A seismological large-N multisensor experiment to study the magma transfer of intracontinental volcanic fields: The example of the Eifel, Germany

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1492

Keywords:

Large-N arrays, volcanic field, automatic detection and location, machine learning

Abstract

The understanding of the magma system beneath intracontinental volcanic fields depends critically on our ability to resolve small-sized anomalies distributed over large areas of hundreds of kilometres. Magmatic reservoirs co-exist at different depths in the upper mantle and crust and may consist of extensive zones of crystal mush, swarms of sills and dikes of different ages and states, pore space saturated by volatiles or melt, or larger-volume, differentiated magma.
Passive seismological experiments with a large number of sensors deployed with small interstation spacings, combining different types of sensors and fibre-optic sensor technology, have great promise for addressing the resolution to capture the distributed magmatic system.
We report on a one-year, large-N experiment in the Quaternary volcanic fields of the Eifel, Germany, where more than 494 seismic stations were deployed and combined with a 64-km-long DAS cable and permanent stations. A cloud-based, open-source GIS system was implemented to address logistical challenges and ensure data quality combined with seismological analysis and visualisation tools. We present initial results to test the potential of such an extensive waveform database and automated processing for locating small earthquakes and imaging crustal and upper mantle anomalies using techniques such as ambient noise cross-correlation, receiver functions, and SKS splitting.

References

Alohali, A., Bertin, D., de Silva, S., Cronin, S., Duncan, R., Qaysi, S., & Moufti, M. R. (2022). Spatio‑temporal forecasting of future volcanism at Harrat Khaybar, Saudi Arabia. Journal of Applied Volcanology, 11(12), 0–0. https://doi.org/10.1186/s13617-022-00124-z

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x

Berndt, J., Holtz, F., & Koepke, J. (2001). Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See Volcano. Contrib Mineral Petrol, 140, 469–486. https://doi.org/10.1007/PL00007674

Berndt, J., & Klemme, S. (2022). Origin of carbonatites—liquid immiscibility caught in the act. Nature Communications, 13(1), 1–8. https://doi.org/10.1038/s41467-022-30500-7

Bourdon, B., Zindler, A., & Wörner, G. (1994). Evolution of the Laacher See magma chamber: Evidence from SIMS and TIMS measurements of U - Th disequilibria in minerals and glasses. Earth and Planetary Science Letters, 126, 75–90. https://doi.org/10.1016/0012-821X(94)90243-7

Budweg, M., Bock, G., & Weber, M. (2006). The Eifel Plume—imaged with converted seismic waves. Geophysical Journal International, 166, 579–589. https://doi.org/10.1111/j.1365-246X.2005.02778.x

Büyükakpınar, P., Aktar, M., Petersen, G. M., & Köseoğlu, A. (2021). Orientations of broadband stations of the KOERI seismic network (Turkey) from two independent methods: P-and Rayleigh-wave polarization. Seismological Research Letters, 92(3), 1512–1521. https://doi.org/10.1785/0220200362

Büyükakpınar, P., Dahm, T., Isken, M., Hainzl, S., Ohrnberger, M., Doubravová, J., Wendt, S., Funke, S., & Fischer, T. (2024). Seismic Activity and Fluid Dynamics in the NW Bohemia/Vogtland Swarm Region. 39th General Assembly of the European Seismological Commission (GA ESC).

Büyükakpınar, P., Isken, M. P., Heimann, S., Dahm, T., Kühn, D., Starke, J., López Comino, J. Á., Cesca, S., Doubravová, J., Gudnason, E. Á., & Ágústsdóttir, T. (2025). Understanding the Seismic Signature of Transtensional Opening in the Reykjanes Peninsula Rift Zone, SW Iceland. Journal of Geophysical Research: Solid Earth, 130(1), e2024JB029566. https://doi.org/10.1029/2024JB029566

Caricchi, L., Sheldrake, T. E., & Blundly, J. (2018). Modulation of magmatic processes by CO2 flushing. Earth Plan. Sci. Lett., 491, 160–171. https://doi.org/10.1016/j.epsl.2018.03.042

