A 3D finite-element mesh for modeling large-scale surface deformation induced by subduction megathrust earthquakes: Application to Chile

Authors

  • Hugo Boulze Laboratoire de géologie - CNRS UMR 8538, École normale supérieure - PSL University, Paris, France https://orcid.org/0000-0001-9935-3145
  • Jean-Didier Garaud DMAS, ONERA, Université Paris-Saclay,92320, Châtillon, France https://orcid.org/0009-0008-6214-9464
  • Emilie Klein Laboratoire de géologie - CNRS UMR 8538, École normale supérieure - PSL University, Paris, France https://orcid.org/0000-0003-3239-5118
  • Luce Fleitout Laboratoire de géologie - CNRS UMR 8538, École normale supérieure - PSL University, Paris, France https://orcid.org/0000-0003-1114-3616
  • Christophe Vigny Laboratoire de géologie - CNRS UMR 8538, École normale supérieure - PSL University, Paris, France
  • Vincent Chiaruttini DMAS, ONERA, Université Paris-Saclay,92320, Châtillon, France https://orcid.org/0000-0002-1541-1588

DOI:

https://doi.org/10.26443/seismica.v4i2.1544

Keywords:

chile, viscoelastic relaxation, seismic cycle, finite-element model

Abstract

Megaearthquakes (Mw > 8) cause continental-scale, long-lasting surface deformation, mainly due to viscoelastic relaxation of the asthenosphere. To investigate the links between this deformation and the slip history along subduction interfaces—including earthquakes, postseismic slip, and interseismic coupling—large 3D spherical finite-element meshes are required.  
This technical report introduces the various steps to build Chile_Mesh_v1.0, a customizable mesh for the Chilean subduction zone, designed as a robust platform for testing various viscoelastic rheologies. It spans ~8500 km in longitude, ~7300 km in latitude, encompassing the entire South American plate, and from the surface to 2900 km depth. Special care was taken to reproduce the complex slab geometry, especially in flat-slab regions such as the Pampean and Peruvian segments, following the Slab2 model.  
We show that accurately modeling both coseismic and postseismic deformation over large scales requires realistic meshed domains, extending down to the Core-Mantle boundary and thousands of kilometers from the trench. In some cases, depth-reduced meshes can be used to model viscoelastic postseismic deformation, but they fail to simultaneously capture coseismic deformation accurately. We hope this open-access mesh proves valuable for researchers studying subduction dynamics in Chile and supports the development of similar models for other regions.

References

Agata, R., Barbot, S., Fujita, K., Hyodo, M., Iinuma, T., Nakata, R., Ichimura, T., & Hori, T. (2019). Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-08984-7

Argus, D. F., Peltier, W. R., Blewitt, G., & Kreemer, C. (2021). The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB021537. https://doi.org/10.1029/2020JB021537

Backus, G. E. (1967). Converting Vector and Tensor Equations to Scalar Equations in Spherical Coordinates. Geophysical Journal International, 13(1–3), 71–101. https://doi.org/10.1111/j.1365-246X.1967.tb02147.x

Barrientos, S. E., & Ward, S. N. (1990). The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophysical Journal International, 103(3), 589–598. https://doi.org/10.1111/j.1365-246X.1990.tb05673.x

Bedford, J., Moreno, M., Li, S., Oncken, O., Baez, J. C., Bevis, M., Heidbach, O., & Lange, D. (2016). Separating rapid relocking, afterslip, and viscoelastic relaxation: An application of the postseismic straightening method to the Maule 2010 cGPS. Journal of Geophysical Research: Solid Earth, 121(10), 7618–7638. https://doi.org/10.1002/2016JB013093

Boulze, H., Fleitout, L., Klein, E., & Vigny, C. (2022). Post-seismic motion after 3 Chilean megathrust earthquakes: a clue for a linear asthenospheric viscosity. Geophysical Journal International, 231(3), 1471–1478. https://doi.org/10.1093/gji/ggac255

