Picking Induced Seismicity with Deep Learning (piSDL)

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1579

Abstract

Training deep-learning picking models with several published data sets can be easily done through the Python toolbox SeisBench. Most of the data sets contain earthquakes recorded at local, regional and teleseismic distances, with only limited data in the low magnitude, close distance region. Applying current published PhaseNet models to induced seismicity data leads to only a few events being detected and trained PhaseNet models are not able to outperform well-established workflows in seismology.
Here we present a new seismological data set and trained PhaseNet models for picking induced seismicity with deep-learning (piSDL). PhaseNet was trained with 171,182 three component waveforms from 40,576 events. Noise samples were added in the training data set to reduce the number of false picks. In this study, we noticed that a good earthquake training data set and noise samples from the analysed area are both important to detect more seismic events with a newly trained PhaseNet model. We validated our new PhaseNet models at a geothermal site in Rittershoffen (France). The models trained with the new data set and noise samples clearly outperform PhaseNet’s original published model and traditional methods in seismology by detecting up to 62% more events compared to a seismicity catalogue published by an agency.

References

Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. Bulletin of the Seismological Society of America, 72(6B), S225–S242. https://doi.org/10.1785/BSSA07206B0225 DOI: https://doi.org/10.1785/BSSA07206B0225

Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437 DOI: https://doi.org/10.1785/BSSA0770041437

Baujard, C., Genter, A., Dalmais, E., Maurer, V., Hehn, R., Rosillette, R., Vidal, J., & Schmittbuhl, J. (2017). Hydrothermal characterization of wells GRT-1 and GRT-2 in Rittershoffen, France: Implications on the understanding of natural flow systems in the rhine graben. Geothermics, 65, 255–268. https://doi.org/https://doi.org/10.1016/j.geothermics.2016.11.001 DOI: https://doi.org/10.1016/j.geothermics.2016.11.001

Becker, D., McBrearty, I. W., Beroza, G. C., & Martı́nez-Garzón, P. (2024). Performance of AI-Based Phase Picking and Event Association Methods after the Large 2023 Mw 7.8 and 7.6 Türkiye Doublet. Bulletin of the Seismological Society of AmericaSearch Dropdown Menu. https://doi.org/https://doi.org/10.1785/0120240017 DOI: https://doi.org/10.1785/0120240017

Bornstein, T., Lange, D., Münchmeyer, J., Woollam, J., Rietbrock, A., Barcheck, G., Grevemeyer, I., & Tilmann, F. (2024). PickBlue: Seismic phase picking for ocean bottom seismometers with deep learning. Earth and Space Science, 11(1), e2023EA003332. https://doi.org/https://doi.org/10.1029/2023EA003332 DOI: https://doi.org/10.1029/2023EA003332

Castillo, E., Siervo, D., & Prieto, G. A. (2024). Colombian Seismic Monitoring Using Advanced Machine-Learning Algorithms. Seismological Research Letters. https://doi.org/https://doi.org/10.1785/0220240036 DOI: https://doi.org/10.1785/0220240036

Chai, C., Maceira, M., Santos-Villalobos, H. J., Venkatakrishnan, S. V., Schoenball, M., Zhu, W., Beroza, G. C., Thurber, C., & Team, E. C. (2020). Using a deep neural network and transfer learning to bridge scales for seismic phase picking. Geophysical Research Letters, 47(16), e2020GL088651. https://doi.org/https://doi.org/10.1029/2020GL088651 DOI: https://doi.org/10.1029/2020GL088651

Chen, Y., Savvaidis, A., Saad, O. M., Dino Huang, G.-C., Siervo, D., O’Sullivan, V., McCabe, C., Uku, B., Fleck, P., Burke, G., & others. (2024). TXED: The Texas earthquake dataset for AI. Seismological Research Letters, 95(3), 2013–2022. https://doi.org/https://doi.org/10.1785/0220230327 DOI: https://doi.org/10.1785/0220230327

Cuenot, N., Dorbath, C., & Dorbath, L. (2008). Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts (Alsace, France): implications for the characterization of the geothermal reservoir properties. Pure and Applied Geophysics, 165, 797–828. https://doi.org/https://doi.org/10.1007/s00024-008-0335-7 DOI: https://doi.org/10.1007/s00024-008-0335-7

Dahm, T., Cesca, S., Hainzl, S., Braun, T., & Krüger, F. (2015). Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters. Journal of Geophysical Research: Solid Earth, 120(4), 2491–2509. https://doi.org/https://doi.org/10.1002/2014JB011778 DOI: https://doi.org/10.1002/2014JB011778

