Forecasting 3D Rupture Dynamics of the Alto Tiberina Low-Angle Normal Fault, Italy

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1603

Keywords:

Low angle normal fault, Alto Tiberina fault, dynamic rupture simulation, earthquake forecasting

Abstract

The seismic potential of active low-angle normal faults (LANFs, <30° dip) remains enigmatic under Andersonian faulting theory, which predicts that normal faults dipping less than 30° should be inactive. The Alto Tiberina fault (ATF) in the northern Apennines, a partly creeping 17°-dipping LANF, has not been associated with any historical earthquakes but could potentially generate earthquakes up to Mw~7. We investigate the mechanical preconditions and dynamic plausibility of large ATF earthquakes using 3D dynamic rupture and seismic wave propagation simulations constrained by multidisciplinary data from the Alto Tiberina Near Fault Observatory (TABOO-NFO). Our models incorporate the complex non-planar ATF fault geometry, including hanging wall secondary faults and a recent geodetic coupling model. We show that potential large earthquakes (up to Mw~7.4) are mechanically viable under Andersonian extensional stress conditions if the ATF is statically relatively weak (μs=0.37). Large earthquakes only nucleate on favorably oriented, steeper fault sections (dip ≥30°), and remain confined to the coupled portion, limiting earthquake magnitude. These ruptures may dynamically trigger an intersecting synthetic branch but are unlikely to affect more distant antithetic faults. Jointly integrating fault geometry and geodetic coupling is crucial for forecasting dynamic rupture nucleation and propagation.

References

Abers, G. A. (2009). Slip on shallow-dipping normal faults. Geology, 37(8), 767–768. https://doi.org/10.1130/focus082009.1. DOI: https://doi.org/10.1130/focus082009.1.

Abers, G. A., Eilon, Z., Gaherty, J. B., Jin, G., Kim, YH., Obrebski, M., & Dieck, C. (2016). Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift. Journal of Geophysical Research: Solid Earth, 121(2), 951–971. https://doi.org/10.1002/2015jb012621 DOI: https://doi.org/10.1002/2015JB012621

Abers, Geoffrey A. (1991). Possible seismogenic shallow-dipping normal faults in the Woodlark-D’Entrecasteaux extensional province, Papua New Guinea. Geology, 19(12), 1205–1208. DOI: https://doi.org/10.1130/0091-7613(1991)019<1205:PSSDNF>2.3.CO;2

Abers, Geoffrey A., Mutter, C. Z., & Fang, J. (1997). Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark‐D’Entrecasteaux rift system, Papua New Guinea. Journal of Geophysical Research: Solid Earth, 102(B7), 15301–15317. https://doi.org/10.1029/97jb00787 DOI: https://doi.org/10.1029/97JB00787

Amato, A., Azzara, R., Chiarabba, C., Cimini, G. B., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courboulex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, D., & Ripepe, M. (1998). The 1997 Umbria‐Marche, Italy, Earthquake Sequence: A first look at the main shocks and aftershocks. Geophysical Research Letters, 25(15), 2861–2864. https://doi.org/10.1029/98gl51842 DOI: https://doi.org/10.1029/98GL51842

Ampuero, J.-P., & Ben-Zion, Y. (2008). Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophysical Journal International, 173(2), 674–692. https://doi.org/10.1111/j.1365-246x.2008.03736.x DOI: https://doi.org/10.1111/j.1365-246X.2008.03736.x

Anderlini, L., Serpelloni, E., & Belardinelli, M. E. (2016). Creep and locking of a low‐angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy). Geophysical Research Letters, 43(9), 4321–4329. https://doi.org/10.1002/2016gl068604 DOI: https://doi.org/10.1002/2016GL068604

Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. DOI: https://doi.org/10.1144/transed.8.3.387

Anderson, E. M. (1942). The Dynamics of Faulting and Dyke Formation: with Applications to Britain. Nature, 149. https://doi.org/10.1038/149651b0 DOI: https://doi.org/10.1038/149651b0

Andrews, D. J. (1976a). Rupture propagation with finite stress in antiplane strain. Journal of Geophysical Research, 81(20), 3575–3582. https://doi.org/10.1029/jb081i020p03575 DOI: https://doi.org/10.1029/JB081i020p03575

Andrews, D. J. (1976b). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679–5687. https://doi.org/10.1029/jb081i032p05679 DOI: https://doi.org/10.1029/JB081i032p05679

Aochi, H., & Madariaga, R. (2003). The 1999 Izmit, Turkey, Earthquake: Nonplanar Fault Structure, Dynamic Rupture Process, and Strong Ground Motion. Bulletin of the Seismological Society of America, 93(3), 1249–1266. https://doi.org/10.1785/0120020167 DOI: https://doi.org/10.1785/0120020167

Aochi, H., & Ulrich, T. (2015). A Probable Earthquake Scenario near Istanbul Determined from Dynamic Simulations. Bulletin of the Seismological Society of America, 105(3), 1468–1475. https://doi.org/10.1785/0120140283 DOI: https://doi.org/10.1785/0120140283

Axen, G. J. (1992). Pore pressure, stress increase, and fault weakening in low‐angle normal faulting. Journal of Geophysical Research: Solid Earth, 97(B6), 8979–8991. https://doi.org/10.1029/92jb00517 DOI: https://doi.org/10.1029/92JB00517

Axen, G. J. (2004). Mechanics of low-angle normal faults. In Rheology and Deformation of the Lithosphere at Continental Margins (pp. 46–91). Columbia University Press. https://doi.org/10.7312/karn12738-004 DOI: https://doi.org/10.7312/karn12738-004

Barchi, M., De Feyter, A., Magnani, M., Minelli, G., Pialli, G., & Sotera, B. (1998). Extensional tectonics in the Northern Apennines (Italy): evidence from the CROP03 deep seismic reflection line. Mem. Soc. Geol. It, 52, 527–538.