Broerse, T., Riva, R., Simons, W., Govers, R., & Vermeersen, B. (2015). Postseismic GRACE and GPS observations indicate a rheology contrast above and below the Sumatra slab. Journal of Geophysical Research: Solid Earth, 120(7), 5343–5361. https://doi.org/10.1002/2015JB011951

Cathles, L. M. (2015). Viscosity of the Earth’s Mantle. Princeton University Press. https://books.google.fr/books?id=yvB9BgAAQBAJ

Celli, N., Lebedev, S., Schaeffer, A., Ravenna, M., & Gaina, C. (2020). The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets. Geophysical Journal International, 221, 178–204. https://doi.org/10.1093/gji/ggz574

Chiaruttini, V., & Vattré, A. (2022). Approche monolithique globale/locale à interface diffuse par intersection de maillage. CSMA 2022 15ème Colloque National En Calcul Des Structures. https://hal.science/hal-03687489v1/file/chiaruttini_vattre.pdf

Cifuentes, I. L. (1989). The 1960 Chilean earthquakes. Journal of Geophysical Research: Solid Earth, 94(B1), 665–680. https://doi.org/https://doi.org/10.1029/JB094iB01p00665

Contreras-Reyes, E., Carvajal, M., & González, F. (2025). Offshore geometry of the South America subduction zone plate boundary. Earth and Planetary Science Letters, 651, 119175. https://doi.org/10.1016/j.epsl.2024.119175

Contreras-Reyes, E., Flueh, E. R., & Grevemeyer, I. (2010). Tectonic control on sediment accretion and subduction off south central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics, 29(6). http://doi.org/10.1029/2010TC002734

Dalton, C. A., Ekström, G., & Dziewoński, A. M. (2008). The global attenuation structure of the upper mantle. Journal of Geophysical Research: Solid Earth, 113(B9). http://doi.org/10.1029/2007JB005429

Deuss, A., Redfern, S. A. T., Chambers, K., & Woodhouse, J. H. (2006). The Nature of the 660-Kilometer Discontinuity in Earth’s Mantle from Global Seismic Observations of PP Precursors. Science, 311(5758), 198–201. https://doi.org/10.1126/science.1120020

Dumoulin, C., Doin, M.-P., & Fleitout, L. (1999). Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology. Journal of Geophysical Research: Solid Earth, 104(B6), 12759–12777. https://doi.org/10.1029/1999JB900110

Freed, A. M., Bürgmann, R., Calais, E., Freymueller, J., & Hreinsdóttir, S. (2006). Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. Journal of Geophysical Research: Solid Earth, 111(B1). https://doi.org/10.1029/2005JB003894

Freed, A. M., Hashima, A., Becker, T. W., Okaya, D. A., Sato, H., & Hatanaka, Y. (2017). Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth and Planetary Science Letters, 459, 279–290. https://doi.org/10.1016/j.epsl.2016.11.040

Freed, A. M., & Lin, J. (2001). Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer. Nature, 411(6834), 180–183. https://doi.org/https://doi.org/10.1038/35075548

Garaud, J.-D., Fleitout, L., & Cailletaud, G. (2009). Simulation parallèle de la relaxation post-sismique dans la région de Sumatra. Neuvième Colloque En Calcul Des Structures, 585–590.

Glodny, J., Echtler, H., Figueroa, O., Franz, G., Gräfe, K., Kemnitz, H., Kramer, W., Krawczyk, C., Lohrmann, J., Lucassen, F., Melnick, D., Rosenau, M., & Seifert, W. (2006). Long-Term Geological Evolution and Mass-Flow Balance of the South-Central Andes. In O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Götze, V. A. Ramos, M. R. Strecker, & P. Wigger (Eds.), The Andes: Active Subduction Orogeny (pp. 401–428). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-48684-8_19

Hayes, G., Moore, G., Portner, D., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362, eaat4723. https://doi.org/10.1126/science.aat4723

Hormazábal, J., Moreno, M., Ortega-Culaciati, F., Báez, J. C., Peña, C., Sippl, C., González-Vidal, D., Ruiz, J., Metzger, S., & Yoshioka, S. (2023). Fast relocking and afterslip-seismicity evolution following the 2015 Mw 8.3 Illapel earthquake in Chile. Scientific Reports, 13(1), 19511. https://doi.org/10.1038/s41598-023-45369-9

Hu, Y., Wang, K., He, J., Klotz, J., & Khazaradze, G. (2004). Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/10.1029/2004JB003163.

