Benchmarking seismic phase associators: Insights from synthetic scenarios

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1559

Keywords:

Seismic phase association, Machine learning, Earthquake detection

Abstract

Reliable seismicity catalogs are fundamental for seismological analysis. Following phase picking, phase association groups arrivals into sets with consistent origins (i.e., events), determines event counts, and identifies outlier picks. To handle the substantial increase in the quantity of seismic phase picks from improved picking methods and larger deployments, several novel phase associators have recently been proposed. This study presents a detailed benchmark analysis of five seismic phase associators, including classical and machine learning-based approaches: PhaseLink, REAL, GaMMA, GENIE, and PyOcto. We use synthetic datasets mimicking real seismicity characteristics in crustal and subduction zone scenarios. We evaluate performance for different conditions, including low- and high- noise environments, out-of-network events, very high event rates, and variable station density. The results reveal notable differences in precision, recall, and computational efficiency. GENIE and PyOcto demonstrate robust performance, with almost perfect performance for most scenarios, but under the most challenging conditions with high noise levels and event rates, performance drops while F1 scores still remain above 0.8. PhaseLink's performance declines with noise and event density, particularly in subduction zones, dropping to near zero in the most complex cases. GaMMA outperforms PhaseLink but struggles with accuracy and scalability in high-noise, high-density scenarios. REAL performs reasonably but loses recall under extreme conditions. PyOcto and PhaseLink show the quickest runtimes for smaller-scale datasets, while REAL and GENIE are more than an order of magnitude slower for these cases. At the highest pick rates, GENIE’s runtime disadvantage diminishes, matching PyOcto and scaling effectively. Our results can guide practitioners compiling seismicity catalogs and developers designing novel associators.

References

Albuquerque Seismological Laboratory (ASL)/USGS. (1980). US geological survey networks. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GS

Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am., 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521

Becker, D., McBrearty, I. W., Beroza, G. C., & Martínez-Garzón, P. (2024). Performance of AI-based phase picking and event association methods after the large 2023 MW 7.8 and 7.6 Türkiye doublet. Bull. Seismol. Soc. Am. https://doi.org/10.1785/0120240017

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (First). Springer.

California Geological Survey. (1972). California strong motion instrumentation program. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/B34Q-BB70

California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California seismic network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI

CE: California Strong Motion Instrumentation Program. (n.d.).

Diehl, T., Kissling, E., Husen, S., & Aldersons, F. (2009). Consistent phase picking for regional tomography models: application to the greater Alpine region. Geophys J Int, 176(2), 542–554. https://doi.org/10.1111/j.1365-246X.2008.03985.x

Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. KDD, 226–231.

GFZ German Research Centre for Geosciences, & Institut des Sciences de l’Univers-Centre National de la Recherche CNRS-INSU. (2006). IPOC Seismic Network. Integrated Plate boundary Observatory Chile - IPOC. https://doi.org/10.14470/PK615318

Graeber, F. M., & Asch, G. (1999). Three-dimensional models ofPwave velocity andP-to-Svelocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. J. Geophys. Res., 104(B9), 20237–20256. https://doi.org/10.1029/1999jb900037

Hadley, D., & Kanamori, H. (1977). Seismic structure of the Transverse Ranges, California. GSA Bulletin, 88(10), 1469–1478. https://doi.org/10.1130/0016-7606(1977)88<1469:SSOTTR>2.0.CO;2

Hainzl, S., Sippl, C., & Schurr, B. (2019). Linear relationship between aftershock productivity and seismic coupling in the northern Chile subduction zone. J. Geophys. Res. Solid Earth, 124(8), 8726–8738. https://doi.org/10.1029/2019jb017764

Johnson, C. E., Bittenbinder, A., Bogaert, B., Dietz, L., & Kohler, W. (1995). Earthworm: A flexible approach to seismic network processing. Iris Newsletter, 14(2), 1–4.

Maharaj, A., Roecker, S., Alvarado, P., Trad, S., Beck, S., & Comte, D. (2023). Are volatiles from subducted ridges on the Pampean flat slab fracking the crust? Evidence from an enhanced seismicity catalog. Geochem. Geophys. Geosyst., 24(10). https://doi.org/10.1029/2023gc011021

Mancini, S., Segou, M., Werner, M. J., Parsons, T., Beroza, G., & Chiaraluce, L. (2022). On the use of high-resolution and deep-learning seismic catalogs for short-term earthquake forecasts: Potential benefits and current limitations. J. Geophys. Res. Solid Earth, 127(11), e2022JB025202. https://doi.org/10.1029/2022JB025202

McBrearty, I. W., & Beroza, G. C. (2023). Earthquake Phase Association with Graph Neural Networks. Bull. Seismol. Soc. Am., 113(2), 524–547. https://doi.org/10.1785/0120220182

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun., 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w

Mousavi, S. M., Zhu, W., Sheng, Y., & Beroza, G. C. (2019). CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection. Sci. Rep., 9(1), 1–14. https://doi.org/10.1038/s41598-019-45748-1

Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1130

Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. J. Geophys. Res. [Solid Earth], 127(1). https://doi.org/10.1029/2021jb023499

PB: Plate Boundary Observatory Borehole Seismic Network. (n.d.). https://www.fdsn.org/networks/detail/PB/. https://www.fdsn.org/networks/detail/PB/

Poiata, N., Satriano, C., Vilotte, J.-P., Bernard, P., & Obara, K. (2016). Multiband array detection and location of seismic sources recorded by dense seismic networks. Geophys. J. Int., 205(3), 1548–1573. https://doi.org/10.1093/gji/ggw071

Ringdal, F., & Kværna, T. (1989). A multi-channel processing approach to real time network detection, phase association, and threshold monitoring. Bulletin of the Seismological Society of America, 79(6), 1927–1940.