Biemiller, J. B., Gabriel, A.-A., & Ulrich, T. (2022). The Dynamics of Unlikely Slip: 3D Modeling of Low-angle Normal Fault Rupture at the Mai’iu Fault, Papua New Guinea. Geochemistry, Geophysics, Geosystems, 23. https://doi.org/10.1029/2021GC010298 DOI: https://doi.org/10.1029/2021GC010298

Biemiller, J., Gabriel, A.-A., & Ulrich, T. (2023). Dueling dynamics of low-angle normal fault rupture with splay faulting and off-fault damage. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37063-1 DOI: https://doi.org/10.1038/s41467-023-37063-1

Biemiller, James, Boulton, C., Wallace, L., Ellis, S., Little, T., Mizera, M., Niemeijer, A., & Lavier, L. (2020). Mechanical Implications of Creep and Partial Coupling on the World’s Fastest Slipping Low‐Angle Normal Fault in Southeastern Papua New Guinea. Journal of Geophysical Research: Solid Earth, 125(10). https://doi.org/10.1029/2020jb020117 DOI: https://doi.org/10.1029/2020JB020117

Biemiller, James, Taylor, F., Lavier, L., Yu, T., Wallace, L., & Shen, C. (2020). Emerged Coral Reefs Record Holocene Low‐Angle Normal Fault Earthquakes. Geophysical Research Letters, 47(20). https://doi.org/10.1029/2020gl089301 DOI: https://doi.org/10.1029/2020GL089301

Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., & Paolucci, R. (2011). Ground motion prediction equations derived from the Italian strong motion database. Bulletin of Earthquake Engineering, 9(6), 1899–1920. https://doi.org/10.1007/s10518-011-9313-z DOI: https://doi.org/10.1007/s10518-011-9313-z

Boncio, P., Lavecchia, G., & Pace, B. (2004). Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy). Journal of Seismology, 8(3), 407–425. https://doi.org/10.1023/b:jose.0000038449.78801.05 DOI: https://doi.org/10.1023/B:JOSE.0000038449.78801.05

Boschi, E. (1998). I terremoti dell’Appennino umbro-marchigiano: area sud orientale dal 99 aC al 1984. Editrice Compositori.

Bruhat, L., Klinger, Y., Vallage, A., & Dunham, E. (2020). Influence of fault roughness on surface displacement: from numerical simulations to coseismic slip distributions. Geophysical Journal International, 220(3). https://doi.org/10.1093/gji/ggz545 DOI: https://doi.org/10.1093/gji/ggz545

Candela, T., Renard, F., Bouchon, M., Brouste, A., Marsan, D., Schmittbuhl, J., & Voisin, C. (2009). Characterization of Fault Roughness at Various Scales: Implications of Three-Dimensional High Resolution Topography Measurements. In Mechanics, Structure and Evolution of Fault Zones (pp. 1817–1851). Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0138-2_13 DOI: https://doi.org/10.1007/978-3-0346-0138-2_13

Castello, B., Selvaggi, G., Chiarabba, C., & Amato, A. (2006). CSI Catalogo della sismicità italiana 1981-2002, versione 1.1. INGV-CNT, Roma.

Causse, M., Dalguer, L. A., & Mai, P. M. (2013). Variability of dynamic source parameters inferred from kinematic models of past earthquakes. Geophysical Journal International, 196(3), 1754–1769. https://doi.org/10.1093/gji/ggt478 DOI: https://doi.org/10.1093/gji/ggt478

Chan, Y. P. B., Yao, S., & Yang, H. (2023). Impact of Hypocenter Location on Rupture Extent and Ground Motion: A Case Study of Southern Cascadia. Journal of Geophysical Research: Solid Earth, 128(8). https://doi.org/10.1029/2023jb026371 DOI: https://doi.org/10.1029/2023JB026371

Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., & Cocco, M. (2007). Architecture and mechanics of an active low‐angle normal fault: Alto Tiberina Fault, northern Apennines, Italy. Journal of Geophysical Research: Solid Earth, 112(B10). https://doi.org/10.1029/2007jb005015 DOI: https://doi.org/10.1029/2007JB005015

Chiaraluce, L., Ellsworth, W. L., Chiarabba, C., & Cocco, M. (2003). Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study. Journal of Geophysical Research: Solid Earth, 108(B6). https://doi.org/10.1029/2002jb002166 DOI: https://doi.org/10.1029/2002JB002166

Chiaraluce, Lauro, Amato, A., Carannante, S., Castelli, V., Cattaneo, M., Cocco, M., Collettini, C., D’Alema, E., Stefano, R. D., Latorre, D., Marzorati, S., Mirabella, F., Monachesi, G., Piccinini, D., Nardi, A., Piersanti, A., Stramondo, S., & Valoroso, L. (2014). The Alto Tiberina Near Fault Observatory (northern Apennines, Italy). Annals of Geophysics, 57(3). https://doi.org/10.4401/ag-6426 DOI: https://doi.org/10.4401/ag-6426

Ciaccio, M. G., Pondrelli, S., & Frepoli, F. (2009). Earthquake fault-plane solutions and patterns of seismicity within the Umbria Region, Italy. Annals of Geophysics, 49(4–5). https://doi.org/10.4401/ag-3110 DOI: https://doi.org/10.4401/ag-3110

Collettini, C., Barchi, M. R., Chiaraluce, L., Mirabella, F., & Pucci, S. (2003). The Gubbio fault: can different methods give pictures of the same object? Journal of Geodynamics, 36(1–2), 51–66. https://doi.org/10.1016/s0264-3707(03)00038-3 DOI: https://doi.org/10.1016/S0264-3707(03)00038-3