Dai, Z., Zhou, L., Hu, X., Qu, J., & Li, X. (2023). Generalization of PhaseNet in Shandong and its application to the Changqing M4.1 earthquake sequence. Earthquake Science, 36(3), 212–227. https://doi.org/https://doi.org/10.1016/j.eqs.2023.04.003 DOI: https://doi.org/10.1016/j.eqs.2023.04.003

Diehl, T., Kissling, E., Husen, S., & Aldersons, F. (2009). Consistent phase picking for regional tomography models: application to the greater Alpine region. Geophysical Journal International, 176(2), 542–554. https://doi.org/10.1111/j.1365-246X.2008.03985.x DOI: https://doi.org/10.1111/j.1365-246X.2008.03985.x

Diehl, Tobias, Kraft, T., Kissling, E., & Wiemer, S. (2017). The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity. Journal of Geophysical Research: Solid Earth, 122(9), 7272–7290. https://doi.org/https://doi.org/10.1002/2017JB014473 DOI: https://doi.org/10.1002/2017JB014473

Genter, A., Goerke, X., Graff, J.-J., Cuenot, N., Krall, G., Schindler, M., & Ravier, G. (2010). Current status of the EGS Soultz geothermal project (France). World Geothermal Congress, WGC2010, Bali, Indonesia, 25–29.

Goforth, T., & Herrin, E. (1981). An automatic seismic signal detection algorithm based on the Walsh transform. Bulletin of the Seismological Society of America, 71(4), 1351–1360. https://doi.org/10.1785/BSSA0710041351 DOI: https://doi.org/10.1785/BSSA0710041351

Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences and gempa GmbH. (2008). The SeisComP seismological software package. GFZ Data Services. https://doi.org/10.5880/GFZ.2.4.2020.003

Hensch, M., Dahm, T., Ritter, J., Heimann, S., Schmidt, B., Stange, S., & Lehmann, K. (2019). Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geophysical Journal International, 216(3), 2025–2036. https://doi.org/10.1093/gji/ggy532 DOI: https://doi.org/10.1093/gji/ggy532

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55

Jiang, C., Fang, L., Fan, L., & Li, B. (2021). Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes. Earthquake Science, 34(5), 425–435. https://doi.org/https://doi.org/10.29382/eqs-2021-0038 DOI: https://doi.org/10.29382/eqs-2021-0038

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv:1412.6980. https://arxiv.org/abs/1412.6980

Koushesh, K., & Ritter, J. R. (2024). An adaptive 6-dimensional floating-search multi-station seismic-event detector (A6-DFMSD) and its application to low-frequency earthquakes in the East Eifel Volcanic Field, Germany. Journal of Applied Volcanology, 13(1), 9. https://doi.org/https://doi.org/10.1186/s13617-024-00147-8 DOI: https://doi.org/10.1186/s13617-024-00147-8

Küperkoch, L., Meier, T., Lee, J., Friederich, W., & Group, E. W. (2010). Automated determination of P-phase arrival times at regional and local distances using higher order statistics. Geophysical Journal International, 181(2), 1159–1170. https://doi.org/10.1111/j.1365-246X.2010.04570.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04570.x

Leonard, M., & Kennett, B. L. N. (1999). Multi-component autoregressive techniques for the analysis of seismograms. Physics of the Earth and Planetary Interiors, 113(1), 247–263. https://doi.org/https://doi.org/10.1016/S0031-9201(99)00054-0 DOI: https://doi.org/10.1016/S0031-9201(99)00054-0

Lim, C. S. Y., Lapins, S., Segou, M., & Werner, M. J. (2024). Deep learning phase pickers: how well can existing models detect hydraulic-fracturing induced microseismicity from a borehole array? Geophysical Journal International, 240(1), 535–549. https://doi.org/10.1093/gji/ggae386 DOI: https://doi.org/10.1093/gji/ggae386

Lomax, A., Michelini, A., Curtis, A., & Meyers, R. (2009). Earthquake location, direct, global-search methods. Encyclopedia of Complexity and Systems Science, 5, 2449–2473. DOI: https://doi.org/10.1007/978-0-387-30440-3_150