Hu, Yan, Bürgmann, R., Freymueller, J. T., Banerjee, P., & Wang, K. (2014). Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth, Planets and Space, 66, 1–10. https://doi.org/10.1186/1880-5981-66-106

Hu, Yan, & Wang, K. (2012). Spherical-Earth finite element model of short-term postseismic deformation following the 2004 Sumatra earthquake. Journal of Geophysical Research: Solid Earth, 117(B5). https://doi.org/10.1029/2012JB009153.

Jolivet, R., Simons, M., Duputel, Z., Olive, J.-A., Bhat, H. S., & Bletery, Q. (2020). Interseismic Loading of Subduction Megathrust Drives Long-Term Uplift in Northern Chile. Geophysical Research Letters, 47(8), e2019GL085377. https://doi.org/10.1029/2019GL085377

Khazaradze, G., Wang, K., Klotz, J., Hu, Y., & He, J. (2002). Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology. Geophysical Research Letters, 29(22), 7-1-7–4. https://doi.org/10.1029/2002GL015986

Klein, E., Fleitout, L., Vigny, C., & Garaud, J. D. (2016). Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 Mw 8.8 Maule earthquake (Chile). Geophysical Journal International, 205(3), 1455–1472. https://doi.org/10.1093/gji/ggw086

Klein, E., Vigny, C., Fleitout, L., Grandin, R., Jolivet, R., Rivera, E., & Métois, M. (2017). A comprehensive analysis of the Illapel 2015 Mw8.3 earthquake from GPS and InSAR data. Earth and Planetary Science Letters, 469, 123–134. https://doi.org/10.1016/j.epsl.2017.04.010

Klein, Emilie, Vigny, C., Nocquet, J.-M., & Boulze, H. (2022). A 20 year-long GNSS solution across South-America with focus in Chile. Bulletin de La Société Géologique de France. https://doi.org/10.1051/bsgf/2022005

Klotz, J., Khazaradze, G., Angermann, D., Reigber, C., Perdomo, R., & Cifuentes, O. (2001). Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth and Planetary Science Letters, 193(3–4), 437–446. https://doi.org/10.1016/S0012-821X(01)00532-5

Li, S., Moreno, M., Bedford, J., Rosenau, M., Heidbach, O., Melnick, D., & Oncken, O. (2017). Postseismic uplift of the Andes following the 2010 Maule earthquake: Implications for mantle rheology. Geophysical Research Letters, 44(4), 1768–1776. https://doi.org/10.1002/2016GL071995

Li, S., Moreno, M., Bedford, J., Rosenau, M., & Oncken, O. (2015). Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone. Journal of Geophysical Research: Solid Earth, 120(6), 4522–4538. https://doi.org/10.1002/2015JB011903

Liu, T., Fu, G., She, Y., Meng, G., Zou, Z., Wu, W., Shestakov, N. V., Gerasimenko, M. D., Bykov, V. G., & Pupatenko, V. V. (2023). Post-seismic deformation following the 2011 Mw9.0 Tohoku–Oki earthquake and its impact on Northeast Asia. Geophysical Journal International, 235(2), 1479–1492. https://doi.org/10.1093/gji/ggad314

Lovery, B., Radiguet, M., Chlieh, M., Norabuena, E., Villegas-Lanza, J. C., Cresseaux, J., Ragon, T., Tsapong-Tsague, A., Tavera, H., & Socquet, A. (2025). Viscoelastic Relaxation Following the 2001 Mw 8.4 Arequipa Earthquake and Its Impact on the Interseismic Coupling of the South Peru Megathrust. Geophysical Research Letters, 52(12), e2024GL113879. https://doi.org/10.1029/2024GL113879