Collettini, C., & Holdsworth, R. E. (2004). Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. Journal of the Geological Society, 161(6), 1039–1051. https://doi.org/10.1144/0016-764903-179 DOI: https://doi.org/10.1144/0016-764903-179

Collettini, C., Tesei, T., Scuderi, M. M., Carpenter, B. M., & Viti, C. (2019). Beyond Byerlee friction, weak faults and implications for slip behavior. Earth and Planetary Science Letters, 519, 245–263. https://doi.org/10.1016/j.epsl.2019.05.011 DOI: https://doi.org/10.1016/j.epsl.2019.05.011

Collettini, Cristiano. (2011). The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophysics, 510(3–4), 253–268. https://doi.org/10.1016/j.tecto.2011.07.015 DOI: https://doi.org/10.1016/j.tecto.2011.07.015

Collettini, Cristiano, & Barchi, M. R. (2002). A low-angle normal fault in the Umbria region (Central Italy): a mechanical model for the related microseismicity. Tectonophysics, 359(1–2), 97–115. https://doi.org/10.1016/s0040-1951(02)00441-9 DOI: https://doi.org/10.1016/S0040-1951(02)00441-9

Collettini, Cristiano, & others. (2009). Hypothesis for the mechanics and seismic behaviour of low-angle normal faults: the example of the Altotiberina fault Northern Apennines. Annals of Geophysics, 45(5). https://doi.org/10.4401/ag-3531 DOI: https://doi.org/10.4401/ag-3531

Collettini, Cristiano, & Sibson, R. H. (2001). Normal faults, normal friction? Geology, 29(10), 927–930. DOI: https://doi.org/10.1130/0091-7613(2001)029<0927:NFNF>2.0.CO;2

Collettini, Cristiano, Viti, C., Smith, S. A. F., & Holdsworth, R. E. (2009). Development of interconnected talc networks and weakening of continental low-angle normal faults. Geology, 37(6), 567–570. https://doi.org/10.1130/g25645a.1 DOI: https://doi.org/10.1130/G25645A.1

Cummins, P. R., Pranantyo, I. R., Pownall, J. M., Griffin, J. D., Meilano, I., & Zhao, S. (2020). Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia. Nature Geoscience, 13(4), 312–318. https://doi.org/10.1038/s41561-020-0545-x DOI: https://doi.org/10.1038/s41561-020-0545-x

Day, S. M. (1982). Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress. Bulletin of the Seismological Society of America, 72(6A), 1881–1902. https://doi.org/10.1785/bssa07206a1881 DOI: https://doi.org/10.1785/BSSA07206A1881

Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three‐dimensional spontaneous rupture. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005jb003813 DOI: https://doi.org/10.1029/2005JB003813

Delouis, B. (2014). FMNEAR: Determination of Focal Mechanism and First Estimate of Rupture Directivity Using Near-Source Records and a Linear Distribution of Point Sources. Bulletin of the Seismological Society of America, 104(3), 1479–1500. https://doi.org/10.1785/0120130151 DOI: https://doi.org/10.1785/0120130151

Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838 DOI: https://doi.org/10.1038/nature09838

Dumbser, M., & Käser, M. (2006). An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II. The three-dimensional isotropic case. Geophysical Journal International, 167(1), 319–336. https://doi.org/10.1111/j.1365-246x.2006.03120.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03120.x

Dunham, E. M., Belanger, D., Cong, L., & Kozdon, J. E. (2011). Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 1: Planar Faults. Bulletin of the Seismological Society of America, 101(5), 2296–2307. https://doi.org/10.1785/0120100075 DOI: https://doi.org/10.1785/0120100075

Essing, D., & Poli, P. (2022). Spatiotemporal Evolution of the Seismicity in the Alto Tiberina Fault System Revealed by a High‐Resolution Template Matching Catalog. Journal of Geophysical Research: Solid Earth, 127(10). https://doi.org/10.1029/2022jb024845 DOI: https://doi.org/10.1029/2022JB024845

Essing, D., & Poli, P. (2024). Unraveling Earthquake Clusters Composing the 2014 Alto Tiberina Earthquake Swarm via Unsupervised Learning. Journal of Geophysical Research: Solid Earth, 129(1). https://doi.org/10.1029/2022jb026237 DOI: https://doi.org/10.1029/2022JB026237

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005rg000183 DOI: https://doi.org/10.1029/2005RG000183

Gabriel, A. ‐A., Ampuero, J. ‐P., Dalguer, L. A., & Mai, P. M. (2013). Source properties of dynamic rupture pulses with off‐fault plasticity. Journal of Geophysical Research: Solid Earth, 118(8), 4117–4126. https://doi.org/10.1002/jgrb.50213 DOI: https://doi.org/10.1002/jgrb.50213

Gabriel, A.-A., Garagash, D. I., Palgunadi, K. H., & Mai, P. M. (2024). Fault size–dependent fracture energy explains multiscale seismicity and cascading earthquakes. Science, 385(6707). https://doi.org/10.1126/science.adj9587 DOI: https://doi.org/10.1126/science.adj9587

Gabriel, A.-A., Ulrich, T., Marchandon, M., Biemiller, J., & Rekoske, J. (2023). 3D Dynamic Rupture Modeling of the 6 February 2023, Kahramanmaraş, Turkey M w 7.8 and 7.7 Earthquake Doublet Using Early Observations. The Seismic Record, 3(4), 342–356. https://doi.org/10.1785/0320230028 DOI: https://doi.org/10.1785/0320230028

Galis, M., Pelties, C., Kristek, J., Moczo, P., Ampuero, J.-P., & Mai, P. M. (2014). On the initiation of sustained slip-weakening ruptures by localized stresses. Geophysical Journal International, 200(2), 890–909. https://doi.org/10.1093/gji/ggu436 DOI: https://doi.org/10.1093/gji/ggu436

