Alaska Upper Crustal Velocities Revealed by Air-to-Ground Coupled Waves From the 2022 Hunga Tonga-Hunga Ha’apai Eruption

Authors

  • Kenneth Macpherson Wilson Alaska Technical Center, Geophysical Institute, University of Alaska Fairbanks
  • David Fee Wilson Alaska Technical Center, Geophysical Institute, University of Alaska Fairbanks https://orcid.org/0000-0002-0936-9977
  • Stefan Awender Wilson Alaska Technical Center, Geophysical Institute, University of Alaska Fairbanks https://orcid.org/0000-0001-8069-0045
  • Bryant Chow Wilson Alaska Technical Center, Geophysical Institute, University of Alaska Fairbanks https://orcid.org/0000-0002-3901-4755
  • Juliann Colwell Wilson Alaska Technical Center, Geophysical Institute, University of Alaska Fairbanks https://orcid.org/0000-0002-9686-4326
  • Sam Delamere Wilson Alaska Technical Center, Geophysical Institute, University of Alaska Fairbanks
  • Matt Haney Alaska Volcano Observatory, United States Geological Survey

DOI:

https://doi.org/10.26443/seismica.v4i2.1557

Keywords:

air-to-ground coupling, Hunga-Tonga Volcano, seismoacoustic, Alaska crustal velocity, Shear-wave Velocity Models

Abstract

Pressure changes in the atmosphere couple to the solid earth, producing ground motions that contain information about local crustal elastic parameters. This type of air-to-ground coupled wave was observed globally following the largest explosion of the instrumental age, the climactic eruption of the Hunga Tonga-Hunga Ha’apai volcano on 15th January, 2022. We utilize this unprecedented source, along with the presence of colocated seismometers, infrasound sensors, and barometers in Alaska, to examine coupling and reveal elastic parameters beneath the stations. We derive coupling spectra by forming seismic--to--pressure amplitude ratios as a function of frequency, and identify passbands of high coherence between the pressure and seismic records. By relating coupling spectra in high-coherence bands to elastic parameters, we estimate mean shear wave velocities under stations to a depth encompassing much of the upper crust. Our velocity estimates from low-frequency coupling exhibit good agreement with a previously existing tomographic velocity model from Berg et al. (2020), while estimates from high-frequency coupling show considerable scatter when compared to proxy Vs30, even though the overall values are reasonable. In addition to providing velocity estimates, our results also indicate that, for the broadband pressure signals from the Hunga Tonga-Hunga Ha’apai eruption, microseismic noise exerts a strong effect on the frequency bands where coupling is observed, and that the air-to-ground coupled waves exhibit significant complexity not necessarily described by theory. Our results show that coupling observations provide a simple forward observation of mean seismic velocities beneath seismoacoustic stations, without the need to resort to complex inversion schemes. It is remarkable that pressure waves generated thousands of kilometers away are able to reveal the seismic velocity structure of Alaska to several kilometers depth.

References

Aki, K., & Richards, P. G. (2002). Quantitative seismology. Cambridge University Press.

Alaska Earthquake Center, Univ. of Alaska Fairbanks. (1987). Alaska Regional Network [Dataset]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AK

Alaska Volcano Observatory/USGS. (1988). Alaska Volcano Observatory [Dataset]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AV

Alejandro, A. C. B., Ringler, A. T., Wilson, D. C., Anthony, R. E., & Moore, S. V. (2020). Towards understanding relationships between atmospheric pressure variations and long-period horizontal seismic data: a case study. Geophysical Journal International, 223(1), 676–691. https://doi.org/10.1093/gji/ggaa340

Anglin, F. M., & Haddon, R. A. W. (1987). Meteoroid Sonic Shock-Wave-Generated Seismic Signals Observed at a Seismic Array. Nature, 328(6131), 607–609. https://doi.org/10.1038/328607a0

Anthony, R. E., Ringler, A. T., Tanimoto, T., Matoza, R. S., De Angelis, S., & Wilson, D. C. (2022). Earth’s Upper Crust Seismically Excited by Infrasound from the 2022 Hunga Tonga–Hunga Ha’apai Eruption, Tonga. Seismological Research Letters. https://doi.org/10.1785/0220220252