Lomax, A., Zollo, A., Capuano, P., & Virieux, J. (2001). Precise, absolute earthquake location under Somma–Vesuvius volcano using a new three-dimensional velocity model. Geophysical Journal International, 146(2), 313–331. https://doi.org/https://doi.org/10.1046/j.0956-540x.2001.01444.x DOI: https://doi.org/10.1046/j.0956-540x.2001.01444.x

Maurer, V., Gaucher, E., Grunberg, M., Koepke, R., Pestourie, R., & Cuenot, N. (2020). Seismicity induced during the development of the Rittershoffen geothermal field, France. Geothermal Energy, 8(1), 5. https://doi.org/https://doi.org/10.1186/s40517-020-0155-2 DOI: https://doi.org/10.1186/s40517-020-0155-2

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE–the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/https://doi.org/10.5194/essd-13-5509-2021 DOI: https://doi.org/10.5194/essd-13-5509-2021

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 1–12. https://doi.org/https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w

Mousavi, S. M., Sheng, Y., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7, 179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848 DOI: https://doi.org/10.1109/ACCESS.2019.2947848

Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1130 DOI: https://doi.org/10.26443/seismica.v3i1.1130

Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023499. https://doi.org/https://doi.org/10.1029/2021JB023499 DOI: https://doi.org/10.1029/2021JB023499

Myklebust, E. B., & Köhler, A. (2024). Deep learning models for regional phase detection on seismic stations in Northern Europe and the European Arctic. Geophysical Journal International, 239(2), 862–881. https://doi.org/10.1093/gji/ggae298 DOI: https://doi.org/10.1093/gji/ggae298

Niksejel, A., & Zhang, M. (2024). OBSTransformer: a deep-learning seismic phase picker for OBS data using automated labelling and transfer learning. Geophysical Journal International, ggae049. https://doi.org/https://doi.org/10.1093/gji/ggae049 DOI: https://doi.org/10.1093/gji/ggae049

Park, Y., & Beroza, G. C. (2025). Reducing the Parameter Dependency of Phase‐Picking Neural Networks with Dice Loss. The Seismic Record, 5(1), 55–63. https://doi.org/10.1785/0320240028 DOI: https://doi.org/10.1785/0320240028

Park, Y., Delbridge, B. G., & Shelly, D. R. (2024). Making Phase-Picking Neural Networks More Consistent and Interpretable. The Seismic Record, 4(1), 72–80. https://doi.org/https://doi.org/10.1785/0320230054 DOI: https://doi.org/10.1785/0320230054

Park, Y., & Shelly, D. R. (2024). The Value of Hyperparameter Optimization in Phase‐Picking Neural Networks. The Seismic Record, 4(3), 231–239. https://doi.org/10.1785/0320240025 DOI: https://doi.org/10.1785/0320240025

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen, S.-C., & Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5), 1–36. https://doi.org/https://doi.org/10.1145/3234150 DOI: https://doi.org/10.1145/3234150

Rische, M., Fischer, K. D., & Friederich, W. (2022). FloodRisk–Induced seismicity by mine flooding–Observation, characterisation and relation to mine water rise in the eastern Ruhr area (Germany). Journal of Applied & Regional Geology/Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften (ZDGG), 173(4). https://doi.org/10.1127/zdgg/2023/0346 DOI: https://doi.org/10.1127/zdgg/2023/0346

Ritter, J. R., Koushesh, K., Schmidt, B., Föst, J.-P., Bühler, J., Hensch, M., & Mader, S. M. (2024). Seismological monitoring of magmatic and tectonic earthquakes in the East Eifel Volcanic Field, Germany. Journal of Seismology, 1–26. https://doi.org/https://doi.org/10.1007/s10950-024-10257-w DOI: https://doi.org/10.1007/s10950-024-10257-w

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing. https://doi.org/https://doi.org/10.1007/978-3-319-24574-4_28 DOI: https://doi.org/10.1007/978-3-319-24574-4_28

Ross, Z. E., Meier, M.-A., & Hauksson, E. (2018). P-wave arrival picking and first-motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth. https://doi.org/https://doi.org/10.1029/2017JB015251 DOI: https://doi.org/10.1029/2017JB015251

Roth, M. P., Verdecchia, A., Harrington, R. M., & Liu, Y. (2020). High-resolution imaging of hydraulic-fracturing-induced earthquake clusters in the Dawson-Septimus area, Northeast British Columbia, Canada. Seismological Research Letters, 91(5), 2744–2756. https://doi.org/https://doi.org/10.1785/0220200086 DOI: https://doi.org/10.1785/0220200086