Maksymowicz, A., Ruiz, J., Vera, E., Contreras-Reyes, E., Ruiz, S., Arraigada, C., Bonvalot, S., & Bascuñan, S. (2018). Heterogeneous structure of the Northern Chile marine forearc and its implications for megathrust earthquakes. Geophysical Journal International, 215(2), 1080–1097. https://doi.org/10.1093/gji/ggy325

Marsman, C. P., Vossepoel, F. C., D’Acquisto, M., van Dinther, Y., van de Wiel, L., & Govers, R. (2025). Unraveling Processes and Rheology of the Tohoku Earthquake Cycle Using Bayesian Inference. Journal of Geophysical Research: Solid Earth, 130(5), e2024JB029665. https://doi.org/10.1029/2024JB029665

Melnick, D., Moreno, M., Quinteros, J., Baez, J. C., Deng, Z., Li, S., & Oncken, O. (2017). The super-interseismic phase of the megathrust earthquake cycle in Chile. Geophysical Research Letters, 44(2), 784–791. https://doi.org/https://doi.org/10.1002/2016GL071845

Melosh, H. J., & Raefsky, A. (1981). A simple and efficient method for introducing faults into finite element computations. Bulletin of the Seismological Society of America, 71(5), 1391–1400. https://doi.org/10.1785/BSSA0710051391

Moreno, M., Melnick, D., Rosenau, M., Baez, J., Klotz, J., Oncken, O., Tassara, A., Chen, J., Bataille, K., Bevis, M., Socquet, A., Bolte, J., Vigny, C., Brooks, B., Ryder, I., Grund, V., Smalley, B., Carrizo, D., Bartsch, M., & Hase, H. (2012). Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth and Planetary Science Letters, 321–322, 152–165. https://doi.org/10.1016/j.epsl.2012.01.006

Moreno, M., Melnick, D., Rosenau, M., Bolte, J., Klotz, J., Echtler, H., Baez, J., Bataille, K., Chen, J., Bevis, M., Hase, H., & Oncken, O. (2011). Heterogeneous plate locking in the South–Central Chile subduction zone: Building up the next great earthquake. Earth and Planetary Science Letters, 305(3), 413–424. https://doi.org/10.1016/j.epsl.2011.03.025

Nield, G. A., King, M. A., Steffen, R., & Blank, B. (2022). A global, spherical finite-element model for post-seismic deformation using Abaqus. Geoscientific Model Development, 15(6), 2489–2503. https://doi.org/10.5194/gmd-15-2489-2022

Oryan, B., Olive, J.-A., Jolivet, R., Malatesta, L. C., Gailleton, B., & Bruhat, L. (2024). Megathrust locking encoded in subduction landscapes. Science Advances, 10(17), eadl4286. https://doi.org/10.1126/sciadv.adl4286

Peña, C., Heidbach, O., Moreno, M., Bedford, J., Ziegler, M., Tassara, A., & Oncken, O. (2019). Role of Lower Crust in the Postseismic Deformation of the 2010 Maule Earthquake: Insights from a Model with Power-Law Rheology. Pure and Applied Geophysics, 176(9), 3913–3928. https://doi.org/10.1007/s00024-018-02090-3

Peña, C., Heidbach, O., Moreno, M., Bedford, J., Ziegler, M., Tassara, A., & Oncken, O. (2020). Impact of power-law rheology on the viscoelastic relaxation pattern and afterslip distribution following the 2010 Mw 8.8 Maule earthquake. Earth and Planetary Science Letters, 542, 116292. https://doi.org/10.1016/j.epsl.2020.116292

Pollitz, F., Banerjee, P., Grijalva, K., Nagarajan, B., & Bürgmann, R. (2008). Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M= 9.2 Sumatra earthquake. Geophysical Journal International, 173(1), 189–204. https://doi.org/10.1111/j.1365-246X.2007.03666.x

Pollitz, F. F. (1997). Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. Journal of Geophysical Research: Solid Earth, 102(B8), 17921–17941. https://doi.org/10.1029/97JB01277

Pollitz, F. F. (2003). Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model. Geophysical Journal International, 155(1), 57–78. https://doi.org/10.1046/j.1365-246X.2003.01980.x