Ross, Z. E., Meier, M., Hauksson, E., & Heaton, T. H. (2018). Generalized Seismic Phase Detection with Deep Learning. Bull. Seismol. Soc. Am., 108(5A), 2894–2901. https://doi.org/10.1785/0120180080

Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., & Heaton, T. H. (2019). PhaseLink: A deep learning approach to seismic phase association. J. Geophys. Res. [Solid Earth], 124(1), 856–869. https://doi.org/10.1029/2018jb016674

Ross, Z. E., Zhu, W., & Azizzadenesheli, K. (2023). Neural mixture model association of seismic phases. ArXiv [Physics.Geo-Ph].

Sippl, C., Schurr, B., John, T., & Hainzl, S. (2019). Filling the gap in a double seismic zone: Intraslab seismicity in Northern Chile. Lithos, 346–347(105155), 105155. https://doi.org/10.1016/j.lithos.2019.105155

Stern, R. J. (2002). Subduction zones. Rev. Geophys., 40(4), 3-1-3–38. https://doi.org/10.1029/2001rg000108

University of Nevada, Reno. (1971). Nevada Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NN

U.S. Geological Survey. (1931). United States national strong-motion network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NP

White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., & Ben-Zion, Y. (2021). Detailed traveltime tomography and seismic catalogue around the 2019 Mw7.1 Ridgecrest, California, earthquake using dense rapid-response seismic data. Geophys. J. Int., 227(1), 204–227. https://doi.org/10.1093/gji/ggab224

Williamson, A., Lux, A., & Allen, R. (2023). Improving out of network earthquake locations using prior seismicity for use in earthquake early warning. Bull. Seismol. Soc. Am. https://doi.org/10.1785/0120220159

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismol. Res. Lett., 93(3), 1695–1709. https://doi.org/10.1785/0220210324

Woollam, J., Rietbrock, A., Leitloff, J., & Hinz, S. (2020). HEX: Hyperbolic Event eXtractor, a Seismic Phase Associator for Highly Active Seismic Regions. Seismol. Res. Lett., 91(5), 2769–2778. https://doi.org/10.1785/0220200037

Wu, Y.-M. (2002). A virtual subnetwork approach to earthquake early warning. Bull. Seismol. Soc. Am., 92(5), 2008–2018. https://doi.org/10.1785/0120010217

Xiong, Q., Brudzinski, M. R., Gossett, D., Lin, Q., & Hampton, J. C. (2023). Seismic magnitude clustering is prevalent in field and laboratory catalogs. Nat. Commun., 14(1), 2056. https://doi.org/10.1038/s41467-023-37782-5

Yang, S., Hu, J., Zhang, H., & Liu, G. (2021). Simultaneous earthquake detection on multiple stations via a convolutional neural network. Seismol. Res. Lett., 92(1), 246–260. https://doi.org/10.1785/0220200137

Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid Earthquake Association and Location. Seismol. Res. Lett., 90(6), 2276–2284. https://doi.org/10.1785/0220190052

Zhu, L., Peng, Z., McClellan, J., Li, C., Yao, D., Li, Z., & Fang, L. (2019). Deep learning for seismic phase detection and picking in the aftershock zone of 2008 M7.9 Wenchuan Earthquake. Phys. Earth Planet. Inter., 293(106261), 106261. https://doi.org/10.1016/j.pepi.2019.05.004

Zhu, W., & Beroza, G. C. (2018). PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int., 216(1), 261–273. https://doi.org/10.1093/gji/ggy423

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake phase association using a Bayesian Gaussian mixture model. J. Geophys. Res. [Solid Earth], 127(5). https://doi.org/10.1029/2021jb023249

Zhu, W., Tai, K. S., Mousavi, S. M., Bailis, P., & Beroza, G. C. (2022). An end‐to‐end earthquake detection method for joint phase picking and association using deep learning. J. Geophys. Res. Solid Earth, 127(3). https://doi.org/10.1029/2021jb023283

ZY (1990-2025): Portable Southern California Seismic Networks. (n.d.). https://www.fdsn.org/networks/detail/ZY_1990/. https://www.fdsn.org/networks/detail/ZY_1990/

Downloads

Published

2025-09-09

How to Cite

Puente Huerta, J., Sippl, C., Münchmeyer, J., & McBrearty, I. W. (2025). Benchmarking seismic phase associators: Insights from synthetic scenarios. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1559

Issue

Section

Articles

Funding data