Schill, E., Genter, A., Cuenot, N., & Kohl, T. (2017). Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests. Geothermics, 70, 110–124. https://doi.org/https://doi.org/10.1016/j.geothermics.2017.06.003 DOI: https://doi.org/10.1016/j.geothermics.2017.06.003

Schmittbuhl, J., Lambotte, S., Lengliné, O., Grunberg, M., Jund, H., Vergne, J., Cornet, F., Doubre, C., & Masson, F. (2021). Induced and triggered seismicity below the city of Strasbourg, France from November 2019 to January 2021. Comptes Rendus. Géoscience, 353(S1), 561–584. https://doi.org/10.5802/crgeos.71 DOI: https://doi.org/10.5802/crgeos.71

Schoenball, M., Davatzes, N. C., & Glen, J. M. (2015). Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal field. Geophysical Research Letters, 42(15), 6221–6228. https://doi.org/https://doi.org/10.1002/2015GL064772 DOI: https://doi.org/10.1002/2015GL064772

Sleeman, R., & van Eck, T. (1999). Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors, 113(1), 265–275. https://doi.org/https://doi.org/10.1016/S0031-9201(99)00007-2 DOI: https://doi.org/10.1016/S0031-9201(99)00007-2

Suarez, A. L. A., & Beroza, G. (2024). Curated Regional Earthquake Waveforms (CREW) Dataset. Seismica, 3(1). https://doi.org/https://doi.org/10.26443/seismica.v3i1.1049 DOI: https://doi.org/10.26443/seismica.v3i1.1049

Sun, H., Ross, Z. E., Zhu, W., & Azizzadenesheli, K. (2023). Phase neural operator for multi-station picking of seismic arrivals. Geophysical Research Letters, 50(24), e2023GL106434. https://doi.org/https://doi.org/10.1029/2023GL106434 DOI: https://doi.org/10.1029/2023GL106434

Swiss Seismological Service (SED) At ETH Zurich. (1983). National Seismic Networks of Switzerland. ETH Zürich. https://doi.org/10.12686/SED/NETWORKS/CH

Wong, W. C. J., Zi, J., Yang, H., & Su, J. (2021). Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation. Earth and Planetary Physics, 5(6), 520–531. https://doi.org/https://doi.org/10.26464/epp2021055 DOI: https://doi.org/10.26464/epp2021055

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., & others. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Society of America, 93(3), 1695–1709. https://doi.org/https://doi.org/10.48550/arXiv.2111.00786 DOI: https://doi.org/10.1785/0220210324

Xi, Z., Wei, S. S., Zhu, W., Beroza, G. C., Jie, Y., & Saloor, N. (2024). Deep learning for deep earthquakes: insights from OBS observations of the Tonga subduction zone. Geophysical Journal International, 238(2), 1073–1088. https://doi.org/10.1093/gji/ggae200 DOI: https://doi.org/10.1093/gji/ggae200

Yuan, C., Ni, Y., Lin, Y., & Denolle, M. (2023). Better Together: Ensemble Learning for Earthquake Detection and Phase Picking. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–17. https://doi.org/10.1109/TGRS.2023.3320148 DOI: https://doi.org/10.1109/TGRS.2023.3320148

Zhu, J., Fang, L., Miao, F., Fan, L., Zhang, J., & Li, Z. (2024). Deep learning and transfer learning of earthquake and quarry-blast discrimination: applications to southern California and eastern Kentucky. Geophysical Journal International, 236(2), 979–993. https://doi.org/https://doi.org/10.1093/gji/ggad463 DOI: https://doi.org/10.1093/gji/ggad463

Zhu, J., Li, Z., & Fang, L. (2023). USTC-Pickers: a unified set of seismic phase pickers transfer learned for China. Earthquake Science, 36(2), 95–112. https://doi.org/10.1016/j.eqs.2023.03.001 DOI: https://doi.org/10.1016/j.eqs.2023.03.001

Zhu, W., & Beroza, G. C. (2018). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake phase association using a Bayesian Gaussian mixture model. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023249. https://doi.org/https://doi.org/10.1029/2021JB023249 DOI: https://doi.org/10.1029/2021JB023249

Downloads

Published

2025-08-19

How to Cite

Heuel, J., Maurer, V., Frietsch, M., & Rietbrock, A. (2025). Picking Induced Seismicity with Deep Learning (piSDL). Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1579

Issue

Section

Articles

Funding data