Single-station vehicle tracking using six-component seismic measurements: A comparative study with array-based methods
DOI:
https://doi.org/10.26443/seismica.v4i2.1500Keywords:
Rotational ground motions, Direction of arrival (DOA), Bearing estimation, Source tracking, Rotational sensor, Ring laser gyroscopes, Fiber optic gyroscopes, Six-component (6C) measurements, Polarization analysisAbstract
Determining the direction of seismic waves is crucial for many applications, from monitoring natural hazards like avalanches and landslides to detecting nuclear explosions and conducting surveillance. Traditional methods rely on arrays of seismic sensors arranged in specific patterns, but deploying these arrays can be challenging or impossible in many environments, such as cities, ocean floors, mountains, or other planets. We present an alternative solution: a single-station system that measures six-component (6C) ground motions to determine the direction of seismic sources. Using a collocated seismometer and rotational sensor, we simultaneously record both translational and rotational ground motions to determine the direction of vehicle sources from a single 6C station. The 6C approach not only maintains a small footprint but also extracts directional information from both Rayleigh and Love waves. We validate our method by comparing results from different types of rotational sensors and conventional array-based techniques, including frequency-wavenumber analysis and array-derived rotation. Our findings confirm the 6C method's capability to accurately locate vehicle sources while offering advantages over traditional array deployments, particularly in challenging environments where multiple sensor installations are impractical. The successful application of this method to vehicle tracking demonstrates its versatility beyond traditional seismic studies, opening new opportunities for geohazard early warning systems and urban and environmental seismic noise analysis.
References
Almendros, J., Ibáñez, J. M., Alguacil, G., & Del Pezzo, E. (1999). Array analysis using circular-wave-front geometry: An application to locate the nearby seismo-volcanic source. Geophysical Journal International, 136(1), 159–170. https://doi.org/10.1046/j.1365-246X.1999.00699.x
Asgari, S., Stafsudd, J. Z., Hudson, R. E., Yao, K., & Taciroglu, E. (2015). Moving source localization using seismic signal processing. Journal of Sound and Vibration, 335, 384–396. https://doi.org/10.1016/j.jsv.2014.09.027
Bernauer, F., Wassermann, J., Guattari, F., Frenois, A., Bigueur, A., Gaillot, A., de Toldi, E., Ponceau, D., Schreiber, U., & Igel, H. (2018). BlueSeis3A: Full characterization of a 3C broadband rotational seismometer. Seismological Research Letters, 89(2A), 620–629. https://doi.org/10.1785/0220170143
Bormann, P., & Wielandt, E. (2013). Seismic signals and noise. In New Manual of Seismological Observatory Practice 2 (NMSOP2) (pp. 1–62). Deutsches GeoForschungsZentrum GFZ.
Brenguier, F., Clarke, D., Aoki, Y., Shapiro, N. M., Campillo, M., & Ferrazzini, V. (2011). Monitoring volcanoes using seismic noise correlations. Comptes Rendus Geoscience, 343(8–9), 633–638. https://doi.org/10.1016/j.crte.2010.12.010
Brokešová, J., & Málek, J. (2013). Rotaphone, a self-calibrated six-degree-of-freedom seismic sensor and its strong-motion records. Seismological Research Letters, 84(5), 737–744. https://doi.org/10.1785/0220120189
Burtin, A., Vergne, J., Rivera, L., & Dubernet, P. (2010). Location of river-induced seismic signal from noise correlation functions. Geophysical Journal International, 182(3), 1161–1173. https://doi.org/10.1111/j.1365-246X.2010.04701.x
Cao, Y., Chen, Y., Zhou, T., Yang, C., Zhu, L., Zhang, D., Cao, Y., Zeng, W., He, D., & Li, Z. (2021). The development of a new IFOG-based 3C rotational seismometer. Sensors, 21(11), 3899.
Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418. https://doi.org/10.1109/PROC.1969.7278
Chen, C., Wang, Y., Sun, L., Lin, C.-J., Wei, Y., Liao, C., Lin, B., & Qin, L. (2023). Six-Component Earthquake Synchronous Observations Across Taiwan Strait: Phase Velocity and Source Location. Earth and Space Science, 10(12), e2023EA003040. https://doi.org/10.1029/2023EA003040
Davy, C., Barruol, G., Fontaine, F. R., Sigloch, K., & Stutzmann, E. (2014). Tracking major storms from microseismic and hydroacoustic observations on the seafloor. Geophysical Research Letters, 41(24), 8825–8831. https://doi.org/10.1002/2014GL062319
Diaz, J., Ruiz, M., Udina, M., Polls, F., Martı́, D., & Bech, J. (2023). Monitoring storm evolution using a high-density seismic network. Scientific Reports, 13(1), 1853. https://doi.org/10.1038/s41598-023-28902-8
Dı́az, J., Ruiz, M., Sánchez-Pastor, P. S., & Romero, P. (2017). Urban seismology: On the origin of earth vibrations within a city. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-15499-y
Edme, P., & Yuan, S. (2016). Local dispersion curve estimation from seismic ambient noise using spatial gradients. Interpretation, 4(3), SJ17–SJ27. https://doi.org/10.1190/INT-2016-0003.1
Fan, W., McGuire, J. J., de Groot-Hedlin, C. D., Hedlin, M. A., Coats, S., & Fiedler, J. W. (2019). Stormquakes. Geophysical Research Letters, 46(22), 12909–12918. https://doi.org/10.1029/2019GL084217
Fischer, J., Redlich, J.-P., Scheuermann, B., Schiller, J., Günes, M., Nagel, K., Wagner, P., Scheidgen, M., Zubow, A., Eveslage, I., & others. (2013). From earthquake detection to traffic surveillance–about information and communication infrastructures for smart cities. System Analysis and Modeling: Theory and Practice: 7th International Workshop, SAM 2012, Innsbruck, Austria, October 1-2, 2012. Revised Selected Papers 7, 121–141.
Fuchs, F., & Bokelmann, G. (2018). Equidistant spectral lines in train vibrations. Seismological Research Letters, 89(1), 56–66. https://doi.org/10.1785/0220170092
Gal, M., & Reading, A. M. (2019). Beamforming and polarization analysis. Seismic Ambient Noise, 30. https://doi.org/10.1017/9781108264808.004
Gebauer, A., Tercjak, M., Schreiber, K. U., Igel, H., Kodet, J., Hugentobler, U., Wassermann, J., Bernauer, F., Lin, C.-J., Donner, S., & others. (2020). Reconstruction of the Instantaneous Earth Rotation Vector with Sub-Arcsecond Resolution Using a Large Scale Ring Laser Array. Physical Review Letters, 125(3), 033605. https://doi.org/10.1103/PhysRevLett.125.033605
Greenhalgh, S., Sollberger, D., Schmelzbach, C., & Rutty, M. (2018). Single-station polarization analysis applied to seismic wavefields: A tutorial. Advances in Geophysics, 59, 123–170. https://doi.org/10.1016/bs.agph.2018.09.002
Hadziioannou, C., Gaebler, P., Schreiber, U., Wassermann, J., & Igel, H. (2012). Examining ambient noise using colocated measurements of rotational and translational motion. Journal of Seismology, 16(4), 787–796. https://doi.org/10.1007/s10950-012-9288-5
Hadziioannou, C., Larose, E., Baig, A., Roux, P., & Campillo, M. (2011). Improving temporal resolution in ambient noise monitoring of seismic wave speed. Journal of Geophysical Research: Solid Earth, 116(B7). https://doi.org/10.1029/2011JB008200
Hao, H., & Ang, T. C. (1998). Analytical modeling of traffic-induced ground vibrations. Journal of Engineering Mechanics, 124(8), 921–928. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(921)
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Heck, M., Hobiger, M., Van Herwijnen, A., Schweizer, J., & Fäh, D. (2019). Localization of seismic events produced by avalanches using multiple signal classification. Geophysical Journal International, 216(1), 201–217. https://doi.org/10.1093/gji/ggy394
Hu, H., Shao, Y., Tang, L., Ma, J., He, Z., & Gao, S. (2018). Overview of harmonic and resonance in railway electrification systems. IEEE Transactions on Industry Applications, 54(5), 5227–5245. https://doi.org/10.1109/TIA.2018.2813967