Pollitz, F. F., Bürgmann, R., & Banerjee, P. (2006). Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophysical Journal International, 167(1), 397–420. https://doi.org/10.1111/j.1365-246X.2006.03018.x

Resovsky, J., Trampert, J., & Van der Hilst, R. D. (2005). Error bars for the global seismic Q profile. Earth and Planetary Science Letters, 230(3), 413–423. https://doi.org/10.1016/j.epsl.2004.12.008

Ringwood, A., & Irifune, T. (1988). Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation. Nature, 331(6152), 131–136. https://doi.org/10.1038/331131a0

Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984–4996. https://doi.org/10.1029/JB088iB06p04984

Sodoudi, F., Yuan, X., Asch, G., & Kind, R. (2011). High-resolution image of the geometry and thickness of the subducting Nazca lithosphere beneath northern Chile. Journal of Geophysical Research: Solid Earth, 116(B4). https://doi.org/10.1029/2010JB007829.

Suito, H. (2017). Importance of rheological heterogeneity for interpreting viscoelastic relaxation caused by the 2011 Tohoku-Oki earthquake. Earth, Planets and Space, 69(1), 1–12. https://doi.org/10.1186/s40623-017-0611-9

Suito, H., & Freymueller, J. T. (2009). A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. Journal of Geophysical Research: Solid Earth, 114(B11). https://doi.org/10.1029/2008JB005954

Sun, T., Wang, K., & He, J. (2018). Crustal Deformation Following Great Subduction Earthquakes Controlled by Earthquake Size and Mantle Rheology. Journal of Geophysical Research: Solid Earth, 123(6), 5323–5345. https://doi.org/10.1029/2017JB015242

Sun, T., Wang, K., Iinuma, T., Hino, R., He, J., Fujimoto, H., Kido, M., Osada, Y., Miura, S., Ohta, Y., & others. (2014). Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature, 514(7520), 84–87. https://doi.org/10.1038/nature13778

Trubienko, O., Garaud, J.-D., & Fleitout, L. (2014). Models of postseismic deformation after megaearthquakes: the role of various rheological and geometrical parameters of the subduction zone. Solid Earth Discussions, 6, 427–466. https://doi.org/10.5194/sed-6-427-2014

Trubienko, Olga, Fleitout, L., Garaud, J.-D., & Vigny, C. (2013). Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes. Tectonophysics, 589, 126–141. https://doi.org/10.1016/j.tecto.2012.12.027

Vigny, C., Rudloff, A., Ruegg, J.-C., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Physics of the Earth and Planetary Interiors, 175(1), 86–95. https://doi.org/https://doi.org/10.1016/j.pepi.2008.02.013

von Huene, R., Corvalán, J., Flueh, E. R., Hinz, K., Korstgard, J., Ranero, C. R., & Weinrebe, W. (1997). Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics, 16(3), 474–488. https://doi.org/10.1029/96TC03703

Wang, K., Hu, Y., Bevis, M., Kendrick, E., Smalley Jr., R., Vargas, R. B., & Lauría, E. (2007). Crustal motion in the zone of the 1960 Chile earthquake: Detangling earthquake-cycle deformation and forearc-sliver translation. Geochemistry, Geophysics, Geosystems, 8(10).

Wang, K., Hu, Y., & He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484(7394), 327–332. https://doi.org/10.1038/nature11032

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/https://doi.org/10.1029/2019GC008515

Wu, P., & Peltier, W. R. (1982). Viscous gravitational relaxation. Geophysical Journal International, 70(2), 435–485. https://doi.org/10.1111/j.1365-246X.1982.tb04976.x

Downloads

Published

2025-09-05

How to Cite

Boulze, H., Garaud, J.-D., Klein, E., Fleitout, L., Vigny, C., & Chiaruttini, V. (2025). A 3D finite-element mesh for modeling large-scale surface deformation induced by subduction megathrust earthquakes: Application to Chile. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1544

Issue

Section

Reports (excl. Fast Reports)

Funding data