann, E., Juretzek, C., Hadziioannou, C., & Ardhuin, F. (2019). Global scale analysis and modelling of primary microseisms. Geophysical Journal International, 218(1), 560–572. doi:10.1093/gji/ggz161/5421624
Cessaro, R. K. (02 1994). Sources of primary and secondary microseisms. Bulletin of the Seismological Society of America, 84(1), 142–148. doi:10.1785/BSSA0840010142
Groos, J. C., & Ritter, J. R. R. (11 2009). Time domain classification and quantification of seismic noise in an urban environment. Geophysical Journal International, 179(2), 1213–1231. doi:10.1111/j.1365-246X.2009.04343.x
Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674–2681. doi:10.1002/2015GL063558
Díaz, J., Ruiz, M., Sánchez-Pastor, P. S., & Romero, P. (2017). Urban seismology: On the origin of earth vibrations within a city. Scientific Reports, 7(1), 15296. doi:10.1038/s41598-017-15499-y
Institut de physique du globe de Paris (IPGP), & École et Observatoire des Sciences de la Terre de Strasbourg (EOST). (1982). GEOSCOPE, French Global Network of broad band seismic stations. doi:10.18715/GEOSCOPE.G
Wikipedia contributors. (2024). Chronologie de la pandémie de Covid-19 en France --- Wikipédia, l’encyclopédie libre. Retrieved from http://fr.wikipedia.org/w/index.php?title=Chronologie_de_la_pand%C3%A9mie_de_Covid-19_en_France&oldid=218469014
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003.
Lecocq, T. (2020). ThomasLecocq/2020_Science_GlobalQuieting: First Release - v1.0 (Version 1.0). doi:10.5281/zenodo.3944739
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Flavien Mattern, Loretta Bardavid, Arnaud Delsuc, Vivien Belin, Jérôme Vergne, Dimitri Zigone, Jean Schmittbuhl

This work is licensed under a Creative Commons Attribution 4.0 International License.