Dahm, T., Isken, M. P., Milkereit, C., Mikulla, X., S. Yuan, Sens-Schönfelder, Ch., Meier, Th., Eckel, F., Reiss, M., Rümpker, G., Zeckra, M., Carrasco, S., Hensch, M., Schmidt, B., Oth, A., & Busch, S. (2023). Eifel Large-N Seismic Network (ELSN). GFZ Data Services. Dataset/Seismic Network. https://doi.org/10.14470/1R080930

Dahm, T., Kuehn, D., Cesca, S., Isken, M. P., & Heimann, S. (2024). Earthquake Moment Magnitudes from Peak Ground Displacements and Synthetic Green’s Functions. Seismica. https://doi.org/10.26443/seismica.v3i2.1205

Dahm, T., Stiller, M., Mechie, J., Heimann, S., Hensch, M., Woith, H., Schmidt, B., Gabriel, G., & Weber, M. (2020). Seismological and Geophysical Signatures of the Deep Crustal Magma Systems of the Cenozoic Volcanic Fields Beneath the Eifel, Germany. Geochemistry, Geophysics, Geosystems, 21(9), e2020GC009062. https://doi.org/10.1029/2020GC009062

Hensch, M., Dahm, T., Ritter, J., Heimann, S., Schmidt, B., Stange, S., & Lehmann, K. (2019). Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geophysical J. Int., 216(3), 2025–2036. https://doi.org/doi.org/10.1093/gji/ggy532

Isken, M., Niemz, P., Münchmeyer, J., Büyükakpınar, P., Heimann, S., Cesca, S., Vasyura-Bathke, H., & Dahm, T. (2025). Qseek: A data-driven Framework for Automated Earthquake Detection, Localization and Characterization. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1283

Isken, M. P., Vasyura-Bathke, H., Dahm, T., & Heimann, S. (2022). De-noising distributed acoustic sensing data using an adaptive frequency–wavenumber filter. Geophysical Journal International, 231(2), 944–949. https://doi.org/10.1093/gji/ggac229

Kennett, B., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465.

Kreemer, C., Blewitt, G., & Davis, P. M. (2020). Geodetic evidence for a buoyant mantle plume beneath the Eifel volcanic area, NW Europe. Geophysical Journal International, 222(2), 1316–1332. https://doi.org/10.1093/gji/ggaa227

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003.

Ling, O. K. A., Stähler, S. C., Giardini, D., & AlpArray Working Group. (2021). Visualizing global seismic phases with AlpArray. Seismological Society of America, 92(6), 3845–3855. https://doi.org/10.1785/ 0220210046

Link, F., Reiss, M., & Rümpker, G. (2022). An automatized XKS-splitting procedure for large data sets: Extension package for SplitRacer and application to the USArray. Computers and Geosciences, 158(104961). https://doi.org/10.1016/j.cageo.2021.104961

Mathar, J. P., Ritter, J. R. R., & Friederich, W. (2006). Surface waves image the top of the Eifel plume. Geophysical Journal International, 164, 579–589. https://doi.org/10.1111/j.1365-246X.2006.02835.x

Meagher, D. (1982). Geometric modeling using octree encoding. Computer Graphics and Image Processing, 19(2), 129–147. https://doi.org/10.1016/0146-664X(82)90104-6

Mechie, J., Prodehl, C., Fuchs, K., Kaminski, W., Flick, J., Hirn, A., Ansorge, J., & King, R. (1978). Progress report on the Rhenish Massif seismic experiment. Tectonophysics. Tectonophysics, 90, 215–230.

Mooney, W. D., & Prodehl, C. (1978). Crustal Structure of the Rhenish Massif and Adjacent Areas: a Reinterpretation of Existing Seismic-Refraction Data. J. Geophys., 44, 573–601.

Nicolas, A., & Christensen, N. (1987). Formation of anisotropy in upper mantle peridotites-a review. Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System, 16, 111–123.