Glehman, J., Gabriel, A., Ulrich, T., Ramos, M., Huang, Y., & Lindsey, E. (2025). Partial ruptures governed by the complex interplay between geodetic slip deficit, rigidity, and pore fluid pressure in 3D Cascadia dynamic rupture simulations. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1427 DOI: https://doi.org/10.26443/seismica.v2i4.1427

Goldberg, D. E., Koch, P., Melgar, D., Riquelme, S., & Yeck, W. L. (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling. Seismological Research Letters, 93(6), 3308–3323. https://doi.org/10.1785/0220220047 DOI: https://doi.org/10.1785/0220220047

Haessler, H., Gaulon, R., Rivera, L., Console, R., Frogneux, M., Gasparini, G., Martel, L., Patau, G., Siciliano, M., & Cisternas, A. (1988). The Perugia (Italy) earthquake of 29, April 1984: a microearthquake survey. Bulletin of the Seismological Society of America, 78(6), 1948–1964.

Harris, R. A., Barall, M., Lockner, D. A., Moore, D. E., Ponce, D. A., Graymer, R. W., Funning, G., Morrow, C. A., Kyriakopoulos, C., & Eberhart‐Phillips, D. (2021). A Geology and Geodesy Based Model of Dynamic Earthquake Rupture on the Rodgers Creek‐Hayward‐Calaveras Fault System, California. Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020jb020577 DOI: https://doi.org/10.1029/2020JB020577

Harris, Ruth A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169–198. https://doi.org/10.1002/2016rg000539 DOI: https://doi.org/10.1002/2016RG000539

Harris, Ruth A., Archuleta, R. J., & Day, S. M. (1991). Fault steps and the dynamic rupture process: 2‐D numerical simulations of a spontaneously propagating shear fracture. Geophysical Research Letters, 18(5), 893–896. https://doi.org/10.1029/91gl01061 DOI: https://doi.org/10.1029/91GL01061

Harris, Ruth A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K., Duan, B., Liu, D., Luo, B., Bai, K., Ampuero, J., Kaneko, Y., Gabriel, A., Duru, K., Ulrich, T., Wollherr, S., Shi, Z., Dunham, E., Bydlon, S., … Dalguer, L. (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes. Seismological Research Letters, 89(3), 1146–1162. https://doi.org/10.1785/0220170222 DOI: https://doi.org/10.1785/0220170222

Harris, Ruth A., & Day, S. M. (1997). Effects of a low-velocity zone on a dynamic rupture. Bulletin of the Seismological Society of America, 87(5), 1267–1280. https://doi.org/10.1785/bssa0870051267 DOI: https://doi.org/10.1785/BSSA0870051267

Harris, Ruth A., & Day, S. M. (1999). Dynamic 3D simulations of earthquakes on En Echelon Faults. Geophysical Research Letters, 26(14), 2089–2092. https://doi.org/10.1029/1999gl900377 DOI: https://doi.org/10.1029/1999GL900377

Hayek, J. N., Marchandon, M., Li, D., Pousse‐Beltran, L., Hollingsworth, J., Li, T., & Gabriel, A. ‐A. (2024). Non-Typical Supershear Rupture: Fault Heterogeneity and Segmentation Govern Unilateral Supershear and Cascading Multi-Fault Rupture in the 2021 7.4 Maduo Earthquake. Geophysical Research Letters, 51(20). https://doi.org/10.1029/2024gl110128 DOI: https://doi.org/10.1029/2024GL110128

Hayes, G. P. (2017). The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth and Planetary Science Letters, 468, 94–100. https://doi.org/10.1016/j.epsl.2017.04.003 DOI: https://doi.org/10.1016/j.epsl.2017.04.003

Heinecke, A., Breuer, A., Rettenberger, S., Bader, M., Gabriel, A.-A., Pelties, C., Bode, A., Barth, W., Liao, X.-K., Vaidyanathan, K., Smelyanskiy, M., & Dubey, P. (2014a). Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, 3–14. https://doi.org/10.1109/sc.2014.6

Heinecke, A., Breuer, A., Rettenberger, S., Bader, M., Gabriel, A.-A., Pelties, C., Bode, A., Barth, W., Liao, X.-K., Vaidyanathan, K., Smelyanskiy, M., & Dubey, P. (2014b). Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, 3–14. https://doi.org/10.1109/sc.2014.6 DOI: https://doi.org/10.1109/SC.2014.6

Hreinsdottir, S., & Bennett, R. A. (2009). Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy. Geology, 37(8), 683–686. https://doi.org/10.1130/g30194a.1 DOI: https://doi.org/10.1130/G30194A.1

Huang, Y., Ampuero, J., & Helmberger, D. V. (2014). Earthquake ruptures modulated by waves in damaged fault zones. Journal of Geophysical Research: Solid Earth, 119(4), 3133–3154. https://doi.org/10.1002/2013jb010724 DOI: https://doi.org/10.1002/2013JB010724

Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77(20), 3796–3805. https://doi.org/10.1029/jb077i020p03796 DOI: https://doi.org/10.1029/JB077i020p03796

Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., & Fialko, Y. (2023a). The complex dynamics of the 2023 Kahramanmaraş, Turkey, M w 7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. https://doi.org/10.1126/science.adi0685

Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., & Fialko, Y. (2023b). The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw 7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. https://doi.org/10.1126/science.adi0685 DOI: https://doi.org/10.1126/science.adi0685

Kaneko, Y., Avouac, J.-P., & Lapusta, N. (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience, 3(5), 363–369. https://doi.org/10.1038/ngeo843 DOI: https://doi.org/10.1038/ngeo843