Anthony, R. E., Watzak, J., Ringler, A. T., & Wilson, D. C. (2022). Characteristics, relationships and precision of direct acoustic-to-seismic coupling measurements from local explosions. Geophysical Journal International, 230(3), 2019–2035. https://doi.org/10.1093/gji/ggac154

Beauduin, R., Lognonné, P., Montagner, J. P., Cacho, S., Karczewski, J. F., & Morand, M. (1996). The Effects of the Atmospheric Pressure Changes on Seismic Signals or How to Improve the Quality of a Station. Bulletin of the Seismological Society of America, 86(6), 1760–1769. https://doi.org/10.1785/BSSA0860061760

Ben-Menahem, A., & Singh, S. J. (1981). Seismic waves and sources. Springer Science & Business Media.

Berg, E. M., Lin, F.-C., Allam, A., Schulte-Pelkum, V., Ward, K. M., & Shen, W. (2020). Shear Velocity Model of Alaska Via Joint Inversion of Rayleigh Wave Ellipticity, Phase Velocities, and Receiver Functions Across the Alaska Transportable Array. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018582. https://doi.org/10.1029/2019JB018582

Bishop, J. W., Haney, M. M., Fee, D., Matoza, R. S., McKee, K. F., & Lyons, J. J. (2023). Back‐Azimuth Estimation of Air‐to‐Ground Coupled Infrasound from Transverse Coherence Minimization. The Seismic Record, 3(4), 249–258. https://doi.org/10.1785/0320230023

Busby, R. W., & Aderhold, K. (2020). The Alaska Transportable Array: As Built. Seismological Research Letters, 91(6), 3017–3027. https://doi.org/10.1785/0220200154

de Groot-Hedlin, C. D., & Hedlin, M. A. H. (2014). Infrasound Detection of the Chelyabinsk Meteor at the USArray. Earth and Planetary Science Letters, 402, 337–345. https://doi.org/10.1016/j.epsl.2014.01.031

Dugick, F. D., Koch, C., Berg, E., Arrowsmith, S., & Albert, S. (2023). A New Decade in Seismoacoustics. Bulletin of the Seismological Society of America, 113(4), 1390–1423. https://doi.org/https://doi.org/10.1785/0120220157

Edwards, W. N. (2009). Meteor generated infrasound: theory and observation. Infrasound Monitoring for Atmospheric Studies, 361–414.

Fee, D., Haney, M., Matoza, R., Szuberla, C., Lyons, J., & Waythomas, C. (2016). Seismic Envelope‐Based Detection and Location of Ground‐Coupled Airwaves from Volcanoes in Alaska. Bulletin of the Seismological Society of America, 106(3), 1024–1035. https://doi.org/10.1785/0120150244

Fuchs, F., Schneider, F. M., Kolínský, P., Serafin, S., & Bokelmann, G. (2019). Rich Observations of Local and Regional Infrasound Phases Made by the AlpArray Seismic Network after Refinery Explosion. Scientific Reports, 9(1), 13027. https://doi.org/10.1038/s41598-019-49494-2

Gabrielson, T. B. (2011). In Situ Calibration of Atmospheric-Infrasound Sensors Including the Effects of Wind-Noise-Reduction Pipe Systems. The Journal of the Acoustical Society of America, 130(3), 1154–1163. https://doi.org/10.1121/1.3613925

Heath, D. C., Wald, D. J., Worden, C. B., Thompson, E. M., & Smoczyk, G. M. (2020). A Global Hybrid VS30 Map with a Topographic Slope–Based Default and Regional Map Insets. Earthquake Spectra, 36(3), 1570–1584. https://doi.org/10.1177/8755293020911137

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on single levels from 1940 to present [Dataset]. ECMWF. https://doi.org/10.24381/cds.adbb2d47

IRIS Transportable Array. (2003). USArray Transportable Array [Dataset]. International Federation of Digital Seismograph Networks. https://doi.org/https://doi.org/10.7914/SN/TA

Kinsler, L. E. (2000). Fundamentals of Acoustics (4th ed.). John Wiley & Sons.

