Automated Weighting Schemes for DAS Data in Geophysical Inversion: A Case Study on Event Location
DOI:
https://doi.org/10.26443/seismica.v4i2.1494Abstract
Distributed Acoustic Sensing (DAS) technology offers meter-scale spatial sampling of seismic wavefields, which improves our seismic monitoring capabilities. However, the resulting data volumes often complicate expert-driven analysis, such as weighting measurements in geophysical inverse problems to mitigate the influence of outliers. To address such difficulties in an automated manner, we focus on a representative problem in seismology, source location, and we test a Bayesian weighting procedure applied to P-wave arrival/differential times estimated from DAS waveforms. This approach estimates the Posterior Probability Densities of physical (epicenter) and non-physical (hyperparameters) parameters. The hyperparameters are designed as a set of thresholds and weights that enable the automatic identification of portions of data associated with higher reliability in the inversion. Specifically, the thresholds are values having the same dimension as specific waveform attributes and/or geometrical descriptors. Weights are then the scaling factors for the variances of data that do not meet these thresholds. Consequently, several possible weighting schemes (thresholds and weights) based on signal-to-noise ratios, cross-correlation indices, and interchannel distances are explored in a Bayesian framework. We present synthetic tests and real-data applications that demonstrate the potential of this method as an alternative to a similar approach without data weighting.
References
Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., & Li, X. (2019). Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Scientific Reports, 9(1328), 1–14. https://doi.org/10.1038/s41598-018-36675-8
Aki, K., & Richards, P. G. (2002). Quantitative seismology. University Science Books.
Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. Bulletin of the Seismological Society of America, 72(6B), S225–S242. https://doi.org/10.1785/BSSA07206B0225
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521–1532.
Baillet, M., Rivet, D., Trabattoni, A., Cheze, J., Peix, F., Ambrois, D., van den Ende, M., Vernet, C., Strumia, C., Potin, B., & others. (2025). Automatic earthquake catalogs from a permanent DAS offshore network. Journal of Geophysical Research: Solid Earth, 130(10), e2025JB031565.
Biagioli, F., Métaxian, J.-P., Stutzmann, E., Ripepe, M., Bernard, P., Trabattoni, A., Longo, R., & Bouin, M.-P. (2024). Array analysis of seismo-volcanic activity with distributed acoustic sensing. Geophysical Journal International, 236(1), 607–620. https://doi.org/10.1093/gji/ggad427
Biondi, B., Martin, E., Cole, S., Karrenbach, M., & Lindsey, N. (2017). Earthquakes analysis using data recorded by the Stanford DAS array. SEG International Exposition and Annual Meeting, SEG-2017. https://onepetro.org/SEGAM/proceedings-pdf/SEG17/All-SEG17/SEG-2017-17745041/1308410/seg-2017-17745041.pdf
Biondi, E., Tepp, G., Yu, E., Saunders, J. K., Yartsev, V., Black, M., Watkins, M., Bhaskaran, A., Bhadha, R., Zhan, Z., & others. (2025). Real-time processing of distributed acoustic sensing data for earthquake monitoring operations. ArXiv Preprint ArXiv:2505.24077.
Biondi, E., Zhu, W., Li, J., Williams, E. F., & Zhan, Z. (2023). An upper-crust lid over the Long Valley magma chamber. Science Advances, 9(42), eadi9878. https://doi.org/DOI: 10.1126/sciadv.adi9878
Bocchini, G. M., Bozzi, E., Roth, M. P., Gaviano, S., Pascucci, G., Grigoli, F., Biondi, E., Sokos, E., & Harrington, R. M. (2025a). Earthquake Catalog and Continuous Waveforms from a Two-Week Distributed Acoustic Sensing experiment on Kefalonia Island, Greece. Authorea Preprints.
Bocchini, G. M., Bozzi, E., Roth, P. M., Gaviano, S., Pascucci, G., Grigoli, F., Biondi, E., Sokos, E., & Harrington, R. (2025b). Earthquake Catalog and Continuous Waveforms from a Two-Week Distributed Acoustic Sensing experiment on Kefalonia Island, Greece.
Bozzi, E., Agostinetti, N. P., Fichtner, A., Klaasen, S., Ugalde, A., Biondi, B., Yuan, S., Dahm, T., Isken, M., Paitz, P., & others. (2024). Modelling uncertainty in P-wave arrival-times retrieved from DAS data: case-studies from 15 fibre optic cables. Geophysical Journal International, 239(3), 1928–1942.