Karlsson, K. W., Rockwell, T. K., Fletcher, J. M., Figueiredo, P. M., Cambron Rosas, J. F., Gontz, A. M., Prasanajit Naik, S., Lacan, P., Spelz, R. M., Owen, L. A., Peña Villa, I. A., & Loya, R. L. (2021). Large Holocene ruptures on the Cañada David detachment, Baja California, Mexico; implications for the seismogenesis of low-angle normal faults. Earth and Planetary Science Letters, 570, 117070. https://doi.org/10.1016/j.epsl.2021.117070 DOI: https://doi.org/10.1016/j.epsl.2021.117070

Käser, M., & Dumbser, M. (2006). An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms. Geophysical Journal International, 166(2), 855–877. https://doi.org/10.1111/j.1365-246x.2006.03051.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03051.x

Kohli, A. H., Goldsby, D. L., Hirth, G., & Tullis, T. (2011). Flash weakening of serpentinite at near-seismic slip rates. Journal of Geophysical Research, 116(B3). https://doi.org/10.1029/2010jb007833 DOI: https://doi.org/10.1029/2010JB007833

Kyriakopoulos, C., Oglesby, D. D., Rockwell, T. K., Meltzner, A. J., Barall, M., Fletcher, J. M., & Tulanowski, D. (2019). Dynamic Rupture Scenarios in the Brawley Seismic Zone, Salton Trough, Southern California. Journal of Geophysical Research: Solid Earth, 124(4), 3680–3707. https://doi.org/10.1029/2018jb016795 DOI: https://doi.org/10.1029/2018JB016795

Latorre, D., Mirabella, F., Chiaraluce, L., Trippetta, F., & Lomax, A. (2016). Assessment of earthquake locations in 3‐D deterministic velocity models: A case study from the Altotiberina Near Fault Observatory (Italy). Journal of Geophysical Research: Solid Earth, 121(11), 8113–8135. https://doi.org/10.1002/2016jb013170 DOI: https://doi.org/10.1002/2016JB013170

Lavecchia, G., Brozzetti, F., Barchi, M., Menichetti, M., & Keller, J. V. (1994). Seismotectonic zoning in east-central Italy deduced from an analysis of the Neogene to present deformations and related stress fields. Geological Society of America Bulletin, 106(9), 1107–1120. DOI: https://doi.org/10.1130/0016-7606(1994)106<1107:SZIECI>2.3.CO;2

Lavier, L. L., & Buck, W. R. (2002). Half graben versus large‐offset low‐angle normal fault: Importance of keeping cool during normal faulting. Journal of Geophysical Research: Solid Earth, 107(B6). https://doi.org/10.1029/2001jb000513 DOI: https://doi.org/10.1029/2001JB000513

Lavier, L. L., Roger Buck, W., & Poliakov, A. N. (1999). Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology, 27(12), 1127–1130. DOI: https://doi.org/10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2

Li, B., Gabriel, A., Ulrich, T., Abril, C., & Halldorsson, B. (2023). Dynamic Rupture Models, Fault Interaction and Ground Motion Simulations for the Segmented Húsavík‐Flatey Fault Zone, Northern Iceland. Journal of Geophysical Research: Solid Earth, 128(6). https://doi.org/10.1029/2022jb025886 DOI: https://doi.org/10.1029/2022JB025886

Li, H., Zhu, L., & Yang, H. (2007). High-resolution structures of the Landers fault zone inferred from aftershock waveform data. Geophysical Journal International, 171(3), 1295–1307. https://doi.org/10.1111/j.1365-246x.2007.03608.x DOI: https://doi.org/10.1111/j.1365-246X.2007.03608.x

Lister, G. S., & Davis, G. A. (1989). The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. Journal of Structural Geology, 11(1–2), 65–94. https://doi.org/10.1016/0191-8141(89)90036-9 DOI: https://doi.org/10.1016/0191-8141(89)90036-9

Little, T. A., Webber, S. M., Mizera, M., Boulton, C., Oesterle, J., Ellis, S., Boles, A., van der Pluijm, B., Norton, K., Seward, D., Biemiller, J., & Wallace, L. (2019). Evolution of a rapidly slipping, active low-angle normal fault, Suckling-Dayman metamorphic core complex, SE Papua New Guinea. GSA Bulletin, 131(7–8), 1333–1363. https://doi.org/10.1130/b35051.1 DOI: https://doi.org/10.1130/B35051.1

Madden, E. H., Ulrich, T., & Gabriel, A.-A. (2022). The state of pore fluid pressure and 3-D megathrust earthquake dynamics. Journal of Geophysical Research: Solid Earth, 127. https://doi.org/10.1029/2021JB023382 DOI: https://doi.org/10.1029/2021JB023382

Marchandon, M., Gabriel, A.-A., Chiarluce, L., Tinti, E., Casarotti, E., & Biemiller, J. (2025). SeisSol input files for Alto Tiberina dynamic rupture scenarios [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.14895122

Mariucci, M. T., & Montone, P. (2020). Database of Italian present-day stress indicators, IPSI 1.4. Scientific Data, 7(1). https://doi.org/10.1038/s41597-020-00640-w DOI: https://doi.org/10.1038/s41597-020-00640-w

Mariucci, M. T., & Montone, P. (2024). Database of Italian Present-day Stress Indicators, Istituto Nazionale di Geofisica e Vulcanologia (INGV). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/IPSI.1.6

Melosh, H. J. (1990). Mechanical basis for low-angle normal faulting in the Basin and Range province. Nature, 343(6256), 331–335. https://doi.org/10.1038/343331a0 DOI: https://doi.org/10.1038/343331a0

Mirabella, F., Brozzetti, F., Lupattelli, A., & Barchi, M. R. (2011). Tectonic evolution of a low‐angle extensional fault system from restored cross‐sections in the Northern Apennines (Italy). Tectonics, 30(6). https://doi.org/10.1029/2011tc002890 DOI: https://doi.org/10.1029/2011TC002890