Niemz, P., McLennan, J., Pankow, K. L., Rutledge, J., & England, K. (2024). Circulation experiments at Utah FORGE: Near-surface seismic monitoring reveals fracture growth after shut-in. Geothermics, 119, 102947. https://doi.org/10.1016/j.geothermics.2024.102947

Pappalardo, L., Buono, G., Fanara, S., Yi, J., Shan, X., Guo, Z., ..., & Ventura, G. (2022). The role of CO2 flushing in triggering the ‘Millennium’eruption and recent unrests at Changbaishan volcano (China/North Korea). International Geology Review, 1–14. https://doi.org/10.1080/00206814.2022.2065544

Petersen, G. M., Cesca, S., Kriegerowski, M., & the AlpArray Working Group. (2019). Automated Quality Control for Large Seismic Networks: Implementation and Application to the AlpArray Seismic Network. Seismological Research Letters, 90(3), 1177–1190. https://doi.org/10.1785/0220180342

QGIS Development Team. (2024). QGIS Geographic Information System. QGIS Association. https://www.qgis.org

Reinig, & et al. (2021). Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature, 595, 66–69. https://doi.org/10.1038/s41586-021-03608-x

Rout, S. S., & Wörner, G. (2018). Zoning and exsolution in alkali feldspars from the LSV: constraints on temperature history prior to eruption. Contr. Mineral. Petrol. https://doi.org/10.1007/s00410-018-1522-x

Rout, S. S., & Wörner, G. (2020). onstraints on the pre-eruptive magmatic history of the Quaternary Laacher See volcano (Germany). Contr. Mineral. and Petrol., 175(73). https://doi.org/10.1007/s00410-020-01710-3

Schmitt, A. K., Wetzel, F., Cooper, K. M., Zou, H. B., & Wörner, G. (2010). Magmatic longevity of Laacher See Volcano (Eifel, Germany) indicated by intrusive carbonatites. J Petrol., 50, 1053–1085. https://doi.org/10.1093/petrology/egq011

Seiberlich, C. K. A., Ritter, J. R. R., & Wawerzinek, B. (2013). Topography of the lithosphere–asthenosphere boundary below the Upper Rhine Graben Rift and the volcanic Eifel region, Central Europe. Tectonophysics, 603, 222–236. http://dx.doi.org/10.1016/j.tecto.2013.05.034

Silver, P., & Chan, W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96(B10), 1642916454. https://doi.org/10.1029/91JB00899

Snoke, J. A. (2009). Traveltime tables for iasp91 and ak135. Seismological Research Letters, 80(2), 260–262.

Tomlinson, E. L., Smith, V. C., & Menzies, M. A. (2020). Chemical zoning and open system processes in the Laacher See magmatic system. Ontributions to Mineralogy and Petrology, 175(19). https://doi.org/10.1007/s00410-020-1657-4

Walker, K., Bokelmann, G., Klemperer, S., & Bock, G. (2005). Shear-wave splitting around the Eifel hotspot: evidence for a mantle upwelling. Geophysical Journal International, 163(3). https://doi.org/10.1111/j.1365-246X.2005.02636.x

Ward, K. M., & Lin, F. C. (2017). On the viability of using autonomous three‐component nodal geophones to calculate teleseismic Ps receiver functions with an application to Old Faithful, Yellowstone. Seismological Research Letters, 88, 1268–1278. https://doi.org/10.1785/0220170051

Yuan, X., Ni, J., Kind, R., Mechie, J., & Sandvol, E. (1997). Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. Journal of Geophysical Research, 102, 27491–27500. https://doi.org/10.1029/97JB02379

Zhu, W., & Beroza, G. C. (2018). PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423

Downloads

Published

2025-10-02

How to Cite

Dahm, T., Isken, M., Milkereit, C., Sens-Schönfelder, C., Eckel, F., Yuan, X., Reiss, M., Oth, A., Rümpker, G., De Siena, L., Büyükakpinar, P., Laumann, P., Zhang, H., Knapmeyer-Endrun, B., Mikulla, S., Bauz, R., Busch, S., Hensch, M., Schmidt, B., Petersen, G., & Cesca, S. (2025). A seismological large-N multisensor experiment to study the magma transfer of intracontinental volcanic fields: The example of the Eifel, Germany. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1492

Issue

Section

Reports (excl. Fast Reports)