Lamb, H. (1881). On the Vibrations of an Elastic Sphere. Proceedings of the London Mathematical Society, s1-13(1), 189–212. https://doi.org/https://doi.org/10.1112/plms/s1-13.1.189

Langston, C. A. (2004). Seismic ground motions from a bolide shock wave. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/https://doi.org/10.1029/2004JB003167

Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. EGU General Assembly Conference Abstracts, eGU2013-2658.

Le Pichon, A., Ceranna, L., Pilger, C., Mialle, P., Brown, D., Herry, P., & Brachet, N. (2013). The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophysical Research Letters, 40(14), 3732–3737. https://doi.org/https://doi.org/10.1002/grl.50619

Lemoine, A., Douglas, J., & Cotton, F. (2012). Testing the Applicability of Correlations between Topographic Slope and VS30 for Europe. Bulletin of the Seismological Society of America, 102(6), 2585–2599. https://doi.org/10.1785/0120110240

Macpherson, K. A., Coffey, J. R., Witsil, A. J., Fee, D., Holtkamp, S., Dalton, S., McFarlin, H., & West, M. (2022). Ambient Infrasound Noise, Station Performance, and Their Relation to Land Cover across Alaska. Seismological Research Letters, 20. https://doi.org/10.1785/0220210365

Matoza, R. S., & Fee, D. (2014). Infrasonic component of volcano-seismic eruption tremor. Geophysical Research Letters, 41(6), 1964–1970. https://doi.org/https://doi.org/10.1002/2014GL059301

Matoza, R. S., Fee, D., Assink, J. D., Iezzi, A. M., Green, D. N., Kim, K., Toney, L., Lecocq, T., Krishnamoorthy, S., Lalande, J.-M., Nishida, K., Gee, K. L., Haney, M. M., Ortiz, H. D., Brissaud, Q., Martire, L., Rolland, L., Vergados, P., Nippress, A., … Wilson, D. C. (2022). Atmospheric Waves and Global Seismoacoustic Observations of the January 2022 Hunga Eruption, Tonga. Science, 377(6601), 95–100. https://doi.org/10.1126/science.abo7063

McKee, K., Fee, D., Haney, M., Matoza, R. S., & Lyons, J. (2018). Infrasound Signal Detection and Back Azimuth Estimation Using Ground-Coupled Airwaves on a Seismo-Acoustic Sensor Pair. Journal of Geophysical Research: Solid Earth, 123(8), 6826–6844. https://doi.org/https://doi.org/10.1029/2017JB015132

McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001

Meltzer, A., Rudnick, R., Zeitler, P., Levander, A., Humphreys, G., Karlstrom, K., Ekstrom, G., Carlson, R., Dixon, T., Gurnis, M., Shearer, P., & van der Hilst, R. (1999). USArray Initiative. GSA TODAY, 9(11), 40.

Merchant, B. J. (2015). Hyperion 5113/GP Infrasound Sensor Evaluation. The U.S. Department of Energy’s Office of Scientific and Technical Information, 1(SAND-2015-7075). https://doi.org/10.2172/1213302

Rawlinson, N., Fichtner, A., Sambridge, M., & Young, M. K. (2014). Chapter One - Seismic Tomography and the Assessment of Uncertainty. In R. Dmowska (Ed.), Advances in Geophysics, Volume 55 (Vol. 55, pp. 1–76). Elsevier. https://doi.org/https://doi.org/10.1016/bs.agph.2014.08.001

Ringler, A. T., Steim, J., Wilson, D. C., Widmer-Schnidrig, R., & Anthony, R. E. (2019). Improvements in seismic resolution and current limitations in the Global Seismographic Network. Geophysical Journal International, 220(1), 508–521. https://doi.org/10.1093/gji/ggz473

Sabatier, J. M., Bass, H. E., Bolen, L. N., & Attenborough, K. (1986). Acoustically induced seismic waves. Journal of the Acoustical Society of America, 80, 646–649. https://doi.org/10.1121/1.394058

Scripps Institution of Oceanography. (1986). Global Seismograph Network - IRIS/IDA [Dataset]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II

Shearer, P. M. (2019). Introduction to Seismology (3rd ed.). Cambridge University Press.

Slater, J. A., & Malys, S. (1998). WGS 84 — Past, Present and Future. In F. K. Brunner (Ed.), Advances in Positioning and Reference Frames (pp. 1–7). Springer Berlin Heidelberg.