Mirabella, F., Ciaccio, M. G., Barchi, M. R., & Merlini, S. (2004). The Gubbio normal fault (Central Italy): geometry, displacement distribution and tectonic evolution. Journal of Structural Geology, 26(12), 2233–2249. https://doi.org/10.1016/j.jsg.2004.06.009 DOI: https://doi.org/10.1016/j.jsg.2004.06.009

Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31(8), 802–816. https://doi.org/10.1016/j.jsg.2009.05.002 DOI: https://doi.org/10.1016/j.jsg.2009.05.002

Mizera, M., Little, T. A., Biemiller, J., Ellis, S., Webber, S., & Norton, K. P. (2019). Structural and Geomorphic Evidence for Rolling‐Hinge Style Deformation of an Active Continental Low‐Angle Normal Fault, SE Papua New Guinea. Tectonics, 38(5), 1556–1583. https://doi.org/10.1029/2018tc005167 DOI: https://doi.org/10.1029/2018TC005167

Montone, P., & Mariucci, M. T. (2016). The new release of the Italian contemporary stress map. Geophysical Journal International, 205(3), 1525–1531. https://doi.org/10.1093/gji/ggw100 DOI: https://doi.org/10.1093/gji/ggw100

Montone, P., & Mariucci, M. T. (2020). Constraints on the Structure of the Shallow Crust in Central Italy from Geophysical Log Data. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60855-0 DOI: https://doi.org/10.1038/s41598-020-60855-0

NASA Shuttle Radar Topography Mission (SRTM). (2013). Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. https://doi.org/10.5069/G9445JDF

Nicol, A., Walsh, J. J., Manzocchi, T., & Morewood, N. (2005). Displacement rates and average earthquake recurrence intervals on normal faults. Journal of Structural Geology, 27(3), 541–551. https://doi.org/10.1016/j.jsg.2004.10.009 DOI: https://doi.org/10.1016/j.jsg.2004.10.009

Niemeijer, A. R., & Collettini, C. (2013). Frictional Properties of a Low-Angle Normal Fault Under In Situ Conditions: Thermally-Activated Velocity Weakening. Pure and Applied Geophysics, 171(10), 2641–2664. https://doi.org/10.1007/s00024-013-0759-6 DOI: https://doi.org/10.1007/s00024-013-0759-6

Noda, H., Dunham, E. M., & Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysical Research: Solid Earth, 114(B7). https://doi.org/10.1029/2008jb006143 DOI: https://doi.org/10.1029/2008JB006143

Oeser, J., Bunge, H.-P., & Mohr, M. (2006). Cluster Design in the Earth Sciences Tethys. In High Performance Computing and Communications (pp. 31–40). Springer Berlin Heidelberg. https://doi.org/10.1007/11847366_4 DOI: https://doi.org/10.1007/11847366_4

Palgunadi, K. H., Gabriel, A., Garagash, D. I., Ulrich, T., & Mai, P. M. (2024). Rupture Dynamics of Cascading Earthquakes in a Multiscale Fracture Network. Journal of Geophysical Research: Solid Earth, 129(3). https://doi.org/10.1029/2023jb027578 DOI: https://doi.org/10.1029/2023JB027578

Palgunadi, K. H., Gabriel, A.-A., Ulrich, T., López-Comino, J. À., & Mai, P. M. (2020). Dynamic Fault Interaction during a Fluid-Injection-Induced Earthquake: The 2017 Mw 5.5 Pohang Event. Bulletin of the Seismological Society of America, 110(5), 2328–2349. https://doi.org/10.1785/0120200106 DOI: https://doi.org/10.1785/0120200106

Palmer, A. C., Rice, J. R., & Hill, R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 332(1591), 527–548. https://doi.org/10.1098/rspa.1973.0040 DOI: https://doi.org/10.1098/rspa.1973.0040

Pelties, C., Gabriel, A.-A., & Ampuero, J.-P. (2014). Verification of an ADER-DG method for complex dynamic rupture problems. Geoscientific Model Development, 7(3), 847–866. https://doi.org/10.5194/gmd-7-847-2014 DOI: https://doi.org/10.5194/gmd-7-847-2014

Pelties, Christian, de la Puente, J., Ampuero, J., Brietzke, G. B., & Käser, M. (2012). Three‐dimensional dynamic rupture simulation with a high‐order discontinuous Galerkin method on unstructured tetrahedral meshes. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi.org/10.1029/2011jb008857 DOI: https://doi.org/10.1029/2011JB008857

Piccinini, D., Cattaneo, M., Chiarabba, C., Chiaraluce, L., Martin, M. D., Bona, M. D., Moretti, M., Selvaggi, G., Augliera, P., & Spallarossa, D. (2009). A microseismic study in a low seismicity area of Italy: the Città di Castello 2000-2001 experiment. Annals of Geophysics, 46(6). https://doi.org/10.4401/ag-3476 DOI: https://doi.org/10.4401/ag-3476

Poggiali, G., Chiaraluce, L., Ross, Z. E., Zhu, W., & Marone, C. (2025). Fault Geometry and Source Mechanics of the Altotiberina Fault System from a High-Resolution Machine-Learning Earthquake Catalog. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120250072 DOI: https://doi.org/10.1785/0120250072

Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., & Scholz, C. H. (1987). Roughness of natural fault surfaces. Geophysical Research Letters, 14(1), 29–32. https://doi.org/10.1029/gl014i001p00029 DOI: https://doi.org/10.1029/GL014i001p00029