Bozzi, E., Pascucci, G., Rapagnani, G., Bocchini, G. M., Harrington, R., Ugalde, A., Saccorotti, G., & Grigoli, F. (2025a). Near real-time channel selection for Distributed Acoustic Sensing technology. https://arxiv.org/abs/2512.08845
Bozzi, E., Pascucci, G., Rapagnani, G., Bocchini, G. M., Harrington, R., Ugalde, A., Saccorotti, G., & Grigoli, F. (2025b). Near real-time channel selection for Distributed Acoustic Sensing technology. ArXiv Preprint.
Bozzi, E., Saccorotti, G., Agostinetti, P. N., Becerril, C., Fichtner, A., Klaasen, S., Nishimura, T., Shen, J., Walter, F., & Zhu, T. (2024). Complex spatial distribution of onset amplitude and waveform correlation: case studies from different DAS experiments. Bulletin of Geophysics and Oceanography. https://doi.org/10.4430/bgo00458
Cannon, R., & Aminzadeh, F. (2013). Distributed acoustic sensing: State of the art. SPE Digital Energy Conference and Exhibition, SPE-163688. https://doi.org/10.2118/163688-MS
Celli, N. L., Bean, C. J., & O’Brien, G. S. (2024). Full-waveform simulation of DAS records, response and cable-ground coupling. Geophysical Journal International, 236(1), 659–674. https://doi.org/10.1093/gji/ggad449
Daley, T. M., Freifeld, B. M., Ajo-Franklin, J., Dou, S., Pevzner, R., Shulakova, V., Kashikar, S., Miller, D. E., Goetz, J., Henninges, J., & others. (2013). Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. The Leading Edge, 32(6), 699–706.
Fichtner, A., Klaasen, S., Thrastarson, S., Çubuk Sabuncu, Y., Paitz, P., & Jónsdóttir, K. (2022). Fiber-Optic Observation of Volcanic Tremor through Floating Ice Sheet Resonance. The Seismic Record, 2(3), 148–155. https://doi.org/10.1785/0320220010
Hudson, T., Klaasen, S., Fontaine, O., Zunino, A., van Meulebrouck, S., Walter, F., Jonsdottir, K., & Fichtner, A. (2024). Towards a generic fibreoptic earthquake detection and location algorithm for arbitrary fibre geometries and hybrid fibre-seismometer networks [Techreport]. Copernicus Meetings. https://doi.org/10.5194/egusphere-gc12-fibreoptic-26
Instituto Geográfico Nacional (IGN). (2022). Spanish Seismic Catalogue. Instituto Geográfico Nacional. https://doi.org/10.7419/162.03.2022
Isken, M. P., Vasyura-Bathke, H., Dahm, T., & Heimann, S. (2022). De-noising distributed acoustic sensing data using an adaptive frequency–wavenumber filter. Geophysical Journal International, 231(2), 944–949. https://doi.org/10.1093/gji/ggac229
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. (2018). Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-04860-y
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., & Fichtner, A. (2021). Distributed acoustic sensing in volcano-glacial environments: Mount Meager, British Columbia. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/ https://doi.org/10.1029/2021JB022358
Lanza, F., Tuinstra, K. B., Rinaldi, A. P., Tribaldos, V. R., Hopp, C., Bethmann, F., Dyer, B., Meier, P., Serbeto, F., Hertrich, M., & others. (2024). A Prospective Evaluation of Borehole Distributed Acoustic Sensing Technologies for Detecting and Locating Out-of-Network Microseismicity. Distributed Acoustic Sensing in Borehole Geophysics, 311–329.
Lapins, S., Butcher, A., Kendall, J.-M., Hudson, T. S., Stork, A. L., Werner, M. J., Gunning, J., & Brisbourne, A. M. (2024). DAS-N2N: machine learning distributed acoustic sensing (DAS) signal denoising without clean data. Geophysical Journal International, 236(2), 1026–1041. https://doi.org/10.1093/gji/ggad460
Latorre, H., Ventosa, S., Ugalde, A., Villaseñor, A., Bartolomé, R., & Ranero, C. R. (2025). KVP: a multiscale kurtosis approach for seismic phase picking. Geophysical Journal International, 241(3), 1922–1934.
Lay, T., & Wallace, T. C. (1995). Modern global seismology. Elsevier.
Lellouch, A., Lindsey, N. J., Ellsworth, W. L., & Biondi, B. L. (2020). Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the FORGE geothermal experiment. Seismological Society of America, 91(6), 3256–3268. https://doi.org/10.1785/0220200149
Li, J., Kim, T., Lapusta, N., Biondi, E., & Zhan, Z. (2023). The break of earthquake asperities imaged by distributed acoustic sensing. Nature, 620(7975), 800–806.