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(03), 90–95. https://doi.org/10.1109/MCSE.2007.55
Igel, H., Cochard, A., Wassermann, J., Flaws, A., Schreiber, U., Velikoseltsev, A., & Pham Dinh, N. (2007). Broad-band observations of earthquake-induced rotational ground motions. Geophysical Journal International, 168(1), 182–196. https://doi.org/10.1111/j.1365-246X.2006.03146.x
Igel, H., Schreiber, K. U., Gebauer, A., Bernauer, F., Egdorf, S., Simonelli, A., Liny, C.-J., Wassermann, J., Donner, S., Hadziioannou, C., Yuan, S., Brotzer, A., Kodet, J., Tanimoto, T., Hugentobler, U., & Wells7, J.-P. R. (2021). ROMY: A Multi-Component Ring Laser for Geodesy and Geophysics. Geophysical Journal International. https://doi.org/10.1093/gji/ggaa614
Kedar, S., & Webb, F. H. (2005). The ocean’s seismic hum. Science, 307(5710), 682–683. https://doi.org/10.1126/science.1108380
Keil, S., Wassermann, J., & Igel, H. (2021). Single-station seismic microzonation using 6C measurements. Journal of Seismology, 25, 103–114. https://doi.org/10.1007/s10950-020-09944-1
Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 13(4), 67–94. https://doi.org/10.1109/79.526899
Langston, C. A. (2007). Spatial gradient analysis for linear seismic arrays. Bulletin of the Seismological Society of America, 97(1B), 265–280. https://doi.org/10.1785/0120060100
Lindsey, N. J., & Martin, E. R. (2021). Fiber-optic seismology. Annual Review of Earth and Planetary Sciences, 49(1), 309–336. https://doi.org/10.1146/annurev-earth-072420-065213
Liu, H., Ma, J., Xu, T., Yan, W., Ma, L., & Zhang, X. (2019). Vehicle Detection and Classification Using Distributed Fiber Optic Acoustic Sensing. IEEE Transactions on Vehicular Technology, 69(2), 1363–1374. https://doi.org/10.1109/TVT.2019.2962334
Manconi, A., Picozzi, M., Coviello, V., De Santis, F., & Elia, L. (2016). Real-time detection, location, and characterization of rockslides using broadband regional seismic networks. Geophysical Research Letters, 43(13), 6960–6967. https://doi.org/10.1002/2016GL069572
Margheriti, L., Nostro, C., Cocina, O., Castellano, M., Moretti, M., Lauciani, V., Quintiliani, M., Bono, A., Mele, F. M., Pintore, S., & others. (2021). Seismic surveillance and earthquake monitoring in Italy. Seismological Research Letters, 92(3), 1659–1671.
Martin, E., Lindsey, N., Dou, S., Ajo-Franklin, J., Daley, T., Freifeld, B., Robertson, M., Ulrich, C., Wagner, A., & Bjella, K. (2016). Interferometry of a roadside DAS array in Fairbanks, AK. In SEG Technical Program Expanded Abstracts 2016 (pp. 2725–2729). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2016-13963708.1
Megies, T., Beyreuther, M., Barsch, R., Krischer, L., & Wassermann, J. (2011). ObsPy–What can it do for data centers and observatories? Annals of Geophysics, 54(1), 47–58. https://doi.org/10.3929/ethz-b-000130217
Nakata, N. (2016). Near-surface S-wave velocities estimated from traffic-induced Love waves using seismic interferometry with double beamforming. Interpretation, 4(4), SQ23–SQ31. https://doi.org/10.1190/INT-2016-0013.1
Obermann, A., Froment, B., Campillo, M., Larose, E., Planes, T., Valette, B., Chen, J., & Liu, Q. (2014). Seismic noise correlations to image structural and mechanical changes associated with the Mw 7.9 2008 Wenchuan earthquake. Journal of Geophysical Research: Solid Earth, 119(4), 3155–3168. https://doi.org/10.1002/2013JB010932
Obermann, A., Planes, T., Larose, E., & Campillo, M. (2013). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. Journal of Geophysical Research: Solid Earth, 118(12), 6285–6294. https://doi.org/10.1002/2013JB010399
Reinwald, M., Moseley, B., Szenicer, A., Nissen-Meyer, T., Oduor, S., Vollrath, F., Markham, A., & Mortimer, B. (2021). Seismic localization of elephant rumbles as a monitoring approach. Journal of the Royal Society Interface, 18(180), 20210264. https://doi.org/10.1098/rsif.2021.0264
Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674–2681. https://doi.org/10.1002/2015GL063558
Smith, D. (2010). ATA’s nanoradian-class rotational sensors. Second IWGoRS Workshop, October, 11–13.