Ramos, M. D., & Huang, Y. (2019). How the Transition Region Along the Cascadia Megathrust Influences Coseismic Behavior: Insights From 2‐D Dynamic Rupture Simulations. Geophysical Research Letters, 46(4), 1973–1983. https://doi.org/10.1029/2018gl080812 DOI: https://doi.org/10.1029/2018GL080812

Ramos, M. D., Huang, Y., Ulrich, T., Li, D., Gabriel, A., & Thomas, A. M. (2021). Assessing Margin‐Wide Rupture Behaviors Along the Cascadia Megathrust With 3‐D Dynamic Rupture Simulations. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2021jb022005 DOI: https://doi.org/10.1029/2021JB022005

Ramos, M. D., Thakur, P., Huang, Y., Harris, R. A., & Ryan, K. J. (2022). Working with Dynamic Earthquake Rupture Models: A Practical Guide. Seismological Research Letters, 93(4), 2096–2110. https://doi.org/10.1785/0220220022 DOI: https://doi.org/10.1785/0220220022

Rekoske, J. M., Gabriel, A., & May, D. A. (2023). Instantaneous Physics‐Based Ground Motion Maps Using Reduced‐Order Modeling. Journal of Geophysical Research: Solid Earth, 128(8). https://doi.org/10.1029/2023jb026975 DOI: https://doi.org/10.1029/2023JB026975

Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004006 DOI: https://doi.org/10.1029/2005JB004006

Rietbrock, A., Tiberi, C., Scherbaum, F., & Lyon‐Caen, H. (1996). Seismic slip on a low angle normal fault in the Gulf of Corinth: Evidence from high‐resolution cluster analysis of microearthquakes. Geophysical Research Letters, 23(14), 1817–1820. https://doi.org/10.1029/96gl01257 DOI: https://doi.org/10.1029/96GL01257

Rodriguez Padilla, A. M., Oskin, M. E., Milliner, C. W. D., & Plesch, A. (2022). Accrual of widespread rock damage from the 2019 Ridgecrest earthquakes. Nature Geoscience, 15(3), 222–226. https://doi.org/10.1038/s41561-021-00888-w DOI: https://doi.org/10.1038/s41561-021-00888-w

Rovida, A. N., Locati, M., CAMASSI, R. D., Lolli, B., & Gasperini, P. (2016). CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. 35th General Assembly of the European Seismological Commission. https://www.earth-prints.org/handle/2122/11302

Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7(6), 751–754. https://doi.org/10.1016/0191-8141(85)90150-6 DOI: https://doi.org/10.1016/0191-8141(85)90150-6

Smith, S. A. F., & Faulkner, D. R. (2010). Laboratory measurements of the frictional properties of the Zuccale low‐angle normal fault, Elba Island, Italy. Journal of Geophysical Research: Solid Earth, 115(B2). https://doi.org/10.1029/2008jb006274 DOI: https://doi.org/10.1029/2008JB006274

Smith, S. A. F., Holdsworth, R. E., Collettini, C., & Imber, J. (2007). Using footwall structures to constrain the evolution of low-angle normal faults. Journal of the Geological Society, 164(6), 1187–1191. https://doi.org/10.1144/0016-76492007-009 DOI: https://doi.org/10.1144/0016-76492007-009

Spencer, J. E., & Chase, C. G. (1989). Role of crustal flexure in initiation of low‐angle normal faults and implications for structural evolution of the basin and range province. Journal of Geophysical Research: Solid Earth, 94(B2), 1765–1775. https://doi.org/10.1029/jb094ib02p01765 DOI: https://doi.org/10.1029/JB094iB02p01765

Stucchi, M., Camassi, R., Rovida, A., Locati, M., Ercolani, E., Meletti, C., Migliavacca, P., Bernardini, F., & Azzaro, R. (2007). DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04. Quaderni Di Geofisica.

Taufiqurrahman, T., Gabriel, A. ‐A., Ulrich, T., Valentová, L., & Gallovič, F. (2022). Broadband Dynamic Rupture Modeling With Fractal Fault Roughness, Frictional Heterogeneity, Viscoelasticity and Topography: The 2016 Mw 6.2 Amatrice, Italy Earthquake. Geophysical Research Letters, 49(22). https://doi.org/10.1029/2022gl098872 DOI: https://doi.org/10.1029/2022GL098872

Taufiqurrahman, Taufiq, Gabriel, A.-A., Li, D., Ulrich, T., Li, B., Carena, S., Verdecchia, A., & Gallovič, F. (2023). Dynamics, interactions and delays of the 2019 Ridgecrest rupture sequence. Nature, 618(7964), 308–315. https://doi.org/10.1038/s41586-023-05985-x DOI: https://doi.org/10.1038/s41586-023-05985-x

Tesei, T., Collettini, C., Carpenter, B. M., Viti, C., & Marone, C. (2012). Frictional strength and healing behavior of phyllosilicate‐rich faults. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/10.1029/2012jb009204 DOI: https://doi.org/10.1029/2012JB009204

Tinti, E., Spudich, P., & Cocco, M. (2005). Earthquake fracture energy inferred from kinematic rupture models on extended faults. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005jb003644 DOI: https://doi.org/10.1029/2005JB003644

Tinti, Elisa, Casarotti, E., Ulrich, T., Taufiqurrahman, T., Li, D., & Gabriel, A.-A. (2021). Constraining families of dynamic models using geological, geodetic and strong ground motion data: The Mw 6.5, October 30th, 2016, Norcia earthquake, Italy. Earth and Planetary Science Letters, 576, 117237. https://doi.org/10.1016/j.epsl.2021.117237 DOI: https://doi.org/10.1016/j.epsl.2021.117237

Townend, J., & Zoback, M. D. (2001). Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system. Geological Society, London, Special Publications, 186(1), 13–21. https://doi.org/10.1144/gsl.sp.2001.186.01.02 DOI: https://doi.org/10.1144/GSL.SP.2001.186.01.02

Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09125-w DOI: https://doi.org/10.1038/s41467-019-09125-w

Ulrich, T., Gabriel, A.-A., & Madden, E. H. (2022). Stress, rigidity and sediment strength control megathrust earthquake and tsunami dynamics. Nature Geoscience, 15(1), 67–73. https://doi.org/10.1038/s41561-021-00863-5 DOI: https://doi.org/10.1038/s41561-021-00863-5

Uphoff, C., Rettenberger, S., Bader, M., Madden, E. H., Ulrich, T., Wollherr, S., & Gabriel, A.-A. (2017). Extreme scale multi-physics simulations of the tsunamigenic 2004 sumatra megathrust earthquake. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 1–16. https://doi.org/10.1145/3126908.3126948 DOI: https://doi.org/10.1145/3126908.3126948

Vadacca, L., Casarotti, E., Chiaraluce, L., & Cocco, M. (2016). On the mechanical behaviour of a low-angle normal fault: the Alto Tiberina fault (Northern Apennines, Italy) system case study. Solid Earth, 7(6), 1537–1549. https://doi.org/10.5194/se-7-1537-2016 DOI: https://doi.org/10.5194/se-7-1537-2016

Valoroso, L., Chiaraluce, L., Di Stefano, R., & Monachesi, G. (2017). Mixed‐Mode Slip Behavior of the Altotiberina Low‐Angle Normal Fault System (Northern Apennines, Italy) through High‐Resolution Earthquake Locations and Repeating Events. Journal of Geophysical Research: Solid Earth, 122(12). https://doi.org/10.1002/2017jb014607 DOI: https://doi.org/10.1002/2017JB014607

Visini, F., Meletti, C., Rovida, A., D’Amico, V., Pace, B., & Pondrelli, S. (2022). An updated area-source seismogenic model (MA4) for seismic hazard of Italy. Natural Hazards and Earth System Sciences, 22(8), 2807–2827. https://doi.org/10.5194/nhess-22-2807-2022 DOI: https://doi.org/10.5194/nhess-22-2807-2022

Vuan, A., Brondi, P., Sugan, M., Chiaraluce, L., Di Stefano, R., & Michele, M. (2020). Intermittent Slip along the Alto Tiberina Low-angle Normal Fault in Central Italy. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL089039 DOI: https://doi.org/10.1029/2020GL089039

Wallace, L. M., Ellis, S., Little, T., Tregoning, P., Palmer, N., Rosa, R., Stanaway, R., Oa, J., Nidkombu, E., & Kwazi, J. (2014). Continental breakup and UHP rock exhumation in action: GPS results from the Woodlark Rift, Papua New Guinea. Geochemistry, Geophysics, Geosystems, 15(11), 4267–4290. https://doi.org/10.1002/2014gc005458 DOI: https://doi.org/10.1002/2014GC005458

Webber, S., Norton, K. P., Little, T. A., Wallace, L. M., & Ellis, S. (2018). How fast can low-angle normal faults slip? Insights from cosmogenic exposure dating of the active Mai’iu fault, Papua New Guinea. Geology, 46(3), 227–230. https://doi.org/10.1130/g39736.1 DOI: https://doi.org/10.1130/G39736.1

Weng, H., & Yang, H. (2018). Constraining Frictional Properties on Fault by Dynamic Rupture Simulations and Near‐Field Observations. Journal of Geophysical Research: Solid Earth, 123(8), 6658–6670. https://doi.org/10.1029/2017jb015414 DOI: https://doi.org/10.1029/2017JB015414

Wernicke, B. (1995). Low‐angle normal faults and seismicity: A review. Journal of Geophysical Research: Solid Earth, 100(B10), 20159–20174. https://doi.org/10.1029/95jb01911 DOI: https://doi.org/10.1029/95JB01911

Westaway, R. (1999). The mechanical feasibility of low-angle normal faulting. Tectonophysics, 308(4), 407–443. https://doi.org/10.1016/s0040-1951(99)00148-1 DOI: https://doi.org/10.1016/S0040-1951(99)00148-1

Wollherr, S., Gabriel, A., & Mai, P. M. (2019). Landers 1992 “Reloaded”: Integrative Dynamic Earthquake Rupture Modeling. Journal of Geophysical Research: Solid Earth, 124(7), 6666–6702. https://doi.org/10.1029/2018jb016355 DOI: https://doi.org/10.1029/2018JB016355

Yin, A. (1989). Origin of regional, rooted low‐angle normal faults: A mechanical model and its tectonic implications. Tectonics, 8(3), 469–482. https://doi.org/10.1029/tc008i003p00469 DOI: https://doi.org/10.1029/TC008i003p00469

Yin, A. (1991). Mechanisms for the formation of Domal and Basinal Detachment Faults: A three‐dimensional analysis. Journal of Geophysical Research: Solid Earth, 96(B9), 14577–14594. https://doi.org/10.1029/91jb01113 DOI: https://doi.org/10.1029/91JB01113

Yu, H., Zhang, Z., Hu, F., Xu, D., & Chen, X. (2023). Estimation of the Nucleation Location and Rupture Extent of the 1850 Xichang, Sichuan, China, Earthquake by Dynamic Rupture Simulations on a Multi‐Segment Stepover Structure. Earth and Space Science, 10(6). https://doi.org/10.1029/2022ea002775 DOI: https://doi.org/10.1029/2022EA002775

Downloads

Published

2025-08-21

How to Cite

Marchandon, M., Gabriel, A.-A., Chiaraluce, L., Tinti, E., Casarotti, E., & Biemiller, J. (2025). Forecasting 3D Rupture Dynamics of the Alto Tiberina Low-Angle Normal Fault, Italy. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1603

Issue

Section

Articles