Li, J., Zhu, W., Biondi, E., & Zhan, Z. (2023). Earthquake focal mechanisms with distributed acoustic sensing. Nature Communications, 14(4181). https://doi.org/10.1038/s41467-023-39639-3
Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., & Ajo-Franklin, J. B. (2017). Fiber-optic network observations of earthquake wavefields. Geophysical Research Letters, 44(23), 11–792. https://doi.org/ https://doi.org/10.1002/2017GL075722
Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerril, C., Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., & Markou, C. (2021). On the detection capabilities of underwater distributed acoustic sensing. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB020925. https://doi.org/ https://doi.org/10.1029/2020JB020925
Malinverno, A., & Briggs, V. A. (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. Geophysics, 69(4), 1005–1016. https://doi.org/10.1190/1.1778243
Martin, E., Biondi, B., Cole, S., & Karrenbach, M. (2017). Overview of the Stanford DAS Array-1 (SDASA-1). Stanford Exploration Project. https://sepwww.stanford.edu/data/media/public/docs/sep168/eileen1/paper.pdf
Menke, W., Lerner-Lam, A. L., Dubendorff, B., & Pacheco, J. (1990). Polarization and coherence of 5 to 30 Hz seismic wave fields at a hard-rock site and their relevance to velocity heterogeneities in the crust. Bulletin of the Seismological Society of America, 80(2), 430–449.
Miller, M. S., Townend, J., & Lai, V. H. (2025). The South Island seismology at the speed of light experiment (SISSLE): Distributed acoustic sensing across and along the Alpine Fault, south Westland, New Zealand. Seismological Research Letters, 96(3), 2065–2078.
Mosegaard, K., & Tarantola, A. (2002). Probabilistic approach to inverse problems. International Geophysics Series, 81(A), 237–268. https://doi.org/10.1016/S0074-6142(02)80219-4
Nishimura, T., Emoto, K., Nakahara, H., Miura, S., Yamamoto, M., Sugimura, S., Ishikawa, A., & Kimura, T. (2021). Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-85621-8
Noe, S., Tuinstra, K. B., Klaasen, S., Krischer, L., & Fichtner, A. (2026). Theoretical background for full-waveform inversion with distributed acoustic sensing and integrated strain sensing. Geophysical Journal International, 244(1), ggaf406.
Obermann, A., Sánchez-Pastor, P., Wu, S.-M., Wollin, C., Baird, A. F., Isken, M. P., Clinton, J., Goertz-Allmann, B. P., Dahm, T., Wuestefeld, A., & ... Wiemer, S. (2022). Combined Large-N Seismic Arrays and DAS Fiber Optic Cables across the Hengill Geothermal Field, Iceland. Seismological Society of America, 93(5), 2498–2514. https://doi.org/10.1785/0220220073
Parker, T., Shatalin, S., & Farhadiroushan, M. (2014). Distributed Acoustic Sensing–a new tool for seismic applications. First Break, 32(2). https://doi.org/10.3997/1365-2397.2013034
Pascucci, G., Gaviano, S., Pozzoli, A., & Grigoli, F. (2025). Signal Enhancement of Distributed Acoustic Sensing data using a Spectral Subtraction-based Approach. Seismological Research Letters. https://doi.org/10.1785/0220250105
Pecci, D., Cesca, S., Niemz, P., Pankow, K., Carelli, G., & Grigoli, F. (2025). Noise Analysis of Distributed Acoustic Sensing (DAS) Data in Borehole Installations. Seismological Research Letters, 96(3), 1703–1718.
Piana Agostinetti, N., Malinverno, A., Bodin, T., Dahner, C., Dineva, S., & Kissling, E. (2023). Weighing Geophysical Data With Trans-Dimensional Algorithms: An Earthquake Location Case Study. Geophysical Research Letters, 50(22), e2023GL102983. https://doi.org/10.1029/2023GL102983
Piana Agostinetti, N., Villa, A., & Saccorotti, G. (2022). Distributed acoustic sensing as a tool for subsurface mapping and seismic event monitoring: a proof of concept. Solid Earth, 13(2), 449–468. https://doi.org/10.5194/se-13-449-2022, 2022
Porras, J., Pecci, D., Bocchini, G. M., Gaviano, S., De Solda, M., Tuinstra, K., Lanza, F., Tognarelli, A., Stucchi, E., & Grigoli, F. (2024). A semblance-based microseismic event detector for DAS data. Geophysical Journal International, 236(3), 1716–1727. https://doi.org/10.1093/gji/ggae016
Riva, F., Agostinetti, N. P., Marzorati, S., & Horan, C. (2024). The micro-seismicity of Co. Donegal (Ireland): Defining baseline seismicity in a region of slow lithospheric deformation. Terra Nova, 36(1), 62–76. https://doi.org/10.1111/ter.12691
Rodriguez, T., Seguı́, A., Ugalde, A., Armas, M. C., Latorre, H., Ventosa, S., & Monfret, T. (2025). Automatic Identification of High-Quality Channels in Distributed Acoustic Sensing Through Implementation of a Channel Quality Index. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18, 19869–19883. https://doi.org/10.1109/JSTARS.2025.3593330
Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Reviews of Geophysics, 40(3), 2–1. https://doi.org/10.1029/2000RG000100
Sambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3), 3–1. https://doi.org/10.1029/2000RG000089
Seguı́, A., Ugalde, A., Fichtner, A., Ventosa, S., & Morros, J. R. (2025). DASPack: Controlled Data Compression for Distributed Acoustic Sensing. Geophysical Journal International, ggaf397.