Sorrells, G. G. (1971). A Preliminary Investigation into the Relationship between Long-Period Seismic Noise and Local Fluctuations in the Atmospheric Pressure Field. Geophysical Journal of the Royal Astronomical Society, 26(1–4), 71–82. https://doi.org/10.1111/j.1365-246X.1971.tb03383.x

Tanimoto, T. (2024). Deformation of solid earth by surface pressure: equivalence between Ben-Menahem and Singh’s formula and Sorrells’ formula. Geophysical Journal International, 238(2), 820–826. https://doi.org/10.1093/gji/ggae185

Tanimoto, T., & Valovcin, A. (2016). Existence of the threshold pressure for seismic excitation by atmospheric disturbances. Geophysical Research Letters, 43(21), 11,202-11,208. https://doi.org/https://doi.org/10.1002/2016GL070858

Tanimoto, T., & Wang, J. (2019). Theory for Deriving Shallow Elasticity Structure From Colocated Seismic and Pressure Data. Journal of Geophysical Research: Solid Earth, 124(6), 5811–5835. https://doi.org/10.1029/2018JB017132

The ObsPy Development Team. (2020). ObsPy 1.2.1 [Software]. https://doi.org/10.5281/zenodo.3706479

Tytell, J., Vernon, F., Hedlin, M., de Groot Hedlin, C., Reyes, J., Busby, B., Hafner, K., & Eakins, J. (2016). The USArray Transportable Array as a Platform for Weather Observation and Research. Bulletin of the American Meteorological Society, 97(4), 603–619. https://doi.org/10.1175/BAMS-D-14-00204.1

Uieda, L., Tian, D., Leong, W. J., Jones, M., Schlitzer, W., Toney, L., Grund, M., Yao, J., Magen, Y., Materna, K., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2021). PyGMT: A Python interface for the Generic Mapping Tools (v0.5.0) [Software]. Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.5607255

U.S. Geological Survey Earthquakes Hazards Program. (2017). Advanced National Seismic System (ANSS) comprehensive catalog of earthquake events and products [Dataset]. https://doi.org/10.5066/F7MS3QZH

Wald, D. J., & Allen, T. I. (2007). Topographic Slope as a Proxy for Seismic Site Conditions and Amplification. Bulletin of the Seismological Society of America, 97(5), 1379–1395. https://doi.org/10.1785/0120060267

Walker, K. T., Shelby, R., Hedlin, M. A. H., de Groot-Hedlin, C., & Vernon, F. (2011). Western U.S. Infrasonic Catalog: Illuminating infrasonic hot spots with the USArray. Journal of Geophysical Research: Solid Earth, 116(B12). https://doi.org/https://doi.org/10.1029/2011JB008579

Wang, J., & Tanimoto, T. (2020). Estimating Near-Surface Rigidity from Low-Frequency Noise Using Collocated Pressure and Horizontal Seismic Data. Bulletin of the Seismological Society of America, 110(4), 1960–1970. https://doi.org/10.1785/0120200098

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901

Wills, G., Nippress, A., Green, D. N., & Spence, P. J. (2022). Site-Specific Variations in Air-to-Ground Coupled Seismic Arrivals from the 2012 October 16 Explosion at Camp Minden, Louisiana, United States. Geophysical Journal International, 231(1), 243–255. https://doi.org/10.1093/gji/ggac184

Yong, A., Thompson, E. M., Wald, D., Knudsen, K. L., Odum, J. K., Stephenson, W. J., & Haefner, S. (2016). Compilation of VS30 Data for the United States: U.S. Geological Survey Data Series 978. In Eos (p. 8). https://doi.org/http://dx.doi.org/10.3133/ds978.

Zippenfenig, P. (2023). Open-Meteo.com Weather API [Software]. Zenodo. https://doi.org/10.5281/zenodo.7970649

Downloads

Published

2025-07-08

How to Cite

Macpherson, K., Fee, D., Awender, S., Chow, B., Colwell, J., Delamere, S., & Haney, M. (2025). Alaska Upper Crustal Velocities Revealed by Air-to-Ground Coupled Waves From the 2022 Hunga Tonga-Hunga Ha’apai Eruption. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1557

Issue

Section

Articles

Funding data