Sollberger, D., Greenhalgh, S. A., Schmelzbach, C., Van Renterghem, C., & Robertsson, J. O. (2018). 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications. Geophysical Journal International, 213(1), 77–97. https://doi.org/doi.org/10.1093/gji/ggx542
Spudich, P., Steck, L. K., Hellweg, M., Fletcher, J., & Baker, L. M. (1995). Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: Observations from the UPSAR dense seismograph array. Journal of Geophysical Research: Solid Earth, 100(B1), 675–690. https://doi.org/10.1029/94JB02477
Suriñach Cornet, E., Vilajosana Guillén, I., Khazaradze, G., Biescas Górriz, B., Furdada i Bellavista, G., & Vilaplana, J. M. (2005). Seismic detection and characterization of landslides and other mass movements. Natural Hazards and Earth System Sciences, 2005, Vol. 5, p. 791-798. https://doi.org/10.5194/nhess-5-791-2005
Tape, C., Ringler, A. T., & Hampton, D. L. (2020). Recording the aurora at seismometers across Alaska. Seismological Research Letters, 91(6), 3039–3053. https://doi.org/10.1785/0220200161
Tonnellier, A., Helmstetter, A., Malet, J.-P., Schmittbuhl, J., Corsini, A., & Joswig, M. (2013). Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies. Geophysical Journal International, 193(3), 1515–1536. https://doi.org/10.1093/gji/ggt039
Valero, M., Li, F., & Song, W. (2019). Smart seismic network for shallow subsurface imaging and infrastructure security. International Journal of Sensor Networks, 31(1), 10–23.
Venkatraman, D., Reddy, V., & Khong, A. W. (2011). A study of the ambiguity problem in footstep bearing estimation using tri-axial geophone. 2011 8th International Conference on Information, Communications & Signal Processing, 1–5. https://doi.org/10.1109/ICICS.2011.6173512
Wang, H., Quan, W., Wang, Y., & Miller, G. R. (2014). Dual roadside seismic sensor for moving road vehicle detection and characterization. Sensors, 14(2), 2892–2910. https://doi.org/10.3390/s140202892
Wassermann, J., Wietek, A., Hadziioannou, C., & Igel, H. (2016). Toward a single-station approach for microzonation: Using vertical rotation rate to estimate Love-wave dispersion curves and direction finding. Bulletin of the Seismological Society of America, 106(3), 1316–1330. https://doi.org/10.1785/0120150250
Yuan, S. (2024). Shihao-Yuan/6C-source-tracking: Tracking vehicle sources using six-component single-station seismic measurements (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.14017149
Yuan, S., Gessele, K., Gabriel, A.-A., May, D. A., Wassermann, J., & Igel, H. (2020). Seismic source tracking with six degree-of-freedom ground motion observations. Journal of Geophysical Research: Solid Earth, e2020JB021112. https://doi.org/10.1029/2020JB021112
Yuan, S., Simonelli, A., Lin, C.-J., Bernauer, F., Donner, S., Braun, T., Wassermann, J., & Igel, H. (2020). Six Degree-of-Freedom Broadband Ground-Motion Observations with Portable Sensors: Validation, Local Earthquakes, and Signal Processing. Bulletin of the Seismological Society of America, 110(3), 953–969. https://doi.org/10.1785/0120190277
Zhao, Y., Nilot, E. A., Li, B., Fang, G., Luo, W., & Li, Y. E. (2023). Seismic attenuation extraction from traffic signals recorded by a single seismic station. Geophysical Research Letters, 50(3), e2022GL100548. https://doi.org/10.1029/2022GL100548
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shihao Yuan, Felix Bernauer, Joachim Wassermann, Eileen R. Martin, Heiner Igel

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
European Research Council
Grant numbers 339991 -
National Science Foundation
Grant numbers 2046387 -
U.S. Geological Survey
Grant numbers G24AP00238-00