Strumia, C., Trabattoni, A., Supino, M., Baillet, M., Rivet, D., & Festa, G. (2024). Sensing optical fibers for earthquake source characterization using raw DAS records. Journal of Geophysical Research: Solid Earth, 129(1), e2023JB027860.
Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. SIAM.
Tilmann, F., Atherton, C., Asero, C., Evangelidis, C., Charalampakis, M., Landrø, M., Rondenay, S., Ottemöller, L., Maji, V., Corela, C., & the SUBMERSE WP3 team, ... (2024). Towards continuous fibre-optic monitoring in the oceans with submarine telecommunications cables–the SUBMERSE project [Techreport]. Copernicus Meetings. https://doi.org/10.5194/egusphere-gc12-fibreoptic-31
Trabattoni, A., Biagioli, F., Strumia, C., van den Ende, M., Scotto di Uccio, F., Festa, G., Rivet, D., Sladen, A., Ampuero, J. P., Métaxian, J.-P., & Strutzamann, E. (2023). From strain to displacement: using deformation to enhance distributed acoustic sensing applications. Geophysical Journal International, 235(3), 2372–2384. https://doi.org/10.1093/gji/ggad365
Trabattoni, A., Festa, G., Longo, R., Bernard, P., Plantier, G., Zollo, A., & Strollo, A. (2022). Microseismicity monitoring and site characterization with distributed acoustic sensing (DAS): The case of the Irpinia fault system (Southern Italy). Journal of Geophysical Research: Solid Earth, 127(9), e2022JB024529. https://doi.org/10.1029/2022JB024529
Ugalde, A., Latorre, H., Vidal, P., Martins, H. F., Martin-Lopez, S., & Gonzalez-Herraez, M. (2023). Canary Islands seismic monitoring with Distributed Acoustic Sensing (CANDAS) [Dataset]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/73k1-1369
van den Ende, M., & Ampuero, J.-P. (2021). Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 12(4), 915–934. https://doi.org/ https://doi.org/10.5194/se-12-915-2021, 2021
Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., & Fichtner, A. (2020). Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nature Communications, 11(1), 1–10. https://doi.org/10.1190/geo2019-0752.1
Wuestefeld, A., Spica, Z. J., Aderhold, K., Huang, H.-H., Ma, K.-F., Lai, V. H., Miller, M., Urmantseva, L., Zapf, D., Bowden, D. C., & ... Wang, H. (2024). The Global DAS Month of February 2023. Seismological Research Letters, 95(3), 1569–1577. https://doi.org/10.1785/0220230180
Xiao, H., Tilmann, F., van den Ende, M., Rivet, D., Loureiro, A., Tsuji, T., & Ugalde, A. (2025). DeepDAS: An Earthquake Phase Picker for Submarine Distributed Acoustic Sensing Data. EGU General Assembly Conference Abstracts, EGU25-9380.
Yang, Y., Atterholt, J. W., Shen, Z., Muir, J. B., Williams, E. F., & Zhan, Z. (2022). Sub-kilometer correlation between near-surface structure and ground motion measured with distributed acoustic sensing. Geophysical Research Letters, 49(1), e2021GL096503. https://doi.org/ https://doi.org/10.1029/2021GL096503
Zhan, Z. (2020). Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismological Research Letters, 91(1), 1–15. https://doi.org/10.1785/0220190112
Zhu, W., Biondi, E., Li, J., Yin, J., Ross, Z. E., & Zhan, Z. (2023). Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning. Nature Communication, 14(8192). https://doi.org/10.1038/s41467-023-43355-3
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Emanuele Bozzi, Nicola Piana Agostinetti, Gilberto Saccorotti

This work is licensed under a Creative Commons Attribution 4.0 International License.

